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We have developed a practical scheme to construct partly occupied, maximally localized Wannier functions
�WFs� for a wide range of systems. We explain and demonstrate how the inclusion of selected unoccupied
states in the definition of the WFs can improve both their localization and symmetry properties. A systematic
selection of the relevant unoccupied states is achieved by minimizing the spread of the resulting WFs. The
method is applied to a silicon cluster, a copper crystal, and a Cu�100� surface with nitrogen adsorbed. In all
cases we demonstrate the existence of a set of WFs with particularly good localization and symmetry proper-
ties, and we show that this set of WFs is characterized by a maximal average localization.

DOI: 10.1103/PhysRevB.72.125119 PACS number�s�: 71.15.Ap, 31.15.Ew, 31.15.Rh

I. INTRODUCTION

A characteristic property of the single-particle eigenstates
of most molecular and solid state systems is their delocalized
nature. For many practical purposes this property is undes-
ired and the construction of equivalent representations in
terms of localized orbitals becomes an important issue.

Within the independent-particle approximation the use of
Wannier functions �WFs� allows for an exact description of
the electronic ground state in terms of a minimal set of lo-
calized orbitals.1 The Wannier basis is truly minimal in the
sense that the number of orbitals is just enough to accomo-
date the valence electrons of the system. Moreover, these
localized WFs provide a formal justification of the widely
used tight-binding2 and Hubbard models.3 Being the local
analog of the extended Bloch states of solid state physics, the
WFs formalize standard chemical concepts such as bonding,
coordination, and electron lone pairs. Among the more tech-
nical applications of Wannier functions we mention the con-
nection to polarization theory4,5 and their use within so-
called “linear scaling” or “order-N” methods to obtain the
electronic groundstate.6 Very recently numerical methods for
electron transport calculations employing a Wannier function
basis set have been developed.7,8

In the context of molecular systems the analog of Wannier
functions for finite systems has been studied under the name
“localized molecular orbitals.”9–14 These are traditionally de-
fined by an appropriate unitary transformation of the occu-
pied single-particle eigenstates and have been used for inves-
tigation of chemical bonding. In the following we shall for
simplicity use the term WF to cover also localized molecular
orbitals.

In 1997, Marzari and Vanderbilt developed a scheme to
perform practical calculations of maximally localized Wan-
nier functions for an isolated group of bands, i.e., a set of
bands which is separated by a finite gap from all higher- and
lower-lying bands.15 Within this scheme, the usual arbitrari-
ness inherent in the definition of the Wannier functions due
to the unspecified set of unitary transformations of the Bloch
states at every wave vector, is removed by requiring that the
sum of second moments of the resulting WFs is minimal.
The method follows the traditional idea of defining Wannier
functions by a unitary transformation of the occupied

�Bloch� orbitals. In general, such methods fail to produce
well-localized orbitals when applied to metallic systems be-
cause the unoccupied states belonging to the partly filled
valence bands16 are not considered. Of course, in cases
where the partly filled valence bands are separated by a gap
from all higher bands, the method of Marzari and Vanderbilt
still applies. However, in the more general case where the
bands of interest cross and/or hybridize with other unwanted
bands a different approach must be used.

In this paper we demonstrate how the localization and in
some cases also the symmetry of a set of WFs can be dras-
tically improved by including selected unoccupied states in
the definition of the WFs.17 The determination of the relevant
unoccupied states can be viewed as a bonding-antibonding
closing procedure, where occupied bonding states are paired
with their antibonding counterparts to yield localized orbit-
als. To be more specific, consider two well-localized atomic
orbitals on neighboring atoms in a molecule. If we allow the
two states to hybridize, a bonding and an antibonding com-
bination will result—combinations which may be less local-
ized than the individual atomic orbitals. To regain the local-
ized atomic orbitals from the molecular orbitals we need
both the bonding and antibonding combination independent
of their occupation, see Fig. 1. In some cases the antibonding
state may have hybridized further with other states and the
state which “matches” the bonding state will be a linear com-
bination of eigenstates. The problem we address here is the
construction of a method for systematically identifying the
relevant unoccupied states. We show that this can be
achieved by optimizing the localization of the resulting WFs.

