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We present a quantitative theory for ferromagnetism in diluted III-V ferromagnetic semiconductors in the
presence of the two types of defects commonly supposed to be responsible for compensation: As antisites and
Mn interstitials. In each case we reduce the description to that of an effective random Heisenberg model with
exchange integrals between active magnetic impurities provided by ab initio calculation. The effective mag-
netic Hamiltonian is then solved by a semianalytical method �locally self-consistent random-phase approxima-
tion�, where disorder is treated exactly. Measured Curie temperatures are shown to be inconsistent with the
hypothesis that As antisites provide the dominant mechanism for compensation. In contrast, if we assume that
Mn interstitials are the main source for compensation, we obtain a very good agreement between the calculated
Curie temperature and the measured values, in both as-grown and annealed samples.
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Diluted magnetic semiconductors are materials where the
interplay of transport and magnetic properties open the per-
spectives of exciting applications. The III-V semiconductors
are particularly promising since a low concentration of mag-
netic dopants can give relatively high Curie temperatures for
ferromagnetism.1–4 In these materials it is found that the Cu-
rie temperatures depend strongly on methods of preparation
and sample history; for the same nominal concentration of
magnetic ions, the Curie temperature �TC� may vary by large
factors. Systematic studies show that different annealing
treatments display a clear correlation between the Curie tem-
perature and the conductivity. This indicates that the process
of magnetic doping is more complex than a straight substi-
tution �Mn�Ga�� of �formally� Ga3+ sites by Mn2+ atoms,
providing a localized magnetic moment and an itinerant hole.
In fact the original samples are “compensated,” i.e., the den-
sity of holes measured by transport is lower than the concen-
tration of magnetic ions due to additional donor impurities,
especially in the samples as grown by molecular beam epi-
taxy �MBE�. The increase in TC after annealing is then inter-
preted as removal of the defects, resulting in an increase in
the hole concentration which mediates the magnetic ex-
change. This leaves obscure the precise form of the compen-
sating defect, and does not provide a quantitative theory re-
lating the Mn2+ concentration, the hole density, and the
density of compensating defects to ferromagnetism.

There are two probable candidates for compensation: both
arsenic antisites AsGa �i.e., As atoms on sites of the Ga sub-
lattice� and Mn interstitials MnI have long been known to be
double donors. The two forms of defects differ in an impor-
tant way: for each AsGa there are two holes removed, i.e.,
only the carrier density is changed, while each interstitial, in
addition, introduces a magnetic moment, changing the num-
ber of magnetically active ions. Microscopic calculations in-
dicate that the MnI are preferentially situated on interstitial
sites adjacent to occupied Mn�Ga� and that the coupling be-
tween interstitials and the adjacent moment is essentially
given by antiferromagnetic �AF� superexchange coupling �J

�−320 K�.5 In fact, there are two inequivalent interstitial
positions: the Mn atom can be located inside the tetrahedron
formed by either four Ga T�Ga4� or else four As T�As4�. We
shall make no distinction between the two possible positions
sites, since in either case the AF exchange with Mn�Ga� is
strongly antiferromagnetic, and we refer to MnI as the sum of
the two.

The immediate question is, what is the proportion of the
two defects, interstitials MnI and AsGa, in the ferromagnetic
samples? A conclusion of this paper is that the observed
Curie temperatures in samples at different stages of anneal-
ing can only be explained assuming that interstitial defects
dominate compensation. Such a dominance agrees with
Wolos et al.,6 who estimated, from the strength of optical
transitions, a relatively small �fewer than 10% of the total
manganese atoms� number of antisites AsGa, fewer than 10%
of the total manganese atoms, and, from electron paramag-
netic resonance, a much larger number of other compensat-
ing defects. Similarly Wang et al.7 showed that the saturated
magnetization at low temperatures was consistent with the
elimination of two magnetic moments with each impurity.
Furthermore, polarized neutrons reflectometry8 and Auger
spectroscopy and resistivity measurements2 showed that the
annealing process corresponds to redistribution of Mn sites
and the increase of the magnetization far from the surface.
We emphasize that clear proof of the role of interstitials is
still necessary, as other techniques, by transmission electron
micrography9 or by infrared absorption and positron annihi-
lation spectroscopy10 suggested a much higher concentration
of antisites. The element we are bringing here is a quantita-
tive theory for the Curie temperature, which as we shall ex-
plain below, is much more accurate than Zener mean-field
theory. We note that in Ref. 11 we anticipated the fact that
the changes in the carrier density due solely to antisites were
insufficient to explain the reduction of TC.

