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The appearance of colossal magnetoresistance �CMR� in Tl2Mn2O7 has stimulated many recent studies of
the pyrochlore family of compounds A2B2O7. The double exchange model of Zener does not describe the
CMR in Tl2Mn2O7, because its metallic conductivity cannot be explained by doping. Here we employ Hubbard
operators to reformulate the intermediate valence model used by Ventura and Alascio �Phys. Rev. B 56, 14533
�1997�� to describe the electronic structure and transport properties of this compound. Following Foglio and
Figueira �Phys. Rev. B 62, 7882, �2000�� we use approximate one-electron Green’s functions to calculate the
thermopower and the static and dynamic conductivity of Tl2Mn2O7 for several magnetic fields. A qualitative
agreement was obtained with the experimental measurements of those properties. Although the agreement is far
from perfect, these quantities are fairly well described by the same set of system parameters.
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I. INTRODUCTION

The A2B2O7 pyrochlore family of compounds has been
the object of many recent studies, principally because of the
appearance of colossal magnetoresistance �CMR� in the
Tl2Mn2O7 compound. This material was reported as ferro-
magnetic, metallic, and with enormous negative magnetore-
sistance in the region of temperatures corresponding to the
ferromagnetic transition �Tc�120 K�. The principal interest
created for this material is that the double exchange �DE�
Zener model does not explain the CMR in this material. Ex-
perimental studies show that, when compared with other
A2Mn2O7 compounds, the Tl one is unique. It has a very
high Tc, a property shared with the In pyrochlore, but it is the
only compound of the series that presents metallic conduc-
tivity, which cannot be explained by doping because it is
present in the stoichiometric compound. Several recent band
calculations1–3 show that the material is expected to be al-
most half metallic at low temperatures, that is, the conduc-
tivity is driven within only one of the spin directions. This
property is the same for the DE perovskites, but in that case
the conductivity and the ferromagnetism appear only with
doping.

The whole family of Mn pyrochlores shows
ferromagnetism,4 and their bands present similarities, with a
band gap reducing its value from Y to Tl, where the com-
pound is slightly metallic with very different conductivity for
both spin directions. The ferromagnetism in the Mn pyro-
chlore compounds is explained by the Kanamori-
Goodenough rules, as the result of superexchange through
the O ligands. However, the Curie temperatures do not scale
with the bond angles, which seems to indicate a different
mechanism for the In and Tl compounds4 �the calculated
values of the exchange parameter J for the Tl, In, and Y
compounds are, respectively, 0.11, 2.52, and 1.1 K, but their
corresponding measured Tc’s are 124, 129, and 16 K�.

The experimental paper published by Raju et al.5 tries to
explain the ferromagnetism of the Tl compound through DE,
but several evidences proved afterward that the origin of fer-
romagnetism is only superexchange.

A small number of carriers, of the order found in doped
semiconductors ��1019 cm−3�, was found in the Tl com-
pound by measuring Hall effect.6 Several authors obtain a
large enhancement of the magnetoresistance1,7 by doping the
Tl sites with In and Sc, or the Mn sites with Ru. The behav-
ior of the resistivity is sample dependent6,8 at high T, which
created a controversy about the compound’s behavior in this
region of temperatures.

Imai et al.9 present the more complete set of measure-
ments of Hall effect and magneto-thermopower. They mea-
sured the anomalous Hall coefficient at low �below Tc� and
high temperatures, and they found it small in both cases.
Following Singh3 they assume a very simple quasispherical
Fermi surface and fit the thermopower to the effective mass
model.

Increasing the pressure reduces the value of Tc for all the
Mn pyrochlores.10 Nuñez-Regueiro and Lacroix11 developed
a theory for this effect that gives good agreement with the
experimental results, confirming that the ferromagnetism is
due to superexchange.

Ventura and Alascio12 used an intermediate valence �IV�
model for the Tl, and they could explain both the conductiv-
ity and the CMR of the pure Tl compound. Here we refine
their calculations, using the same IV model but employing
Hubbard X operators.13 We calculated both the static and
dynamic conductivity, obtaining a qualitative agreement with
the measured quantities14,15 without having to assume an O
deficiency. This agrees with the result of the published band
studies.1–3 Following Schweitzer and Czycholl16 we calcu-
late the thermopower and magnetothermopower, and our re-
sults agree with the experiments.9

In Sec. II we reformulate the model of Ventura and Alas-
cio, employing the Hubbard operators. We discuss the ap-
proximate GF that we employ in the calculation, and give the
formulas to calculate the resistivity, optical conductivity, and
thermopower. In Sec. III we discuss the parameters we shall
use and calculate the transport properties, and in Sec. IV we
present our conclusions. Finally, we give the atomic states
employed to calculate the GF in Appendix A and a discus-
sion about the resistivity mechanism in Appendix B.
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II. MODEL WITH X-OPERATORS

The model employed12 is a lattice of local states hybrid-
ized with a conduction band. Each local state has two mag-
netic configurations with spin S=1/2 and S=1, respectively,
that are hybridized with the conduction electrons. The local
state with Sz=0 of the S=1 configuration is discarded, so that
we have two independent systems with spin up and spin
down, respectively, because the hybridization conserves the
spin direction. Each local site j has then two states �j ,�� with
S= 1

2 , �= ± 1
2 and two states �j ,s� with S=1, s= ±1, and their

respective energies are E� and Es.
We can assume arbitrary properties and energies for

the relevant localized states of this model, and it is then
convenient to describe them employing Hubbard operators
Xj;a,b= �j ,a��j ,b�, which transform the state �j ,b� into the
state �j ,a�, i.e., Xj,ab�j ,b�= �j ,a�. These operators do not sat-
isfy Wick’s theorem, and one uses instead their product rules
at the same site