FIG. 1. Schematic of the bonding-antibonding closure for a hy-
drogen molecule. The construction of well-localized atomic s orbit-
als involves a matching of bonding and antibonding orbitals, inde-
pendent of their occupation. The sign of the wave functions is
indicated by the shading.
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The paper gives a more detailed and extended account of the
work previously published in a paper17

For periodic systems the bonding-antibonding closure can
be viewed as a procedure for disentangling the partly occu-
pied valence bands from higher-lying bands. This problem
has previously been addressed by Souza et al.18 who pro-
posed a disentangling method based on a minimization of the
change in character of the Bloch states across the Brillouin
zone �BZ�. While this is a natural strategy for crystalline
systems, it is not clear how this disentanglement procedure
applies to nonperiodic systems like isolated molecules, a sur-
face with adsorbates, or a metal with impurities.

The present method is related to that of Souza et al.,18

however, instead of minimizing the dispersion across the BZ
we suggest a disentanglement procedure based exclusively
on a minimization of the spread of the WFs. In this way we
omit any reference to the wave vector and are therefore not
limited to periodic systems. The generality of the method is
demonstrated by application to three different systems: an
isolated Si5 cluster, a copper crystal, and a Cu�100� surface
with nitrogen adsorbed. Our results for the copper crystal are
very similar to those obtained by Souza et al.,18 and this
indicates the similarity of the two localization schemes for
periodic systems.

The paper is organized as follows: In Sec. II we introduce
the spread functional and outline the strategy behind the lo-
calization algorithm. In Sec. III we give the formal definition
of partly occupied WFs in the limiting case of a large super-
cell and derive the corresponding expressions for the gradi-
ent of the spread functional. The extension to periodic sys-
tems is discussed in Sec. IV. In Sec. V we apply the method
to a Si5 cluster, a copper crystal, and a Cu�100� surface with
adsorbed nitrogen.

II. DESCRIPTION OF THE METHOD

In this section we introduce the spread functional used to
measure the degree of localization of a set of orbitals, and
give an introductory description of the localization scheme
including its relation to the method of Souza et al.18

A. Spread functional

Within the localization scheme of Marzari and
Vanderbilt15 the spread of a set of functions �wn�r��n=1

N is
measured by the sum of second moments

S = �
n=1

N

��wn�r2�wn� − �wn�r�wn�2� . �1�

When periodic boundary conditions are applied, as in the
present study, and the supercell is sufficiently large, the mini-
mization of S is equivalent to the maximization of19

� = �
n=1

N

�
�=1

NG

W��Z�,nn�2, �2�

where the matrix Z� is defined as

Z�,nm = �wn�e−iG�·r�wm� . �3�

The �G�� is a set of at most six reciprocal lattice vectors and
�W�� are corresponding weights which account for the shape
of the unit cell. For a definition and discussion of these quan-
tities we refer to Refs. 13 and 14.

B. Localization scheme

The starting point is the set of single-particle eigenstates
��n� resulting from a conventional electronic structure calcu-
lation. For simplicity we shall assume that the system is iso-
lated or is contained in a large supercell such that reference
to k points can be omitted. The aim is to obtain a set of Nw
localized WFs with the property that any eigenstate below a
specified energy E0 can be exactly reproduced as a linear
combination of the WFs. An obvious way to achieve this
would be to apply the method of Marzari and Vanderbilt to
compute the unitary transformation of the Nw lowest eigen-
states leading to the most localized WFs. The problem with
this strategy is, however, that it is in general not possible to
localize all WFs simultaneously, and the problem cannot be
overcome by increasing Nw.

Instead, we define an external localization space as the
space spanned by the Nb lowest-lying eigenstates �Nb�Nw�.
Within this space we consider the subspace spanned by the
eigenstates with energy below E0, together with L extra de-
grees of freedom �EDF�. We shall refer to this subspace as
the active localization space or simply the localization space.
The EDF are assumed to be orthogonal and L is chosen such
that the dimension of the active localization space equals Nw.
We then perform a simultaneous optimization of the WFs
within the active localization space and of the active local-
ization space itself. In practice this is achieved by optimizing
an Nw�Nw unitary matrix together with the coordinates of
the EDF such that the functional � becomes maximal.

It is the determination of the EDF that distinguishes our
method from that of Souza et al.18 In the latter, the spread

functional is decomposed into two terms: �=�I+�̃, where
�I is related to the k-space dispersion of the band-projection
operator, see Ref. 18. In the first step, the EDF are deter-
mined by maximizing �I, which depends only on the local-
ization space itself and not on the internal unitary transfor-

mation. In the second step �̃, or equivalently �, is then
maximized within the fixed localization space. It is clear that

the separate maximization of �I and �̃ does not amount to
the global maximization of � that we propose here. We shall,
however, see that the two methods lead to very similar re-
sults in the case of periodic systems.