Recently, by combining first principles calculations and a
semianalytical approach, we were able to provide an excel-
lent agreement between the calculated Curie temperatures
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and those measured in optimally doped semiconductors.11 In
the first step of this method, we derive the exchange integrals
between magnetic impurities using the local density approxi-
mation �LDA� and magnetic force theorem12 providing an
effective classical random Heisenberg Hamiltonian. Note
that the one particle Green’s functions of the itinerant carri-
ers used for the calculations of the calculated exchange inte-
grals include the effect of disorder within a coherent poten-
tial approximation �CPA� for electronic motion. In the
second step, we treat the random effective Heisenberg model
within an approach where thermal fluctuations are treated
within a self-consistent local random phase approximation
�SC-LRPA�, while the disorder is treated “exactly,” i.e., the
magnetic properties are calculated for individual configura-
tion of disorder generated by sampling techniques. This
theory is an extension of Ref. 13 where disorder in the effec-
tive Hamiltonian was treated by a form of CPA. An attractive
feature of an “exact” treatment of disorder is that it allows
us, for example, to study the effect of correlations in the
disorder,14 a question of importance in interpreting experi-
ments on high Curie-temperature samples grown using the
organo-metallic vapor phase epitaxy �OMVPE� technique.15

We attribute the success of our approach to �i� the realistic
calculations of the exchange integrals and �ii� to a proper
treatment of the thermal fluctuations and disorder of the ef-
fective Heisenberg Hamiltonian. This second point is con-
firmed by consistency with Monte Carlo simulations.16

Let us now give a detailed description of the SC-LRPA.
We consider the following diluted Heisenberg Hamiltonian:

Hef f = − �
ij

JijSi · S j . �1�

The sum ij runs over pairs of sites occupied by the magnetic
impurities �with each pair counted once�. The spins are quan-
tum with quantum number S. In the case of classical spins,
we will perform properly the limit S→� at the end of the
calculations �see below�. We define the retarded Green’s
function,

Gij��� = �
−�

+�

Gij�t�ei�tdt , �2�

where Gij�t�=−i��t���Si
+�t� ;Sj

−�0��	.
After Tyablicov decoupling of the equation of motion of

Gij��� we obtain

�� − hi
ef f�Gij��� = 2�Si

z	�ij − �Si
z	�

l

JilGlj��� , �3�

where the local effective field is

hi
ef f = �

l

Jil�Sl
z	 . �4�

For a given temperature and disorder configuration, the
local magnetization �Si

z	 has to be determined self-
consistently at each impurity site. In order to close the set of
equations we use the Callen expression, which relate the lo-
cal Green’s function at site i to the local magnetization at this
site,17

�Si
z	 =

�S − �i��1 + �i�2S+1 + �S + 1 + �i��i
2S+1

�1 + �i�2S+1 − �i
2S+1 . �5�

The expression for the local effective magnon occupation
number reads

�i =
− 1

2��Si
z	
�

−�

+� Im Gii���
exp��/kT� − 1

d� . �6�

The previous set of equations allows us now to determine,
at each temperature, the local magnetization at each impurity
site and the dynamical properties such as the dynamical
structure factor S�q ,��= �−1/��Im��i,je

iq·�ri−rj�Gij����.
In the vicinity of the Curie temperature, �Si

z	→0 the fre-
quency integral can be simplified as the denominator can be
replaced by a form linear in frequency. With a simple change
of variable E=� /m,