Xj,abXj,cd = �b,cXj,ad. �1�

When the operators are at different sites we chose properties
equivalent to those of the usual Fermi or Bose: We say that
Xj,ab is of the “Fermi type” �“Bose type”� when the number
of electrons in the two states �j ,a� and �j ,b� differ by an odd
�even� number. For j� j� we then use 	Xj,ab ,Xj�,cd
=0 when
the two operators are of the “Fermi type” and �Xj,ab ,Xj�,cd�
=0 when at least one is of the “Bose type” �as usual,17

�a ,b�=ab−ba and 	a ,b
=ab+ba�.
We then write the model’s Hamiltonian

H = �
j,�

E�Xj;�� + �
j,s

EsXj;ss + �
k,�

Ek,�ck,�
† ck,�

+ �
j,k,�

�Vj,k,�Xj;�,s=2�
† ck,� + Vj,k,�

* ck,�
† Xj;�,s=2�� , �2�

where we denote the Hubbard operators Xj;± 1
2

,±1 with

Xj;�,s=2� �note that Xj;b,a=Xj;a,b
† �. The ck,�

† and ck,� are the
creation and destruction operators of a conduction electron
with energies Ek,�, wave vector k, and spin component
�� /2, where �= ±1. The hybridization constant is

Vj,k,� = �1/�Ns�V�k�exp�ik · Rj� , �3�

where Ns is the number of sites, and V�k� is independent of
k when the mixing is purely local.

The cumulant expansion was extended by Hubbard18 to
study a quantum problem with fermions, and he derived a
diagrammatic expansion involving unrestricted lattice sums
of connected diagrams that satisfies a linked cluster theorem.
The extension of this technique to the Anderson lattice19 is
sufficiently general to treat the model described by Eq. �2�,
and it is the basis of the present treatment. One has to use the
Grand Canonical Ensemble of electrons, and it is then con-
venient to introduce

H = H − ��
k�,�

Ck�,�
† Ck�,� + �

ja

�aXj,aa� , �4�

where � is the chemical potential and �a is the number of
electrons in the state �j ,a�, and without any restriction for the

treatment we shall use �± 1
2

=0 and �±1=1. It is also conve-

nient to introduce

� j,a = Ej,a − � �a, �5�

�k� = Ek� − � , �6�

because these are the expressions that appear consistently in
the calculations.

The last term in Eq. �2� will be considered as the pertur-
bation, and the exact and unperturbed averages of any opera-
tor A shall be, respectively, denoted by �A�H and �A�.

A. Approximate Green’s functions

As in the Anderson lattice13 with U→� one can introduce
one-particle Green’s functions �GFs� of local electrons

��Xj;�,s=2��	�Xj;�,s=2�
† �	���+�H, �7�

as well as GFs for the conduction electrons
��Ck��	�Ck��

† �	���+�H and “crossed” GFs of the type
��Xj;�,s=2��	�Ck��

† �	���+�H, all of them defined in the
intervals 0
	, 	�
��1/T. It is possible to associate
a Fourier series to these GFs because of their boundary
condition in this variable,19 and the coefficients
��Xj;�,s=2�����Xj;�,s=2�

† ������+�H correspond to the Matsubara
frequencies ��=� /� �where � are all the positive and nega-
tive odd integer numbers�. One can also transform the GF to
reciprocal space,19 and because of the invariance against
time and lattice translations

��Xj;�,s=2�����Xj;�,s=2�
† ������+�H = Gf f ,��k,����k�,k��+��,0.

�8�

Transforming the eigenstates of the c electrons to the Wan-
nier representation, one also obtains the equivalent relations
for Gcc,��k ,��� and Gfc,��k ,���. Considering that the coef-
ficients of the 	 Fourier series for each k are the values of a
function of the complex variable z=�+ iy at the points z�

= i��, it is possible to make the analytical continuation to the
upper and lower half-planes of z in the usual way,20 obtain-
ing, e.g., from the Gf f ,��k ,���, a function Gf f ,��k ,z� which
is minus the Fourier transform of the double time GF.21

The one-electron GF of ordinary fermions or bosons can
be expressed as a sum of infinite “proper” �or irreducible�
diagrams,17 and a similar result was obtained for the Hub-
bard model employing the cumulant expansion22 with the
hopping as perturbation. In the cumulant expansion of the
Anderson lattice19 we employed the hybridization rather than
the hopping as a perturbation, and the exact solution of the
conduction electrons problem in the absence of hybridization
was included in the zeroth-order Hamiltonian. It was then
necessary to extend Metzner’s derivation22 to the Anderson
lattice, and the same type of results he derived were also
obtained for the Anderson lattice. As with the Feynman dia-
grams, one can rearrange all those that contribute to the exact
Gf f ,��k ,��� by defining an effective cumulant M2,�

eff �k ,���,
that is given by all the diagrams of Gf f ,��k ,��� that cannot
be separated by cutting a single edge �usually called “proper”
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or “irreducible” diagrams�. The exact one-particle GFs of the
Anderson lattice13,23 were then obtained by introducing the
M2,�

eff �k ,��� in the cumulant expansion, and the model em-
ployed in those works was sufficiently general so that their
results could be easily extended to the Hamiltonian in Eq. �2�
in the present work.