III. LARGE SUPERCELLS

In this section we give a detailed description of the local-
ization scheme in the limiting case of a large supercell where
a �-point sampling of the first Brillouin zone is a good ap-
proximation. For simplicity we discuss this case separately
before extending it to periodic systems, although the latter
contains the former as a special case. After giving the defi-
nition of partly occupied Wannier functions we derive ex-
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pressions for the gradients of the spread functional and dis-
cuss how to combine these with a Lagrange multiplier
scheme to determine the maximum of �.

A. Definition of partly occupied Wannier functions

We denote the total number of eigenstates obtained from
the electronic structure calculation by Nb and the number of
eigenstates below the energy E0 by M. Our aim is to con-
struct a set of Nw WFs which span at least the M lowest-lying
eigenstates. The remaining L=Nw−M degrees of freedom are
simply used to improve the localization of the resulting WFs
as much as possible. We expand the WFs in terms of the M
lowest-lying eigenstates and L extra degrees of freedom ��l�
belonging to the �Nb−M�-dimensional space of eigenstates
with energy above E0

wn = �
m=1

M

Umn�m + �
l=1

L

UM+l,n�l, �4�

where the extra degrees of freedom �EDF� are written as

�l = �
m=1

Nb−M

cml�M+m. �5�

The columns of the matrix c are orthonormal and represent
the coordinates of the EDF with respect to the eigenstates
lying above E0. The matrix U is unitary and represents a
rotation of the functions ��1 ,… ,�M ,�1 ,… ,�L�.

In order to simplify the notation we introduce the matrices

C = 	IM�M 0

0 c

, V = CU = 	UM

cUL

 , �6�

where UM and UL denotes the M upper-most and L lower-
most rows of U, respectively. The ith column of V gives the
coordinates of wi with respect to the full set of eigenstates
��n�.

Substituting the expansions �4� and �5� into Eq. �3� we
obtain a compact matrix expression

Z� = V†Z�
�0�V = U†C†Z�

�0�CU , �7�

where Z�
�0� is obtained from Eq. �3� by using the eigenstates

��n� in the inner product,

Z�,nm
�0� = ��n�e−iG�·r��m� . �8�

B. Gradient of �

Through Eq. �7� the spread functional � in Eq. �2� be-
comes a function of the matrices U and c. The maximum of
� can be found iteratively by updating U and c in the direc-
tion given by the gradient. In the following we derive expres-
sions for the gradient of �.

We write the unitary matrix at iteration n as U�n�

=U�n−1�exp�−A�, where A is an anti-Hermitian matrix. Since
we are only concerned with small variations, we expand the
exponential to first order, i.e., exp�−A��1−A. Inserting this
into Eqs. �2� and �7� we find

��

�Aij
= �

�=1

NG

W��Z�,ji�Z�,j j
* − Z�,ii

* � − Z�,ij
* �Z�,ii − Z�,j j� . �9�

All matrices in this expression refer to iteration n−1. The
new rotation at iteration n is then obtained by multiplying
U�n−1� by exp�−d��A�� where d is the length of the
steepest-ascent step and ��A�ij =�� /�Aij.

We now turn to the problem of determining the steepest
uphill direction of � with respect to variations in c. In gen-
eral, for a real-valued function f�z=x+ iy� the direction of
steepest ascent with respect to z is given by

� f

�z* �
1

2
� � f

�x
+ i

� f

�y
� . �10�

To calculate the gradient �� /�cij
* we use that

� �Z�,nn�2

�cij
* = Z�,nn

�Z�,nn
*

�cij
* + Z�,nn

* �Z�,nn

�cij
* . �11�

From Eq. �7� it follows that

�Z�,nn

�cij
* = �

abcd

Una
† �Cab

†

�cij
* Z�,bc

�0� CcdUdn

+ �
abcd

Una
† Cab

† Z�,bc
�0� �Ccd

�cij
* Udn, �12�

and from definition �6�

�Cnm

�cij
* = 0 �13�

�Cnm
†

�cij
* = �m,M+i�n,M+j . �14�

It is now easy to establish that

�Z�,nn

�cij
* = �Z�

�0�VM+i,nUM+j,n
* �15�

�Z�,nn
*

�cij
* = ��Z�

�0��†VM+i,nUM+j,n
* . �16�

Combining Eq. �11� with Eqs. �15� and �16� we arrive at the
desired expression

��

�cij
* = �

�=1

NG

W��Z�
�0�VD�Z�

*�U† + �Z�
�0��†VD�Z��U†M+i,M+j ,

�17�

where D�Z�� is a diagonal matrix with �Z�,nn� in the diago-
nal.