�i �
FikBTC

m
, �7�

where m is the total magnetization averaged over all impurity
sites and

Fi = �
−�

+� Aii�E�
E

dE . �8�

The local spectral function Aii�E�=−�1/2��Im�Gii�E� /�i�. In
the previous equation the factor �i=limT→TC

��Si
z	 /m� is de-

termined self-consistently. Substituting the form �7� in the
Callen Eq. �5� we obtain18

�Si
z	 =

1

3
S�S + 1�

1

	i
�9�

and

kBTC =
1

3
S�S + 1�

1

Nimp
�

i

1

Fi
. �10�

It is interesting to note that the Curie temperature can be
reexpressed in terms of the eigenfunctions and eigenvalues
of the following effective Hamiltonian, where the matrix el-
ements are

�Hef f�ij = − �iJij + �ij�
l

�lJil. �11�

This leads to

Fi = �




�i��
	
2

E


. �12�

Thus the Curie temperature becomes

TC
sc =

1

3Nimp
S�S + 1��

i
��





�i��
	
2

E

−1

. �13�

This expression implies that the nature �for example, ex-
tended versus localized� of the eigenstate can have an impor-
tant effect on the Curie temperature.

The exchange couplings calculated within first principle
calculations explicitly assumed classical spins; therefore, to
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be consistent we must derive the Curie temperature in the
classical limit. The exchange couplings which are used for
the calculations are Jij =Jij

cl /S2, where Jij
cl are the couplings

obtained from first principle calculations. Then we perform
the limit S→� and find

kBTC
cl =

1

3

1

Nimp
�

i

1

Fi
cl , �14�

where Fi
cl=limS→�Fi /S2. Equation �14� will be the basis for

all the results that follow.
Concluding the derivation of our theoretical method, we

return to the analysis of the dependence of the Curie tem-
perature TC with different compensation mechanisms. First
we discuss the dependence of TC with the density of As
antisites yAs¯ . As in our preliminary study of this issue,11

which was restricted to a single nominal concentration of Mn
�5%�, we do this by introducing in the ab initio stage of our
calculation a concentration of antisites, which influences the
calculated exchange couplings. As the band structure does
not fix a priori the number of carriers, this calculation also
allows us to verify, within the LDA, that there is indeed the
compensation expected. In Fig. 1 we plot, for different con-
centration xMn of Mn, the variation of the calculated TC
in �Ga1−xMn−yAs¯

MnxMn
AsyAs¯

�As as a function of �=nh /xMn.

Since each As antisite is a double donor, the carrier density is
nh=xMn−2yAs. We observe that above a critical value
�c�xMn�, TC is weakly sensitive to As antisites; this is particu-
larly clear for xMn=0.03 and 0.05. For 7% Mn, for example,
we also observe that for �0.50 ferromagnetism is unstable.
The reason for this is that as the density decreases, the near-
est neighbor exchange integral becomes increasingly domi-
nated by the �antiferromagnetic� superexchange contribution,
leading to frustration. Note also that this behavior with hole
density is incompatible with Zener mean-field theory which
predicts that TC�nh

1/3. Let us now discuss the compatibility
of these results with the assumption that As antisites domi-
nate the mechanism of compensation. We do this by compar-

ing samples with approximately fixed total density of Mn
impurities but exhibiting large variation in their Curie tem-
peratures. We plot in Fig. 2 the measured TC

exp as a function
of �=nh /xMn. In contrast to calculated values, TC

exp is more
sensitive to the carrier density, varying linearly with �. The
other important difference with the curves in Fig. 1 is that
ferromagnetism is still observed for rather small values of �.
Thus, if we assume that As antisites dominate compensation,
theory and experiment would disagree. As our approach was
successful for uncompensated samples, and consistent with
Monte Carlo simulations16 we conclude that As antisites do
not dominate compensation.