By analytical continuation one then obtains the formal
expressions of the exact one-particle GFs of our model

Gf f ,��k,z� =
M2,�

eff �k,z�
1 − �V�k��2Gc,�

o �k,z�M2,�
eff �k,z�

, �9�

and

Gcc,��k,z� =
− 1

z − �k� + �V�k��2M2,�
eff �k,z�

, �10�

where Gc,�
o �k ,z�=−1/ �z−�k�� is the free c-electron

propagator.
The calculation of M2,�

eff �k ,��� is as difficult as that of
Gf f ,��k ,���, and it is then convenient to use an approxima-
tion: We shall replace M2,�

eff �k ,��� by the corresponding
quantity M2,�

at ���� of an exactly soluble Hamiltonian,
namely, the one describing the atomic limit of the same
model. Although the hopping is neglected in this system,
described by the Hamiltonian of Eqs. �2� with Ek,�=E0,� and
with a local hybridization V�k�=V, the M2,�

at ���� implicitly
contains all the higher order cumulants that appear in the
exact quantity. In the case of the Anderson lattice, the atomic
limit contains the basic physics of the formation of the sin-
glet ground state and of the appearance of the Kondo
peak,24,25 and we expect that it would provide an adequate
description of the present model. Because of its atomic char-
acter, the approximate effective cumulant M2,�

at ���� thus ob-

tained is independent of k, and can be calculated exactly as
discussed below.

With the approximations introduced above and employing
the Wannier representation for the c-electron operators the
whole system becomes a collection of local systems, de-
scribed by a Hamiltonian � jHj, where Hj is the local Hamil-
tonian at site j. This Hj can be solved exactly

Hj�j,�,r� = E�,r�j,�,r� , �11�

where �j ,� ,r� is the eigenstate at site j with energy E�,r, that
is characterized by r and its number � of electrons. Because
of the translational invariance we shall drop the site index j
when it is not necessary, and we shall also use the quantities
��,r=E�,r−��, more adequately for the H in Eq. �4� than the
E�,r �for convenience we use �± 1

2
=0 and �±1=1�. In Table I

�cf. notation in Appendix A� we give the properties of the
�� ,r� states: The number r that identifies the state, the z com-
ponent of spin Sz, and the quantities ��,r=E�,r−��.

It is now straightforward to express the Fourier transform
Gf f ,�

at ��s� of the f-electron GF in the atomic limit

Gf f ,�
at ��s� = − e�� �

�,r,r�

exp�− ���,r� + exp�− ���−1,r��

i�s + ��−1,r� − ��,r

���� − 1,r��X�,s=2���,r�2, �12�

where �=−kT ln�exp�−���,r� is the grand canonical
potential.26 The equivalent equations for the c electrons are
obtained by just replacing ���−1,r��X�,s=2��� ,r��2 in Eq. �12�
by ���−1,r��Cj,��� ,r��2.

The f-electron GF can be written in the form

TABLE I. The 16 eigenstates �� ,r� of H are given as a function of the eigenstates in the absence of
hybridization, together with their eigenvalues ��,r=E�,r−��, where E�,r is the energy of the state �� ,r�. To
abbreviate we used C�±=cos �±, S�±=sen �±, C�±=cos �± and S�±=sen �±.

�� ,r� Eigenstate Sz �r=Er−�r�

�0,1� �− 1
2 ,0� −1/2 �1=E−

�0,2� �+ 1
2 ,0� +1/2 �2=E+

�1,3� C�−�−1,0�−S�−�− 1
2 , ↓ � −1 �3=�s−+r−

�1,4� C�+�+1,0�−S�+�+ 1
2 , ↑ � +1 �4=�s++r+

�1,5� S�−�−1,0�+C�−�− 1
2 , ↓ � −1 �5=�s−−r−

�1,6� S�+�+1,0�+C�+�+ 1
2 , ↑ � +1 �6=�s+−r+

�1,7� �− 1
2 , ↑ � 0 �7=E−+�+

0

�1,8� �+ 1
2 , ↓ � 0 �8=E++�−

0

�2,9� �−1, ↓ � −3/2 �9=�−+�−
0

�2,10� �+1, ↑ � +3/2 �10=�++�+
0

�2,11� C�−�−1, ↑ �−S�−�− 1
2 , ↑ ↓ � −1/2 �11=�3+�+

0

�2,12� C�+�+1, ↓ �−S�+�+ 1
2 , ↑ ↓ � +1/2 �12=�4+�−

0

�2,13� S�−�−1, ↑ �+C�−�− 1
2 , ↑ ↓ � −1/2 �13=�5+�+

0

�2,14� S�+�+1, ↓ �+C�+�+ 1
2 , ↑ ↓ � +1/2 �14=�6+�−

0

�3,15� �−1, ↑ ↓ � −1 �15=�−+�2
0

�3,16� �+1, ↑ ↓ � +1 �16=�++�2
0
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Gf f ,�
at ��s� = − exp�����

j=1

8
mj

i�s − uj
, �13�

and the poles ui and residues mi of Gf f ,�
at ��s� are all real �cf.

Eq. �12��. There are only eight different uj for the f-electron
GF, because different transitions have the same energy and
the residues of some transitions are zero, and by analytical
continuation one obtains Gf f ,�

at �z�, but there are more transi-
tions for the Gcc,�

at �z�.
The approximation employed in the present work consists

in substituting M2,�
eff �z� in Eq. �9� by the approximate M2,�

at �z�,
derived from the exact Gf f ,�

at �z� by solving for M2,�
at �z� in the

equation that is the atomic equivalent of Eq. �9�. One then
obtains

M2,�
at �z� =

�z − E0
a + ��Gf f ,�

at �z�
�z − E0,�

a + �� − �V�2Gf f ,�
at �z�

, �14�

and from the point of view of the cumulant expansion, it
contains all the irreducible diagrams that contribute to the
exact M2,�

eff ��s�. It should be emphasized that these diagrams
contain loops of any size, because there is no excluded site in
this expansion, but all the local vertices correspond to the
same site, although they appear as different vertices in each
diagram. When a local hybridization is used �i.e., V�k�=V�,
the only difference between the exact and approximate quan-
tities is that different energies Ek,� appear in the c-electron
propagators of the effective cumulant M2,�

eff ��s�, while these
energies are all equal to E0,�

a in M2,�
at ��s�. Although M2,�

at ��s�
is for that reason only an approximation, it contains all the
diagrams that should be present, and one would expect that
the corresponding GF would have fairly realistic features.