To treat the constraint that the EDF ��l� should be ortho-
normal during the maximization procedure we introduce the
Lagrange multipliers 	ij and perform an unconstrained maxi-
mization of the functional
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�L = � − �
ij

	ij��i�� j� . �18�

The Lagrange multipliers are initially unknown and must be
estimated at each iteration. At the maximum we have
�c*�L=0 which is equivalent to the condition

�c*� − c	T = 0. �19�

Multiplying by c† from the left leads to

	T = c†�c*� . �20�

This relation can be used to estimate the Lagrange multipli-
ers at each iteration. A step of length d in the steepest uphill
direction is thus accomplished by adding to c the matrix
d�1−cc†��c*�, followed by an orthonormalization of the
columns of c.

IV. PERIODIC SYSTEMS

We consider a periodic system with a unit cell defined by
basis vectors a1 , a2 , a3 which in turn define the basis vectors
of the reciprocal lattice b1 , b2 , b3. The Bloch states, ��nk�,
resulting from the electronic structure calculation are charac-
terized by a band index n and a crystal momentum k. The
total number of bands is denoted by Nb and the number of
eigenstates at a given k point with energy below E0 is de-
noted by Mk. We assume a uniform sampling of the first BZ
such that any k point can be written as

k =
n1

N1
b1 +

n2

N2
b2 +

n3

N3
b3, �21�

where Ni is the number of k points in the direction bi and
ni=0,… ,Ni−1. Note that the � point is always included.
With this convention the Bloch states, ��nk� correspond ex-
actly to the �-point eigenstates of the repeated cell defined
by the extended basis vectors N1a1 , N2a2 , N3a3. An alterna-
tive way of stating this correspondence is to say that the k
points in Eq. �21� fall on the reciprocal lattice of the repeated
cell, see Fig. 2. As we shall see below, this correspondence
allows us to use the spread functional � defined in Eq. �2�
also for the periodic system. We stress that the formalism
developed in the following section contains the �-point for-
malism described in the preceding sections as a special case.

A. Definition of partly occupied Wannier functions

We write the nth Wannier function related to unit cell i as

wi,n =
1

�Nk
�
k

e−ik·Ri�̃nk, �22�

where Nk is the total number of k points and �̃nk is a gener-
alized Bloch state to be defined below.15 Each generalized

band, i.e., each set ��̃nk� for fixed n, gives rise to one WF per
unit cell. These WFs are simply related by translation, i.e.,
wi,n�r�=w0,n�r−Ri�, and thus it suffices to consider the WFs
of the cell at the origin. In doing this we can omit the cell

index and simply denote the WFs by �wn�. We denote the
number of WFs per cell by Nw.

Following the idea behind Eq. �4� we expand the gener-

alized Bloch state �̃nk in terms of the Mk lowest-lying Bloch
states and Lk extra degrees of freedom, ��lk�, from the re-
maining �Nb−Mk�-dimensional space

�̃nk = �
m=1

Mk

Umn
k �mk + �

l=1

Lk

UMk+l,n
k �lk, �23�

where the EDF are expanded as

�lk = �
m=1

Nb−Mk

cml
k �Mk+m,k. �24�

The number of EDF at a given k point is determined by the
condition Lk+Mk=Nw. If Mk exceeds Nw, we simply put
Mk=Nw. Due to the exact correspondence between the Bloch
states ��nk� and the �-point eigenstates of the repeated cell,
we can use the functional �2� to measure the spread of the
Wannier functions. The matrices Z� are still defined by Eq.
�3� but it should be remembered that the inner product as
well as the reciprocal lattice vector G� now refer to the re-
peated cell. From Eqs. �23� and �24� we find the following
generalization of Eq. �7�:

Z� = �
k,k�

Z�
kk�, �25�

where

Z�
kk� = �Uk�†�Ck�†Z�

�0�,kk�Ck�Uk�. �26�

The matrix Ck is given by the obvious k-point analog of Eq.