As already mentioned, the saturated magnetization7 at low
temperature indicates that the compensating defects affect
both the density of carriers and the density of magnetically
active Mn impurities. Let us now take the alternate limit in
which compensation is taken to be entirely due to the pres-
ence of Mn interstitial defects MnI. We denote by xMn, xMnGa

,
and xMn�I�, respectively, the total density of Mn, the density
of Mn on Ga sublattice, and on interstitial location, respec-
tively. Recent first principle calculations5 and channeling Ru-
therford backscattering experiments19 indicate that Mn inter-
stitials are preferably attracted by MnGa and tend to form
pairs of spins with strongly antiferromagnetic couplings.
Thus, we suppose that MnI are not completely random, but
are only in positions with a MnGa as a nearest neighbor �see
Fig. 3�. In writing an effective Hamiltonian, we will elimi-
nate the strongly antiferromagnetically coupled pairs of the
MnI and adjacent MnGa. They can be assumed, within high
precision, to form bound singlet pairs whose effect on the
magnetically active ions is small.20 The remaining “active”
Mn of density xef f =xMn−2xMn�I� which are not directly
coupled to a MnI, and with the measured carrier density nh,
interact via an effective Heisenberg model with couplings
determined by the measured carrier density nh. We make the
same calculation as before but with the effective concentra-
tion xef f and compensation �ef f. Since each MnI is a double
donor, the total density of carriers is nh=xMn�Ga�−2xMn�I�
=xMn−3xMn�I�. Thus from each measured nh we can deduce
the density of MnI and of “unpaired” Mn which are, respec-

FIG. 1. �Color online� Effect of As antisites on TC in

�Ga1−xMn−yAs¯
MnxMn

As¯ yAs¯
�As for different Mn concentations. The

carrier density is nh=xMn−2yAs¯ and �=nh /xMn. The data for x
=0.05 are as in Ref. 11.

FIG. 2. �Color online� Experimental values of TC�2� as a func-
tion of the measured hole density per magnetic impurity �
=nh /xMn for Ga1−xMnxAs at nominal concentration 6.7%.
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tively, xMn�I�= 1
3 �xMn−nh� and xef f =

1
3 �xMn+2nh�. We also de-

fine the effective � parameter as �ef f =nh /xef f =3nh / �xMn

+2nh�. Note that in our work we neglect effects of surface
inhomogeneities6–8 in calculating the bulk ordering tempera-
ture.

In Fig. 4 we show both the experimental data2 and calcu-
lated Curie temperatures. Note that for the experimental data
the x axis corresponds to xef f calculated for each sample
using the previous expressions. Of course the nominal con-
centrations of each sample used in the graph are identical:
6.7%. On the same figure we note by each experimental
point the ratio �ef f of the measured carrier density to the
effective concentration of active magnetic ions xef f. As the
samples have values of �ef f smaller than one, for the cases of
3.5% and 5% we calculated Curie temperatures for various �
and these additional calculated points appear as filled squares

and triangles. As in Fig. 1, we vary � in the calculations by
the addition of antisites, here used as a purely calculational
device to change the carrier density, while keeping the cal-
culation fully self-consistent.21 The calculated points were
systematically averaged over several hundred configurations
of disorder and we verified that the error bars from this av-
eraging are smaller than the plotted points. Note that some of
the results corresponding to the optimally annealed sample
were already published in Ref. 11, but the values have
changed slightly because of improved statistics. First, we
observe that the well-annealed samples �of highest TC� are in
excellent agreement with the calculated values for uncom-
pensated samples, �=1 curve �“optimal curve”�. We remark
that this optimal curve, which depends on exchange integrals
recalculated for each concentration, can nevertheless be well
parametrized by the simple form, up to xMn=0.10, TC
�A�xMn−xc�1/2 where xc=0.0088, A=649 K for Ga�Mn�As.
The samples corresponding to intermediate TC are still in
reasonable agreement with the optimal curve for uncompen-
sated samples at the effective concentration of magnetically
active ions. The deviation from this optimal line is small, but
increasingly visible, for as-grown samples. In order to refine
our calculations we have taken into account that for these
samples �ef f is substantially less than 1. This is why we
performed additional calculations for fixed xMn=0.035 and
0.05 and various hole densities, as previously mentioned. We
now observe that the agreement with the experimental mea-
surements is very good for all the measured samples �as-
grown and annealed�. For example, the TC as-grown sample,
which corresponds to xef f �0.035 and �ef f �0.52, agrees
very well with the calculated value �square symbol� for the
same parameters. Note that using the above relations we find
that the density of MnI in as-grown samples is xMn�I�
�0.016 which corresponds to approximately 25% of the to-
tal Mn density. This is in very good agreement with the value
estimated in Ref. 22 �see Fig. 4 of that reference�.

