
Competing orderings in an extended Falicov-Kimball model

P. M. R. Brydon,1 Jian-Xin Zhu,2 M. Gulácsi,1 and A. R. Bishop2

1Department of Theoretical Physics, Institute of Advanced Studies, Australian National University, Canberra,
Australian Capital Territory 0200, Australia

2Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA
�Received 7 June 2005; revised manuscript received 10 August 2005; published 23 September 2005�

We present a Hartree-Fock study of the Falicov-Kimball model extended by both on-site and nonlocal
hybridization. We examine the interplay between excitonic effects and the charge-density wave �CDW� insta-
bility known to exist at zero hybridization. It is found that the CDW state remains stable in the presence of
finite hybridization; for on-site hybridization the Coulomb interaction nevertheless strongly enhances the
excitonic average above its value in the noninteracting system. In contrast, for nonlocal hybridization, we
observe no such enhancement of the excitonic average or a spontaneous on-site hybridization potential. In-
stead, we find only a significant suppression of the excitonic correlations in the CDW state. A phenomeno-
logical Ginzburg-Landau analysis is also provided to understand the interplay.
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The Falicov-Kimball model �FKM� describes a tight-
binding system of itinerant d electrons interacting via on-site
Coulomb repulsion U with localized f electrons of energy � f.
The FKM was originally introduced as a minimal model of
valence transitions in systems such as SmB6 and Ce: by
varying the interorbital Coulomb repulsion U or the f-level
� f, both discontinuous and continuous changes in the distri-
bution of the electrons across the localized and itinerant
states were found.1 It was soon realized, however, that some
overlap between the d and f wave functions was an essential
feature of most systems displaying valence instabilities.2

This “mixing” of the electron wave functions may be explic-
itly introduced by the inclusion of a hybridization potential
V. A variety of methods, including Hartree-Fock,3 real-space
renormalization group,4 and alloy-analog approximation,5 re-
vealed that the hybridization removed the previously ob-
served discontinuous valence transitions. Work on the FKM
ceased in the mid-1980s as it became apparent that the peri-
odic Anderson model offered a more realistic description of
valence transition physics.6

As interest in the FKM as a model of valence transitions
waned, it was adopted as a model of a simple binary alloy.7

In the limit of vanishing hybridization the f-electron occupa-
tion at each site is a good quantum number: fixing the f and
d populations, the ground state is identified as the configu-
ration adopted by the f electrons that minimizes the energy
of the conduction electrons. In particular, for a bipartite lat-
tice at half filling and equal concentration of d and f elec-
trons, the f electrons occupy the sites of one sublattice only,
the so-called checkerboard phase. For dimension d�2, this
checkerboard charge-density wave �CDW� state obtains for
temperatures below a critical temperature TCDW; above this
temperature a disordered phase is realized. For d=1 the criti-
cal temperature is zero. We note that the FKM as a binary
alloy has been extensively studied in the case of infinite di-
mension d→�: the dynamical mean-field theory �DMFT�
gives an exact solution in this limit.8

The FKM with hybridization has lately attracted renewed
attention due to the investigation of optical properties in this
model by Portengen et al.9 Following closely Leder’s

Hartree-Fock �HF� work,3 they found that the Coulomb re-
pulsion induced an effective on-site hybridization; this effect
was sufficiently strong that it persists in the limit of negli-
gible hybridization. In fact, their calculations were per-
formed exclusively in this limit: their solution with nonzero
polarization or excitonic average �d†f� is indistinguishable
from the well-known excitonic insulator �EI� state.10 The
“spontaneous” excitonic average was interpreted as evidence
of electronic ferroelectricity. Their HF solution, however, as-
sumed a homogeneous ground state for the system; the pos-
sibility of a CDW ground state was not considered.

The problem of reconciling the results of Portengen et al.
with the known CDW instability has only been partially ad-
dressed. Since the DMFT equations are no longer exactly
solvable for nonzero hybridization potential, Czycholl11 per-
formed a HF analysis for the d→� model. It was found that
for V=0 there was no spontaneous excitonic average and that
the CDW phase was stable against sufficiently small on-site
hybridization. For a given U there was a critical hybridiza-
tion Vc�U� under which the CDW phase prevails. Czycholl
nevertheless concluded that the interorbital U could strongly
renormalize the hybridization, and so could be important in
the description of the optical properties of strongly correlated
electron systems. Also working in the limit of large spatial
dimensions, Zlatić et al. noted that for V=0 the hybridization
susceptibility diverges as T→0, although they concluded
that a generalization of the FKM would be required for
�d†f��0 at finite temperatures.12