�6� and the matrix Z�
�0�,kk� is defined by

FIG. 2. Relation between the first BZ of the unit cell, defined by
the reciprocal basis vectors b1 , b2 , b3 �light gray�, and the first BZ
of the repeated unit cell �dark gray�. In this case N1 and N2 from Eq.
�21� both equals 3. The relation between k and k�, given in Eq.
�29�, is indicated.
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Z�,nm
�0�,kk� = ��nk�e−iG�·r��mk�� . �27�

Most of the matrices Z�
�0�,kk� are in fact zero. Writing the

Bloch functions as �nk=unk�r�exp�ik ·r�, where unk has the
periodicity of the lattice, we get

Z�,nm
�0�,kk� =� unk

* �r�umk��r�ei�k�−k−G��·rdr , �28�

which is nonzero only when

k� = k + G�. �29�

Here it is implicit that k and k� belong to the first BZ and
thus it might be necessary to translate k� by a reciprocal
lattice vector. The relation between k and k� is illustrated in
Fig. 2. Note that the condition in Eq. �29� reduces the double
sum in Eq. �25� to a single sum over k.

The derivation of the gradient of � follows closely the
�-point case discussed in Sec. III B and is therefore omitted.
The result is

��

�Aij
k = �

�=1

NG

W���Z�,j j�*Z�,ji
k−G�,k + Z�,j j�Z�,ij

k,k+G��*

− �Z�,ii�*Z�,ji
k,k+G� − Z�,ii�Z�,ij

k−G�,k�* . �30�

��

��cij
k�* = �

�=1

NG

W��Z�
�0�,k,k+G�Vk+G�D�Z�

*��Uk�†

+ �Z�
�0�,k−G�,k�†Vk−G�D�Z���Uk�†Mk+i,Mk+j .

�31�

We note that these expressions, of course, reduce to Eqs. �9�
and �17� in the limit of a single k point. The maximization of
� proceeds along the same lines as for the �-point case,
except that Lagrange multipliers are needed for each k point.
For example the analog of Eq. �18� reads

�L = � − �
ij,k

	ij,k��ik�� jk� . �32�

B. Optimizing the number of extra degrees of freedom

For given values of Nb, Nw, and E0, the algorithm intro-
duced above produces the Nw most localized WFs that can be
formed within the external localization space when all eigen-
states below E0 should be exactly reproducible in terms of
the WFs. It remains to determine the optimal values for Nb
and Nw for a given E0. Let us start by considering the situa-
tion where Nb has been fixed at a value which is large
enough to include all antibonding states relevant for the lo-
calization. In practice this typically means �10 eV above the
Fermi level. It seems as a natural strategy to choose Nw such
that the localization per orbital is maximal. To quantify this
condition we define the average localization per orbital as

��� =
��E0,Nb,Nw

Nw
, �33�

where we have indicated the dependence of � on the three
parameters explicitly. We note that since the value of � also
depends on the size and shape of the supercell, it does not
make sense to compare the value of � for systems described
in different supercells. Fixing Nw on the basis of ��� repre-
sents a completely general criterion which can be applied in
any situation. However, the localization procedure must be
carried out for several values of Nw which might be a tedious
task depending on the size of the system. We next consider
the situation when Nb is also allowed to change. Formally,
the global maximum of ��� is attained in the limit where
both Nb and Nw tend to infinity in which case an infinite set
of completely localized delta functions can be realized. How-
ever, we have found that for practical values of Nb where
very high energy states are not included in the external lo-
calization space, ��� will have a local maximum for some
Nw, and the position of the maximum is not sensitive to the
actual value of Nb. Thus, it is indeed possible to determine an
optimal value of Nw by maximizing ���.

Alternatively it is often possible to determine a value for
Nw based on symmetry arguments, chemical intuition, or a
closed band condition. As we shall see in the following ex-
amples the two criteria for determining Nw lead to similar
results.