In conclusion, we have shown that experimental measure-
ments in samples with fixed nominal magnetic impurity con-
centration could not be explained assuming As antisites as
the dominant mechanism for compensation. On the other
hand, with the assumption that Mn interstitials dominate, we
obtained an excellent quantitative agreement with the mea-
sured TC in both as-grown and annealed samples. It may be
possible, in varying sample preparation, to increase the num-
ber of antisites;23 this will have a weak effect on the TC,
provided the �ef f remains above the region of instability, as
seen in Fig. 1. For Ga�Mn�As samples, we can write an
explicit first approximation ��ef f =1� using the empirical
form for the optimal curve, by replacing xMn by xef f: TC
�A��xMn+2nh� /3−0.0088�1/2, where A=649 K. To take into
account the smaller corrections due to the value of �ef f we do
not have an explicit analytical form, but numerical correc-
tions can be predicted as in Fig. 1. Hence our combined ab
initio and/or local random-phase approximation approach is
a very powerful tool to study ferromagnetism in diluted fer-
romagnetic systems even in the presence of compensating
defects. The same approach can be applied to macroscopic
inhomogeneities, for example, surface effects, which may be
necessary to understand thin films and devices.

We would like to thank Dr. K. Edmonds for providing
unpublished additional data concerning measured critical

FIG. 3. �Color online� Left side: the up �down� arrows indicate
spin of Mn�Ga� �MnI�. The small circles are itinerant carrier �holes�.
MnI are double donor and strongly coupled antiferromagnetically to
MnGa. Right side: effective model with xef f MnGa impurities and nh

holes.

FIG. 4. �Color online� TC for GaMnAs as a function of xMn.
Note that experimental data �diamonds� are plotted as a function of
xef f, the density of magnetically active manganese, as explained in
the text. The values of �ef f =nh /xef f corresponding to each sample
are shown in the figure. The small circles, squares, and triangles are
calculated Curie temperatures. The small circles �dashed line� cor-
respond to uncompensated samples �=1. The squares and triangles
correspond to xMn=0.035 and 0.05, respectively, but assumed a
smaller density of holes per Mn. For these cases, the value of � for
each point is shown on the figure.

BOUZERAR, ZIMAN, AND KUDRNOVSKÝ PHYSICAL REVIEW B 72, 125207 �2005�

125207-4



temperatures of �GaMn�As. We are grateful to O. Cepas and
E. Kats for their comments and careful reading of the manu-
script. We also thank B. Barbara, R. Bouzerar, J. Cibert, and
C. Lacroix for interesting and fruitful discussions. J.K. ac-

knowledges the financial support from the grant agency of
the Academy of Sciences of Czech Republic �Grant No.
A1010203� and the Czech Science Foundation �Grant No.
202/04/0583�.

*Email address: georges.bouzerar@grenoble.cnrs.fr or
bouzerar@ill.fr

†Email address: ziman@ill.fr
‡Email address: kudrnov@fzu.cz
1 H. Ohno, Science 281, 951 �1998�.
2 K. W. Edmonds et al., Phys. Rev. Lett. 92, 037201 �2004�; K. W.

Edmonds, K. Y. Wang, R. P. Campion, B. L. Gallagher, and C.
T. Foxon, Appl. Phys. Lett. 81, 4991 �2002�. Additional values
of TC were provided by K. W. Edmonds et al. �private commu-
nication�.