Comparatively little work has been done on this problem
in finite dimensions. Farkašovský has used exact-diagon-
alization and the density matrix renormalization group meth-
ods on small one-dimensional systems to rule out the possi-
bility of a spontaneous excitonic average at zero temp-
erature.13 By the same methods, Farkašovský has also ana-
lyzed the effect of local14 and nonlocal15 hybridization; these
works are more concerned with the effect of the hybridiza-
tion on valence transitions, ignoring the possibility of an ex-
citonic renormalization of the hybridization potentials.
Batista and co-workers have claimed that a nonlocal hybrid-
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ization stabilizes ferroelectricity in a FKM extended by f
hopping;16 Sarasua and Continentino have investigated a
similar system.17

The FKM extended by hybridization cannot be solved ex-
actly and so it is necessary to use approximate methods to
understand the properties of the model. In this paper, we
present a HF study of the effect of the hybridization upon the
CDW state on a two-dimensional square lattice. The HF ap-
proximation is reliable for small temperatures. It tends, how-
ever, to overestimate the stability of ordered phases: in par-
ticular, the HF result for the critical temperature TCDW is very
likely to be larger than the exact value. Nevertheless, we can
reasonably expect that the HF approximation will give at
least a qualitatively correct account of the relative stability of
ordered phases, even in two dimensions. The HF is therefore
an appropriate tool to study the competition between the EI
and CDW phases in the FKM. We consider only � f =0 and
half filling �the particle-hole symmetry point� as the CDW
state here adopts the simple checkerboard form; for these
parameters also the excitonic average takes its maximum as
shown in the analysis of Portengen et al.9

The FKM Hamiltonian for spinless fermions is written

H = − t�
�i,j�

di
†dj + � f�

j

nj
f + �

i,j
�Vijdi

†f j + H.c.� + U�
j

nj
dnj

f .

�1�

Some overlap between the d- and f-electron wave functions
is assumed, hence the hybridization term Vij. The concentra-
tion of electrons is fixed at 1= �1/N�� j��nj

f�+ �nj
d�� where N

is the number of sites. We measure all energies in terms of
the d-electron hopping integral t.

In our HF decoupling of the Coulomb interaction, we in-
clude the possibility of the CDW state by allowing for a
periodic modulation of the order parameters:

�nj
f� = nf + � f cos�Q · r j� , �2�

�nj
d� = nd + �d cos�Q · r j� , �3�

�f j
†dj� = � + �Q cos�Q · r j� . �4�

The nesting vector Q= �� /a ,� /a� where a is the lattice con-
stant. The order parameter of the CDW state is �d and � f for
the d and f electrons, respectively. Note that we require
sgn�� f�=−sgn��d�. � is the excitonic average; in the absence
of an on-site hybridization potential V, ��0 indicates the EI
phase. When V�0, the EI-normal phase transition is lifted
from criticality, in analogy to the ferromagnet-paramagnet
transition in an external magnetic field. In this case, we can-
not speak of an EI phase, but rather an excitonic enhance-
ment of the hybridization. This will be apparent if � exceeds
its value in the U=0 system. The modulation factor �Q is
included in Eq. �4� for completeness. In the usual HF
treatment3,9 a homogeneous solution is assumed and so �d
=� f =�Q=0 for all values of the Coulomb interaction.

We thus obtain for the HF Hamiltonian

HHF = − t�
�i,j�

di
†dj + U�

j

�nf + � f cos�Q · r j��nj
d

+ U�
j

�nd + �d cos�Q · r j��nj
f

+ �
ij

„�Vij − U�� + �Q cos�Q · r j���ij	di
†f j + H.c.… .

�5�

An important feature of this Hamiltonian is the mean-field
renormalization of the d-f hybridization potential by the
interorbital Coulomb interaction, Vij→Vij −U��
+�Q cos�Q ·r j���ij. The effective on-site hybridization poten-
tial introduced by the decoupling of the interaction is respon-
sible for the spontaneous polarization in Portengen et al.’s
work. HHF is diagonalized by the canonical transform

�k
m = uk

mdk + vk
mdk+Q + 	k

mfk + 
k
mfk+Q, �6�

where m=1,2 ,3 ,4. The coefficients in Eq. �6� are obtained
by solving the associated Bogoliubov–de Gennes �BdG�
eigenequations:

Hk�k
m = Ek

m�k
m, �7�

where

Hk =

�k + Unf U� f Vk − U� − U�Q

U� f �k+Q + Unf − U�Q Vk+Q − U�

Vk
* − U�* − U�Q

* Und U�d

− U�Q
* Vk+Q

* − U�* U�d Und
�

�8�

and

�k
m = �uk

m,vk
m,	k

m,
k
m�transpose. �9�

Here �k=−2t�cos�kxa�+cos�kya�� is the d-electron energy
dispersion. The self-consistency equations for the HF param-
eters may be written in terms of the BdG eigenvectors:

nd =
1

N
�
k

���dk
†dk� + �dk+Q

† dk+Q��

=
1

N
�
k

��
m

�uk
m*uk

m + vk
m*vk

m�f�Ek
m� , �10�

�d =
1

N
�
k

���dk+Q
† dk� + �dk

†dk+Q��

=
1

N
�
k

��
m

�vk
m*uk

m + uk
m*vk

m�f�Ek
m� , �11�

nf =
1

N
�
k

���fk
† fk� + �fk+Q

† fk+Q��

=
1

N
�
k

��
m

�	k
m*	k

m + 
k
m*
k

m�f�Ek
m� , �12�
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� f =
1

N
�
k

���fk+Q
† fk� + �fk

† fk+Q��

=
1

N
�
k

��
m

�
k
m*	k

m + 	k
m*
k

m�f�Ek
m� , �13�

� =
1

N
�
k

���fk
†dk� + �fk+Q

† dk+Q��

=
1

N
�
k

��
m

�	k
m*uk

m + 
k
m*vk

m�f�Ek
m� , �14�

�Q =
1

N
�
k

���fk+Q
† dk� + �fk

†dk+Q��

=
1

N
�
k

��
m

�
k
m*uk

m + 	k
m*vk

m�f�Ek
m� . �15�

The prime denotes summation over half the Brillouin zone;
f�E�=1/ �1+exp���E−��	 is the Fermi distribution func-
tion. The chemical potential  is determined by the condition
1= �1/N��k��mf�Ek

m�. We use an exact diagonalization
method to solve the BdG equation �7� self-consistently. We
start with an initial set of order parameters. By solving Eq.
�7�, the new order parameters are computed via Eqs.
�10�–�15� and are substituted back into Eq. �7�. The iteration
is repeated until a desired accuracy is achieved.

We first consider the case of an on-site hybridization,
Vij =V�ij. In agreement with previous work11–13 we find that
for vanishing hybridization the CDW phase is always stable
against the EI phase and there is no spontaneous excitonic
average. The CDW order displayed by the V=0 ground state
will persist in the presence of sufficiently small hybridization
potentials, although the transition temperature TCDW will be
considerably suppressed �see Fig. 1�. We find, however, that
for finite hybridization the Coulomb interaction will strongly
enhance the magnitude of �. We plot the variation of ���
with temperature in Fig. 2. Note that since �=−��� there is a

large renormalization of the hybridization potential due to
the mean-field decoupling of the Coulomb interaction Eq.
�5�. Comparing the homogeneous solution without the CDW
ordering �the solid line� with the solution with a coexisting
CDW ordering �the dotted line�, we find a significant sup-
pression of ��� at the onset of the CDW order at T0.1t.
Even within the CDW phase, however, the excitonic en-
hancement of the on-site hybridization is still apparent as ���
exceeds its value within the noninteracting system �the
dashed line in Fig. 2�. We do not find any evidence of non-
zero �Q.

This competition can be understood from a phenomeno-
logical Ginzburg-Landau �GL� theory. The GL free energy
density, in terms of both the CDW ��d� and EI ��� order
parameters, can be constructed from a symmetry analysis:

f = �EI���2 + �CDW��d�2 + �1���4 + �2��d�2

+ �3���2��d�2 − �4��*2�d
2 + �2�d

*2� , �16�

where we assume �EI=�EI� �T−TEI
0 � and �CDW=�CDW� �T

−TCDW
0 �. We assume �i �i=1,2 ,3 ,4� are all positive. In the

region where TEI
0 �TCDW

0 ,18 the second phase transition tem-
perature for the CDW ordering is renormalized by the pre-
existing EI order parameter:

TCDW = TCDW
0 −

��3 − 2�4��TEI
0 − TCDW

0 �
2�1�CDW� /�EI� − ��3 − 2�4�

. �17�

It means that when the EI order parameter preexists, the
second phase transition temperature for the appearance of the
CDW order parameter can be strongly suppressed by the
dominant EI order parameter. This explains why the transi-
tion temperature TCDW decreases with increased hybridiza-
tion potential V, as shown in Fig. 1. Below the second phase
transition temperature TCDW, a little algebra yields

� = �− 2�2�EI + �CDW��3 − 2�4�
4�1�2 − ��3 − 2�4�2 �1/2

, �18�

FIG. 1. Variation of the CDW order parameter �d with tempera-
ture in the absence �solid line� and presence �dotted line� of an
on-site hybridization potential.