One still has to decide what value of E0,�
a should be taken.

As the most important region of the conduction electrons is
the Fermi energy, we shall use E0,�

a =�−�E0, leaving the
freedom of small changes �E0 to adjust the results to particu-
lar situations, but fixing its value for a given system when �
has to change to keep the total number of electrons Nt fixed,
as for example when changing the temperature T.

Another important point is that concentrating all the con-
duction electrons at E0,�

a would overestimate their contribu-
tion to the effective cumulant, and we shall then reduce the
hybridization by a coefficient that gives the fraction of c
electrons that contribute most. We consider that this is of the
order of V�0, where �0 is the density of states of the free c
electrons per site and per spin, and to be more definite we
chose V�0, so the effective hybridization constant Va coin-
cides with the usual “mixing strength” �=V2�0. This is
essentially the same choice made by Alascio et al.27 in their
localized description of valence fluctuations. Note that Va is
used only in the calculation of M2,�

at �z�, and that the full value
must be substituted in the V that appears explicitly in Eq. �9�,
because the whole band of conduction energies is used in
Gc,�

o �k� ,z�=−1/ �z−�k��.

B. Transport properties

Two-particle GF should be used in the well-known Kubo
formula,28,29 that relates the dynamic conductivity ��� ,T� to

the current current correlations. To simplify the calculations
for the Anderson lattice, Schweitzer and Czycholl30 em-
ployed the expression of the conductivity for dimension d
=� as an approximation of the static conductivity for d=3.
Only one-particle GFs are then necessary to obtain ��� ,T�
in that limit, because the vertex corrections cancel out,31 and
we shall use here the same approximation. As the hybridiza-
tion is a hopping of electrons between two different bands, it
contributes to the current operator,32 but this contribution
cancels out in our model because we employ a local hybrid-
ization Vj,k,�=Vj,�. The expression obtained contains explicit
sums over k, but it is possible to make a further simplifica-
tion by considering nearest-neighbor hopping in a simple
cubic lattice,33–35 and the sums over k can be transformed36

in integrals over the free conduction electron energy ��k�.
This transformation is possible because in our method the
Gcc,��k ,�� only depends on k through the ��k�=�, as both
M2,�

at �z� and Vj,k,�=Vj,� are k independent. We then obtain
for the dynamic conductivity for each spin component

����,T� = C0
1

�
�

−�

�

d���fT���� − fT��� + ���L���,��� ,

�15�

where

L���,��� = �
−�

�

d� �c,����;���c,���� + �;����
0��� ,

�16�

�c,���;�� =
1


lim
�→0

Im	Gcc,��k,� + i����
 , �17�

and fT��� is the Fermi function. The static conductivity for
each spin component is then given by

���T� = C0�
−�

�

d��−
dfT���

d�
�L���� , �18�

where

L���� = �
−�

�

d���c,���;���2��
0��� . �19�

The constant

C0 = 
e2

�

2

a

2 t2

d
, �20�

where a=9.89 Å is the lattice parameter4 of Tl2Mn2O7,
which has two sites per unit cell. We shall generally use a
rectangular band with −W
��k�
W, and we set t=W /2d to
estimate the hopping parameter t of the hypercubic lattice,
and use d=3.

Employing Ref. 30 we obtain the expression for the
thermopower S�T�
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S�T� =

�
�
�

−�

�

d� ��− dfT���/d��L����

eT�
�
�

−�

�

d��− dfT���/d��L����
. �21�

C. Magnetization of the system

As the system consists of two independent subsystems
�spin up and spin down�, we could attribute arbitrary prob-
abilities P�1− P� of finding local electrons with spin up �with
spin down�, and calculate the corresponding properties of the
system. Following the work of Ventura and Alascio, we shall
estimate the probability P from the system magnetization
that we calculated employing the Weiss molecular field ap-
proximation

M

Msat
= tanh �̃ B

kBT
+

TCM

T Msat
� . �22�

Here �̃ is the local magnetic moment, B the magnetic field,
TC the Curie temperature and Msat the saturation magnetiza-
tion. Following those authors we use �̃=3�B, as intermedi-
ate between the 3.87 �B local moment of the Mn4+ and the
2.83 �B corresponding to the Mn5+.47

To calculate the probability P we then employ

M = �P − �1 − P���̃ , �23�

and proceed to calculate the system properties as a function
of T for different values of the total number n of electrons
per site. Employing our approximate GF it is possible to
calculate n for each value of P and T, and it is then necessary
to find the chemical potential � that gives the required num-
ber of electrons per site.

We should point out that we are not proposing a model to
explain the magnetization of the system, but we are only
using the Weiss molecular field as an algorithm that approxi-
mately gives the magnetization of the system, starting from
the experimental saturation magnetization Msat and the Curie
temperature TC.

III. CALCULATION OF THE TRANSPORT PROPERTIES

We shall consider the stoichiometric Tl2Mn2O7 com-
pound, and we shall then fix the total number of electrons per
site as n=1. To keep this value constant, it might be neces-
sary to change the chemical potential � with the temperature
T, and we shall employ the approximate GFs Gf f ,�

at �z� and
Gcc,�

at �z� to calculate the number n at each T and then solve
numerically the equation n=1.

We shall use a rectangular band centered at the energy
origin and with a half width W=6 eV, and take the energies
for the spin 1/2 and 1 in the presence of the field B as E�

=2� �BB and Es=Es
0+s 2�BB, with Es

0=−5.5 eV, so that the
spin 1 �corresponding to Mn4+� has the lowest energy of the
local states at B=0.