3 S. J. Potashnik, K. C. Ku, S. H. Chun, J. J. Berry, N. Samarth, and
P. Schiffer, Appl. Phys. Lett. 79, 1495 �2001�.

4 T. Dietl, H. Ohno, F. Matsukura, J. Cibert, and D. Ferrand,
Science 287, 1019 �2000�.

5 J. Mašek and F. Máca, Phys. Rev. B 69, 165212 �2004�.
6 A. Wolos, M. Kaminska, M. Palczewska, A. Twardowski, X. Liu,

T. Wojtowicz, and J. K. Furdyna, J. Appl. Phys. 96, 530 �2004�.
7 K. Y. Wang, K. W. Edmonds, R. P. Campion, B. L. Gallagher, N.

R. S. Farley, C. T. Foxon, M. Sawicki, P. Boguslawski, and T.
Dietl, J. Appl. Phys. 95, 6512 �2004�.

8 B. J. Kirby, J. A. Borchers, J. J. Rhyne, S. G. E. te Velthuis, A.
Hoffmann, K. V. O’Donovan, T. Wojtowicz, X. Liu, W. L. Lim,
and J. K. Furdyna, Phys. Rev. B 69, 081307�R� �2004�; B. J.
Kirby, J. A. Borchers, J. J. Rhyne, K. V. O’Donovan, T. Woj-
towicz, X. Liu, Z. Ge, S. Shen, and J. K. Furdyna, Appl. Phys.
Lett. 86, 072506 �2004�.

9 F. Glas, G. Patriarche, L. Largeau, and A. Lemaître, Phys. Rev.
Lett. 93, 086107 �2004�.

10 F. Tuomisto, K. Pennanen, K. Saarinen, and J. Sadowski, Phys.
Rev. Lett. 93, 055505 �2004�.

11 G. Bouzerar, T. Ziman, and J. Kudrnovský, Europhys. Lett. 69,

812 �2005�.
12 J. Kudrnovský, I. Turek, V. Drchal, F. Maca, P. Weinberger, and P.

Bruno, Phys. Rev. B 69, 115208 �2004�.
13 G. Bouzerar and P. Bruno, Phys. Rev. B 66, 014410 �2002�.
14 G. Bouzerar, T. Ziman, and J. Kudrnovský, Appl. Phys. Lett. 85,

4941 �2004�.
15 Y. L. Soo, S. Kim, Y. H. Kao, A. J. Blattner, B. Wessels, S.

Khalid, C. Sanchez Hanke, and C. C. Kao, Appl. Phys. Lett. 84,
481 �2004�; A. J. Blattner, P. L. Prabhumirashi, V. P. Dravid, and
B. W. Wessels, J. Cryst. Growth 259, 8 �2003�.

16 L. Bergqvist, O. Eriksson, J. Kudrnovský, P. A. Korzhavyi, and I.
Turek, Phys. Rev. Lett. 93, 137202 �2004�; K. Sato, W. Sch-
weika, P. H. Dederichs, and H. Katayama-Yoshida, Phys. Rev. B
70, 201202�R� �2004�.

17 H. B. Callen, Phys. Rev. 130, 890 �1963�.
18 Note that in Ref. 11 there is a factor 2 in the expression for TC

corresponding to the different definition of Jij: there each ex-
change was counted twice in the Hamiltonian.

19 K. M. Yu, W. Walukiewicz, T. Wojtowicz, I. Kuryliszyn, X. Liu,
Y. Sasaki, and J. K. Furdyna, Phys. Rev. B 65, 201303�R�
�2002�.

20 R. N. Bhatt and P. A. Lee, Phys. Rev. Lett. 48, 344 �1982�.
21 Alternatively we found similar results by using ab initio rigid-

band calculations, i.e., simply shifting the Fermi level by hand to
tune the carrier density.

22 G. Mahieu, P. Condette, B. Grandidier, J. P. Nys, G. Allan, D.
Stiévenard, Ph. Ebert, H. Shimizu, and M. Tanaka, Appl. Phys.
Lett. 82, 712 �2003�.

23 J. Sadowski and J. Z. Domagala, Phys. Rev. B 69, 075206
�2004�.

COMPENSATION, INTERSTITIAL DEFECTS, AND… PHYSICAL REVIEW B 72, 125207 �2005�

125207-5