C. Start guess for Uk and ck

For small systems we have found that the localization
algorithm is quite stable and usually leads to the global
maximum independently of the initial value of the matrices
�Uk� , �ck�. For larger systems, however, there is a risk of
getting stuck in a local maximum and in such cases the start
guess becomes important. It is then natural to start from a set
of simple orbitals located either at the atoms or at the bond
centers. Let �f
� denote such a set of simple orbitals. The
question is how to transform this into the matrices
�Uk� , �ck�. To this end we project the initial orbitals onto the
subspace spanned by the Bloch states at each k point

f̃
k = �
n=1

Nb

��nk�f
��nk. �34�

The following procedure is carried out for each k point
separately. For fixed k we regard ��nk � f
� as a matrix in the

indices n , 
. Its columns represent the coordinates of the f̃k


with respect to the Bloch states ��nk�n=1
Nb and as such it is a

�nonorthogonalized� version of the matrix Vk, see Eq. �6�.
After a normalization of the columns of ��nk � f
� we compute

the norm of the component of f̃
k orthogonal to the occupied
subspace

� f̃
k
� �2 = �

n=M�k�

Nb

���nk�f
��2. �35�

The first EDF is chosen as a normalized version of the f̃k

� for

which � f̃k

� � is the largest. The remaining f̃�

�’s are then or-
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thogonalized onto this vector and the process is repeated un-
til all EDF, and thus ck, have been determined. Finally the
identity Uk= �Ck�†Vk with Vk→ ��nk � f
� determines Uk.

Since the f̃
k are not necessarily orthogonal, the columns of
the resulting Uk must be explicitly orthogonalized.

V. RESULTS

In the following sections we apply the localization
scheme to three different systems. To demonstrate the gener-
ality of the method we consider both isolated and metallic
systems as well as a metal surface with adsorbed impurities.
In Sec. V A we construct partly occupied WFs for an isolated
Si5 cluster and illustrate how different sets of WFs can be
obtained by varying the number of extra degrees of freedom.
In Sec. V B we investigate the WFs of a Cu�fcc� crystal and
compare the results with those obtained by Souza and
coworkers18 who studied the same system using a different
but related method. Finally, in Sec. V C we perform a de-
tailed WF analysis for a Cu�100� surface with 0.5 monolay-
ers of nitrogen. In all calculations we use a plane-wave based
density-functional theory �DFT� code20 to obtain the Kohn-
Sham eigenstates, and we describe the ion potential by
Vanderbilt ultrasoft pseudopotentials.21 To ensure a proper
convergence of the unoccupied states employed in the local-
ization scheme, the DFT calculations have been converged
with respect to the full set of Kohn-Sham eigenvalues. In the
Appendix we explain how to extend the localization scheme
to ultrasoft pseudopotentials.

A. Si5 cluster

As an example of an isolated system we consider an Si5
cluster in its ground-state geometry,22 see Fig. 3�a�. We use a
cubic supercell of length 16 Å and sample the first BZ at the

� point. To test the dependence on the size of the external
localization space we consider the two cases Nb=30 and
Nb=100. We set M =10 corresponding to the number of oc-
cupied states, and calculate the average localization per WF,
���=� /Nw, for L=0,…,7. The result is shown in Fig. 4. For
L=0 there is no difference between the two cases since the
WFs are constructed entirely from the occupied eigenstates.
However, for L�0 the larger space available for the extra
degrees of freedom leads to an improved localization when
Nb=100. Apart from this general improvement in localiza-
tion, there is no qualitative difference between the WFs ob-
tained with Nb=30 and Nb=100 for a given L. We note that
both curves have a maximum for L=4, corresponding to a
total of 14 WFs. This particular set of WFs together with
their centers is shown in Fig. 3�b�. The fact that this set of
WFs respects the symmetry of the cluster is a special prop-
erty of the L=4 solution: For other values of L, including
L=0, the WFs break the symmetry of the Si5 cluster. This
indicates that the solution corresponding to the maximal
value of ��� has a special meaning. Indeed, the value Nw

=14 could also have been anticipated from physical argu-
ments. Starting from a set of four sp3 orbitals located at each
Si atom we expect bonding and antibonding states to form
between pairs of aligned orbitals belonging to nearest neigh-
bor pairs of Si atoms. These bonding states can be identified
as the six bond-centered WFs shown to the far left in Fig. 3.
The two “top” Si atoms have three nearest neighbors and
thus a single sp3 orbital is left as a lone pair �middle WF�.
The remaining three Si atoms each have two nearest neigh-
bors and consequently two sp3 orbitals are left as lone pairs
�right-most WF�. In total this adds up to 14 orbitals. The
antibonding counterparts of the bonding states formed be-
tween nearest neighbors are not brought into play for L=4,
because they are much less localized than the bonding states.
However, by setting L=10 and thus searching for a total of
20 WFs, the antibonding states are picked out as EDF and we
obtain a full set of sp3 orbitals. This solution has, however, a
smaller value for ��� than the solution at L=4.