It seems clear that the basic scattering mechanism in our
calculation of ��T� is the hybridization, because the other-

wise free conduction electrons are scattered by the localized
f electrons through this interaction, and it seems clear that
the resistivity at low temperatures depends sensitively on the
value of V. This quantity also determines the position of the
peak of the dynamic conductivity that is close to 2 eV at 295
K, and to try and adjust the two different properties we have
employed a temperature dependent hybridization V, using
values that decrease from 2.5 to 1.8 eV as T increases to
300 K.

We have also employed a value of �E0=E0
a−� that

changes from −1.2 eV to −0.9 eV in the same temperature
range, because it gives a better overall agreement with the
experimental results.

To alleviate somehow the use of a zeroth width conduc-
tion band in the calculation of the effective cumulant we
have added an extra imaginary part �a=0.18 eV to the com-
plex variable z, and this procedure is further discussed in
Appendix B.

A. Local spectral density of states

A very useful quantity is the local spectral density of the
conduction electrons, namely,

�c,���� =
1


lim
�→0

Im 1

Ns
�
k

Gcc,��k,� + i����� �24�

because it illuminates the dependence with T of the static
conductivity. In Fig. 1 we plot �c,���� at two temperatures
below the critical temperature TC=120 K and also at TC, for
parameters that give a fair description of the properties we
study.

At T=40 K the �c,���� are different for the two spin com-
ponents. The magnetization is practically saturated and all
the local spins point in the same direction, say up. The con-

FIG. 1. �Color online� Local spectral density of the conduction
electrons �c,���� at T=40 K, T=115 K, and T=TC=120 K, for the
system parameters indicated in the figure. We employ a T dependent
V and �E0, and their values together with � are shown for each
curve.
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duction electrons with spin up hybridize with the local spins,
and in Fig. 1 it is shown that a large gap is created with �
inside, so there is practically no conductivity by these elec-
trons. As there are practically no local electrons with spin
down, the conduction electrons do not have electrons to hy-
bridize with, and there is no gap. The chemical potential � is
near the bottom of the band, and the spin down electrons
contribute strongly to the conductivity giving a vanishing
resistivity as is shown in Fig. 3.

We also plot �c,���� at T=115 K, i.e., just below TC; there
is now a large number of local electrons with spin down, and
the two �c,���� are very similar for the two spins. The two
spins have the same spectral density at TC, and the curves at
higher T are similar to that at TC, but with a smaller gap
because we employ a hybridization that decreases with T.
The � is inside the gap in all the curves above TC, and the
resistivity increases abruptly at TC, as shown in Fig. 3.

From Hall measurements it has been estimated37 that the
number of carriers at low T is at most 0.005, and to discuss
this problem we have calculated the number of up �nc,up� and
down �nc,dw� conduction electrons per site and the corre-
sponding �nf ,up� and �nf ,dw� for the local electrons, by inte-
grating the corresponding spectral densities �c,���� and
� f ,���� over �. We plot these quantities as a function of T in
Fig. 2, as well as the total number of local electrons nf
=nf ,up+nf ,dw, that is fairly independent of T and close to nf
=0.77, so that the total number of c electrons resulting from
the hybridization with the f electrons is close to 0.23. This
value seems to contradict the Hall measurement value, but
from Fig. 1 we should notice that all the conduction electrons
with spin up are filling up the lower band at low T, and they
would not contribute to the conductivity nor to the number of
carriers measured by the Hall effect. In Fig. 2 we see that
nc,dw=0.04 at low T, and although this value is larger than
the experimental one, it has the qualitative behavior of the
measured quantity, namely, it is a rather small number. We
have not tried to adjust explicitly the low carrier concentra-

tion, so that our results only describe the experimental results
in a semiquantitative way.

Looking at the T dependence of �c,���� in Fig. 1 we see
that the lower band with down spins grows with T, and be-
comes identical to the band with spins up at TC, so that the
number of carriers decreases with T. The increase in the
concentration of down spin with T in Fig. 2 is then due to the
increase of the lower band, that does not contribute to the
number of carriers measured in the Hall effect. This corre-
sponds from Fig. 1 to a decrease in the number of carriers
with increasing T, and this has been observed experimentally
as shown in Fig. 2 of Ref. 9.

We have shown in Fig. 2 that the number nf of local
electrons is fairly independent of T, a fact that agrees with
the measurements of x-ray absorption spectroscopy �XAS� in
Tl2Mn2O7,38 which indicate that the Mn valence is fairly
close to 4. Two facts point out to the independence of this
quantity with temperature. First, the XAFS indicates that the
local structure coincides with the average one in Tl2Mn2O7
and that there is no disorder in the same structures of this
compound, differently from the disorder in the MnO6 octa-
hedra of the manganites, that is caused by Jahn-Teller distor-
tions. Second, the Mn-O and Tl-O bonds in Tl2Mn2O7 show
normal Debye-like dependence, with no change in ordering
at Tc, in contrast with the behavior of the La0.75Ca0.25MnO3
manganite.38

Subramanian et al.37 conclude from the properties of
Tl2Mn2O7 that some of the Mn4+ electrons go into the
Tl band, so that the compound corresponds to
Tl2−x

3+ −Tlx
2+Mn2−x

4+ Mnx
5+O7, in agreement with the model of

Ventura and Alascio.12

B. Static resistivity and the magnetoresistance

We employ Eq. �18� to calculate the conductivity for each
spin component, and we sum the two contributions to obtain
the total conductivity. In Fig. 3 we plot the resulting resistiv-

FIG. 2. �Color online� Number of local and conduction electrons
per site for spin up and spin down, as well as the total number of
local electrons per site, as a function of T. The system parameters
are indicated in the figure.