FIG. 2. Comparison of the excitonic average ��� in the absence
�solid line� and presence �dotted line� of the CDW instability for
U=1.0t with the value in the noninteracting system �dashed line�
for V=0.2t.
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�d = �− 2�1�CDW + �EI��3 − 2�4�
4�1�2 − ��3 − 2�4�2 �1/2

. �19�

Under the condition that the temperature derivative �CDW� is
larger than �EI� , which is indeed confirmed by our numerical
results near TCDW �see Figs. 1 and 2�, �CDW changes more
rapidly than �EI when the temperature is lowered. Conse-
quently, the CDW order �d increases while the EI order �
decreases with the lowered temperature.

Despite the popularity of the on-site hybridization poten-
tial, this is actually forbidden in real d-f systems by parity
considerations.6 We are instead required to consider a nonlo-
cal hybridization with inversion symmetry: the simplest such
potential is

Vij = tdf��ixjx
��iyjy+1 − �iyjy−1� + �iyjy

��ixjx+1 − �ixjx−1�� ,

�20�

where any site on the lattice is given by ri= ixax̂+ iyaŷ. This
is a particularly interesting case as the Coulomb-induced hy-
bridization has a different �s-wave� symmetry. In the nonin-
teracting system, the �on-site� excitonic average � vanishes;
the nonlocal hybridization potential instead gives rise to an
anisotropic excitonic average

� = Im� 1

N
�
k

�sin�kxa� + sin�kya���fk
†dk�� . �21�

The study of this quantity allows us to assess the effect of the
interorbital Coulomb repulsion upon the d-f hybridization.

As with the on-site hybridization, we find that for given U
the CDW phase is suppressed by the presence of the nonlocal
hybridization �see Fig. 3�. We do not, however, find any evi-
dence for a Coulomb-induced on-site hybridization when the
CDW instability is allowed: for all nonzero tdf we have �
=�Q=0. Czycholl considered the appearance of an on-site
average � to be likely due to the substantial excitonic en-
hancement of the on-site hybridization potential by the Cou-

lomb interaction.11 Our results clearly demonstrate that this
EI-like scenario, and the consequent formation of an elec-
tronic ferroelectric state, is severely compromised by the
presence of nonlocal hybridization.

In Fig. 4 we plot � as function of temperature in both the
interacting and noninteracting systems. The onset of CDW
order for the given Coulomb values occurs at the point of
intersection of the broken lines with the noninteracting
�solid� line. Remarkably, for the standard homogeneous so-
lution there is no effect on � due to the Coulomb interaction:
the variation of � with temperature exactly follows the curve
for the noninteracting system. Within the CDW phase, how-
ever, � is suppressed below its value in the noninteracting
system. We offer the following explanation for this anomaly:
the hybridization potential Eq. �20� connects the A-sublattice
d orbitals with B-sublattice f orbitals, and vice versa. As-
sume that in the CDW state the A-sublattice d orbitals has
nd�0.5 and so the B-sublattice f orbitals have nf �0.5;
clearly A-B sublattice d-f hopping will be suppressed, hence
also the reduction in �.

In conclusion, we have examined the competition be-
tween excitonic and CDW instabilities in the FKM extended
by both on-site and nonlocal hybridization. In both cases, we
find that the CDW phase remains stable at low temperatures
even in the presence of a finite hybridization. For the local
hybridization we find that the Coulomb interaction neverthe-
less strongly renormalizes the hybridization potential in
agreement with previous work.11 The situation is qualita-
tively different for the more realistic nonlocal hybridization:
there is no enhancement of the nonlocal hybridization and
the Coulomb interaction does not induce a spontaneous on-
site hybridization. Within the CDW phase, the nonlocal hy-
bridization is suppressed in line with the increasing localiza-
tion of the d and f electrons. The failure of the Coulomb
interaction to induce an effective on-site hybridization except
when such a term is already present casts significant doubt
on the usefulness of Eq. �1� as a minimal model for elec-
tronic ferroelectricity. Interorbital Coulomb repulsion may
nevertheless still be important for understanding optical
properties of strongly correlated electron systems: for ex-

FIG. 3. Variation of the CDW order parameter �d in the absence
�solid line� and presence �dotted line� of a nonlocal hybridization
potential.

FIG. 4. Comparison of the anisotropic exciton average � in the
noninteracting and interacting systems. We have tdf =0.2t.
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ample, a recent extension of the FKM by f-electron hopping
offers a plausible scenario where the formation of an exciton
Bose-Einstein condensate gives a spontaneous excitonic
average.16
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