FIG. 3. �Color online� Resistivity as a function of T for several
magnetic fields, and for the system parameters indicated in the
figure.
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ity as a function of T for the following magnetic fields: B
=0, 2, 5, and 7 T, and the remaining system parameters are
given in the figure. The values we calculated are of the same
order of those reported by Shimakawa et al.,14 and there is a
sharp but continuous increase in the resistance at the critical
temperature TC; the increase becomes more gradual at higher
magnetic fields.

In Fig. 4 we plot quantities proportional to ���T� for the
up and down electrons at both H=0 T and H=2 T. Is is clear
that the spin up electrons have a very small conductivity up
to values of T close to TC, in agreement with our interpreta-
tion in the previous section that they do not provide carriers
to the system. The small increase approaching to TC is due to
the shift in the chemical potential �, as well as to the change
in shape of the spectral density, that result in a few carriers
with spin up appearing in the upper band.

From the resistivity at different magnetic fields we calcu-
lated the negative magnetoresistance ���B=0�−��B�� /��B�,
plotted in Fig. 5. The value of the maximum near TC is close
to that observed by Cheong et al.,8 but the rise before the
maximum, like that of the resistance, is much steeper in our
calculation. The origin of this sudden rise is the rather fast
decrease in the magnetization at zero magnetic field, that is
directly related to the probability P and the corresponding
decrease in the number of carriers with spin down, which is
apparent in Fig. 1. We believe that the change in resistivity
would be smoother if we used a density of states that is not
so sharp as the rectangular one, but we have not tried this
modification.

C. Optical conductivity

We have employed Eq. �15� to calculate the optical con-
ductivity ��� ,T� as the sum of the contribution ���� ,T� of
the two spin components. In the measurements of the optical
conductivity of Okamura et al.15 one observes a strong peak
close to �=2 eV at T=295 K. This type of measurement is

expected to depend on the value of the direct gap, which is
affected by the hybridization constant V. The static resistiv-
ity, on the other hand, depends on the indirect gap, and the
scattering mechanism at low temperatures depends also on
the hybridization, as discussed before. We have then em-
ployed a temperature dependent value of V to adjust these
two quantities, and we used V�1.85 eV at T=295 K. In Fig.
6 we plot the the optical conductivity ��� ,T� at T=295 K,
and we obtain a peak at the correct frequency. There are
several smaller peaks at lower frequencies that have been
assigned to optical phonons.15

At low T the two spin components make different contri-
butions to ��� ,T�, as shown in Fig. 7.

The component with spin down corresponds to a metal,
and the corresponding ��� ,T� describes the Drude peak of
this metal, and the figure shows that the metallic components
are limited to below 0.5 eV, as measured by Okamura et al.15

FIG. 4. �Color online� Values proportional to ���T� for up and
down electrons at H=0 T and H=2 T, for the same parameters
given in Fig. 3

FIG. 5. �Color online� Magnetoresistance as a function of T for
several magnetic fields, and for the system parameters indicated in
the figure.

FIG. 6. Optical conductivity for the system parameters indicated
in the figure.
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Although the spectral density in Fig. 1 does not give the
direct gap, it is consistent with Fig. 7. The spin up compo-
nent in Fig. 1 corresponds to a semiconductor, and in Fig. 7
it shows a very small ��� ,T� at low frequencies, that starts
to increase at ��3 eV. The different contribution of the two
spin components can also be understood by considering the
sum rules23,39,40 of the two spin components of ���� ,T� as
two separate contributions, but we have not done a numerical
analysis of this interpretation. The two components give
identical contributions to ���� ,T� above TC, because the two
bands are identical when the magnetization becomes zero.

In Fig. 8 we plot the optical conductivity for several tem-
peratures. At low frequencies one can see how the maximum
of the Drude peak at �=0 decreases and its width increases
when T increases.

D. Thermopower and the magnetothermopower

We have employed Eq. �21� to calculate the thermopower
S�H ,T� of Tl2Mn2O7 within the model of Ventura and
Alascio,12 and in Fig. 9 we show the temperature dependence
for several magnetic fields.

The plot agrees qualitatively with the experimental results
of Imai et al.9 and at H=0 T it is approximately linear in T
just below and above TC, but with different slopes. We em-
ployed Eq. �21� to calculate S�H ,T�, because the model is
composed of two independent subsystems. It is then straight-
forward to calculate the magnetothermopower, defined by
�S�H�=S�H�−S�0�, and in Fig. 10 we plot our results, which
show a semiquantitative agreement with those in Ref. 9: The
magnitude of �S�H� is of the same order, but the increase at
TC is more abrupt than the one measured experimentally.

FIG. 7. �Color online� Contribution of the two spin components
to the optical conductivity at T=40 K for the system parameters
indicated in the figure. The vertical line is located at 0.5 eV.

FIG. 8. �Color online� Optical conductivity at low frequencies
for several temperatures.The values of ��� ,T� when �→0 give the
temperature dependence of the Drude peak

FIG. 9. �Color online� Thermopower for the system parameters
indicated in the figure.

FIG. 10. �Color online� Magnetothermopower for the system
parameters indicated in the figure.
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IV. MAGNETIC POLARONS

We have obtained approximate GF for the model em-
ployed by Ventura and Alascio12 to describe the resistivity
and CMR of Tl2Mn2O7, and it would be interesting to com-
pare its physical properties to those of an alternative model
that has been applied,41–44 at temperatures above TC. In this
last approach, a gas of electrons coupled with magnetic fluc-
tuations is considered at temperatures close to and above the
magnetic transition temperature TC. At low electronic densi-
ties, each carrier can polarize a small ferromagnetic cluster
of local spins, and be self-trapped by their magnetic mo-
ments: this arrangement is a free magnetic polaron �FMP�,
and the cluster size increases when we approach TC. When
the FMP begin to overlap, the carriers can move freely and
the transport mechanism is then described by their scattering
with the magnetic fluctuations of the localized moments. Ma-
jundar and Littlewood41 studied this itinerant regime using
an extension of the work of Fisher and Langer,45 and they
also estimated the size and energy of the FMP. Employing
the ionization energy of the carrier electron in the FMP to the
conduction band as an activation energy, they obtained the
resistivity of the FMP, and they concluded that the magne-
toresistance is large in both the bound and itinerant regimes.
A Monte Carlo calculation of the FMP in two dimensions
was also presented in Ref. 43, indicating that they are con-
siderably more weakly bound than shown in the mean field
picture employed in Ref. 41. An alternative mechanism that
does not requires activation was proposed by Wegener and
Littlewood in Ref. 44. It considers that when a fluctuation of
the magnetic moments neighboring the FMP makes them
parallel to those of the polaron, the carrier can tunnel to that
region without any activation energy, and the whole process
corresponds to a displacement of the FMP. This is a diffusive
process of the FMP, and estimating the corresponding diffu-
sion constant D they calculated the resistivity � by employ-
ing Einstein’s relation �=kBT / �ne2D�, where n is the number
density of the polarons.

The model Hamiltonian employed to study the FMP is44

H = − t �
�i,j��

ci,�
† cj,� − J��

i

�� i · S� i − J�
�i,j�

S� i · S� j , �25�

where the first term describes the conduction band, the sec-
ond represents the “s-d” interaction between all the localized

spins S� i and the corresponding spins �� i of the conduction
electron in the Wannier representation, and the third term
describes the super exchange interaction between the local-
ized spins.

The first term is essentially the same as the third term of
our model Hamiltonian in Eq. �2�, while the remaining terms
have different physical interpretations.

The first two terms in Eq. �2� describe the two magnetic
configurations with spin S=1/2 and S=1 of each local state,
and by discarding the S=1 local state with Sz=0 at each site,
the system can be described by two independent systems
with spin up and spin down, respectively, because the hy-
bridization �fourth term in Eq. �2�� conserves the spin direc-
tion. There is no equivalent term in Eq. �25�, because there is

no charge fluctuation in the local moments, and their corre-
sponding ground energy is not included explicitly in the
Hamiltonian.

The main source of resistivity in Eq. �25� is the second
term, while in our model it is the hybridization, described by
the fourth term in Eq. �2�. Although in the Anderson model
the hybridization gives a “s-d” interaction through the
Schrieffer–Wolf transformation,25 that interaction is absent in
our model because there is no state with Sz=0 that is respon-
sible for the spin-flip transitions.

The third term in Eq. �25� is considered implicitly in our
model, because we assume that there is a temperature depen-
dent magnetization M, which we estimate employing the
Weiss molecular field approximation, and we use this value
and Eq. �23� to obtain the probability P�1− P� of finding the
spin up �spin down� subsystem. In the Weiss approximation
there are no fluctuations of the local moments, and it is then
clear that to include something equivalent to the FMP in our
model it would be necessary to treat the superexchange with
a method beyond the mean field Weiss approximation.

In our model, the change of conductivity at low T depends
mainly on the change of P: When P=1 there are no local
spins down, and the carriers of the same spin cannot hybrid-
ize. The Fermi energy is well inside the band for the param-
eters employed �cf. Fig. 1�, and these electrons would appre-
ciably contribute to the conductivity. The states with spin up
are strongly hybridized, and their Fermi energy is just in the
hybridization gap �cf. Fig. 1�, so that the material is a half-
metal, with all the conductivity provided by the spin down
electrons. When T increases, so does the number of local
spins down, and the hybridized band deforms at the same
time that its occupation decreases, tending to �1− P�=0.5 at
TC. The hybridization also affects the resistivity by acting as
a scattering potential, as discussed in Appendix B.

In our method we obtain approximate GF, and with them
it is possible to derive several physical properties at all T,
while only the resistivity at T well above TC can be obtained,
through the use of Einstein’s relation, in the method that
employs the FMP.

V. CONCLUSIONS

Assuming that the system is stoichiometric we have cal-
culated the resistivity, optical conductivity, and thermopower
as a function of temperature and magnetic field of the model
of Tl2Mn2O7 introduced by Ventura and Alascio.12 Differ-
ently from other studies, we have calculated these transport
properties employing Kubo’s formula, which is directly re-
lated to the electronic GFs. To derive these GFs we intro-
duced Hubbard operators to describe the model, and used a
treatment previously employed to study FeSi.13,23 Employing
the dependence of resistivity and thermopower with mag-
netic field we have also calculated the magnetoresistance and
the magneto thermopower.

We obtain a semiquantitative agreement with the experi-
mental results by an adequate choice of the system param-
eters, and we can conclude that the model gives a fair de-
scription of all the calculated properties.
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APPENDIX A: ATOMIC EIGENSTATES

In Table I we give the atomic eigenstates �j ,� ,r� of Hj �cf.
Eq. �11�� as a function of the eigenstates for V=0. To abbre-
viate we use E±=E±1/2, �±=E±1−�, �±

0 =E0,±
a −�, and �2

0

=�+
0 +�−

0 as well as the following energy expressions that
appear often in the formulas:

�m± = ��± − E± − �±
0�/2,

�s± = ��± + E± + �±
0�/2,

r± = ���m±�2 + �V�2.

The coefficients of the eigenfunctions in Table I are obtained
from

tg�± = ± tg �± =
V*

�m± + r±
,

and we conventionally use cos �±�0 and cos �±�0 to
specify the sign of the eigenfunctions.

APPENDIX B: DEPENDENCE OF THE RESISTIVITY
WITH THE EFFECTIVE CUMULANT

As discussed in Sec. II B, the static conductivity for each
spin component is given by Eq. �18�, where the spectral den-
sity in Eq. �17�

�c,���;�� =
1


lim
�→0

Im	Gcc,��k,� + i����


is employed. If in Eq. �10� we abbreviate Gcc,��k ,z�
=−�a−��k�+ i b�−1, with real a and b �functions of �� de-
fined by a+ i b=z+ �V�2 M2,�

at �z�, we find that when b→0
then L����O�1/b� if � is outside the gap and S����O�b2� if
� is inside. This property can give rather different low T
limits of ��T�, because the integrand in Eq. �18� only con-
tributes in an interval of O�T� around the Fermi energy �
=0 �our frequency variables are given with respect to ��.
When �=0 is inside the gap and Im M2,�

at �0��0 we then
have a very small ��0�, while ��0� will be very large when
�=0 is inside the conduction band and Im M2,�

at �0��0. The
physical reason for this different behavior at very low T is
the small number of carriers when �=0 is inside the gap, and
the reduced number of scattering processes for the c elec-
trons when �=0 is inside the band.

To analyze M2,�
at �z� we notice from Eq. �13� that Gf f ,0�

at �z�
is real when �� Im �z�→0, except at its only singularities
on the real axis, that are the poles at z=uj. It is then clear
from Eq. �14� that M2,�

at �z� is real on the real axis of the z

complex plane except at the real solutions of ��−E0
a+��

− �V�2Gf f ,0�
at ���=0, where it would have poles with

Im M2,�
at �z��0 in their neighborhood �the real values

M2,�
at �uj�=−�uj −E0

a+�� / �V�2 are taken at the poles uj of
Gf f ,0�

at �z��. One should then make all the calculations at a
finite � and afterward take �→0.

The extreme sharpness of the structure of Im M2,�
at �z� is a

consequence of the atomic approximation employed, and to
alleviate this character we have added an extra imaginary
part �a= ��a�sgn�Im�z�� to its argument: M2,�

at �z�⇒M2,�
at ��

+ i�a�, so that the real poles of this quantity become Lorent-
zians that somehow mimic the effect of the bandwidth. In
some special situations this procedure can change substan-
tially the value of M2,�

at �z� at the Fermi surface, and therefore
the value of the conductivity �e.g., see Fig. 7 in Ref. 13�.

It seems clear that the basic scattering mechanism in our
calculation of ��T� is the hybridization, because the other-
wise free conduction electrons are scattered by the localized
f electrons through this interaction. This is apparent if we
notice that the relaxation effects are described by the imagi-
nary part of the usual self-energy �cc,��k,z�, defined through

Gcc,��k,z� = − 	z − ��k� − �cc,��k,z�
−1, �B1�

and that the exact relation �cc,��k,z�=−�V�k��2M2,�
eff �k ,z� fol-

lows from Eq. �10�. The relaxation mechanism of the c elec-
trons is then provided by the hybridization, and the self-
energy is independent of k in our approximation: �cc,��z�=
−�V�2M2,�

at �z�.
Addition of i�a to the argument of M2,�

at �z� leads to effects
similar to those already discussed by Mutou and Hirashima33

through “introducing a small imaginary part � to the conduc-
tion electrons,” i.e., replacing z= i � by z+ i � sgn��� in the

FIG. 11. �Color online� �a� Hybridized bands of free electrons,
calculated for V=2.5 and V=1.0 and the same value of the remain-
ing parameters �and in particular of �a=0.18�. We use N=3 so that
� is well inside the conduction band, and consider a paramagnetic
phase at all T. �b� The resistivity as a function of T for the two
values of V, confirming that the basic scattering mechanism in our
calculation of ��T� is the hybridization.
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GFs Gf f ,��k ,z� and Gcc,��k ,z�. Their justification is the ex-
istence in real systems of scattering processes due to
phonons and impurities, and we should also consider these
mechanisms as contributing to the i�a. Within this interpre-
tation one could also consider a temperature dependence of
�a, but we have not implemented this change in the present
calculation.

At this point one might wonder whether the relaxation
effects, that we obtain when we add the imaginary part �a
are all due to the scattering mechanisms of the imperfections
and not to the effect of the hybridization. The argument
would be that the carriers are the hybridized electrons, and
that this potential should not introduce any scattering effect
because we are dealing with Bloch electrons in a perfect
lattice. Czycholl and Leder32 already addressed this point �cf.
text around their Eq. �17��, stating that, “it is completely
unjustified to use a current operator of the form

j = e�
�

�
�=1,2

�
k

�E�k

�k
�+

k��k�

where ��k�� denotes the eigenstates of the one particle part of
the Hamiltonian.” Rather than elaborate on this statement,
we shall give an independent argument.

To avoid the temperature changes of shape that are usual
in correlated bands of electrons, we consider two hybridized
bands of free electrons. In the lower part of Fig. 11 we show
the bands corresponding to V=2.5 eV and V=1.0 eV and
with the same value of all the other parameters �and in par-
ticular of �a�. Their shape is independent of T, and we have
adjusted the chemical potential � so that the total number of
electrons is N=3.0, so that � is well inside the conduction
band. We have also assumed a paramagnetic phase at all T,
so the two bands with spin up and spin down electrons are
identical. In the upper part of the figure we plot the resistiv-
ity of the two bands as a function of T, which clearly shows
the dependence of the resistivity with V, confirming that the
basic scattering mechanism in our calculation of ��T� is the
hybridization. The use of free electrons instead of correlated
ones does not introduce any difference in the present discus-
sion.
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