B. Copper crystal

To illustrate the method in the case of a periodic system
we consider the construction of WFs for a copper crystal.

FIG. 3. �Color online� �a� Geometry of the Si5 cluster. �b� Con-
tour plots of the WFs corresponding to L=4. The position of the
WF centers are indicated by black spheres.

FIG. 4. Average spread of the WFs of the Si5 cluster for differ-
ent values of Nb and L.
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This system was also studied by Souza et al.18 using their
disentangling method to obtain the WFs. Our results are in
close agreement with those obtained by Souza et al., and this
indicates the similarity of the two methods for periodic sys-
tems.

We use the primitive fcc unit cell and sample the first BZ
on a uniform �11,11,11� Monckhorst pack grid containing the
� point. To obtain a minimal set of WFs describing the Cu d-
and s-bands we set Nw=6. We construct two sets of WFs
corresponding to two different values of E0: �i� E0=0.0 eV
and �ii� E0=3.0 eV, relative to the Fermi level. In the first
case the resulting WFs will span at least the occupied sub-
space and thus the electronic structure described by the WFs
will be correct below EF. In the second case the electronic
structure will be correct up to 3 eV above EF, however, since
this is a stronger restriction on the localization space we
must expect that the resulting WFs will be less localized than
those obtained in �i�. In Figs. 5 and 6 we show the original
DFT bands together with the approximate bands computed
by diagonalizing the Hamiltonian within the subspace
spanned by the WFs of cases �i� and �ii�, respectively. In both
cases we see a very good agreement between the exact and
approximate bands below E0. At higher energies the approxi-
mate bands deviate from the exact bands, indicating that the
EDF which optimize the localization of the WFs do not co-

incide with specific Bloch eigenstates. The quality of the WF
bands below E0 depends on the number of k points used to
construct the WFs. This is because the band diagram must be
constructed starting from fully localized functions, which
means that the coupling matrix elements must be truncated
beyond a cut-off distance given approximately by Ni /2 unit
cells in the direction ai. Thus the repeated cell, or equiva-
lently the number of k points, must be so large that the WFs
have decayed sufficiently between the repeated images.

Both sets of WFs consist of five atom-centered d orbitals
and a single s-like orbital centered in one of the two intersti-
tial sites. The d orbitals are more or less identical for the two
cases, and two examples are shown in Fig. 7. Contour plots
of the s-like orbital is shown in Figs. 8�b� and 8�c� for cases
�i� and �ii�, respectively. The plots indicate that the s orbital
of case �ii� is less localized than the one obtained in case �i�.
That this is indeed correct follows from the value of the
spread functional �, which is higher for �i� than for �ii�.

The minimal set of WFs obtained with Nw=6 breaks the
symmetry of the fcc crystal because the s-like orbital is lo-
cated in one of the interstitial sites leaving the other empty.
As demonstrated by Souza et al.18 the symmetry can be re-
stored by using seven WFs per primitive cell instead of six.
In Fig. 9 we show the band structure obtained from a set of
WFs generated with Nw=7 and E0=0.0 eV. We note that
very high-energetic states are now selected as the optimal
EDF. This solution can therefore only be obtained for rather

FIG. 5. Band structure of Cu�fcc�. The full lines are the original
DFT bands and the dots are the approximate bands computed from
a set of six WFs �Nw=6�. The WFs have been constructed using
11�11�11 k points and keeping all occupied states in the local-
ization space, i.e., E0=0.0 eV relative to the Fermi level.

FIG. 6. Like Fig. 5 except that the WFs have been generated
with E0=3.0 eV.

FIG. 7. �Color online� Two d-like WFs for Cu�fcc�. The orbitals
are centered at the atoms �not shown�.

FIG. 8. �Color online� �a� Two tetrahedral interstitial sites in the
fcc crystal. �b�–�d� Contour plots of the s-like WF obtained for Cu
�fcc�. The WFs in �b� and �c� have been generated with Nw=6, E0

=0.0 eV and Nw=6, E0=3.0 eV, respectively. Both WFs are lo-
cated in one of the interstitial sites. The WF in �d� corresponds to
Nw=7 and E0=0.0 eV. In this case there is an equivalent WF lo-
cated in the other interstitial site. The same contour value has been
used for all plots.
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large external localization spaces, i.e., Nb�9. The five d-like
WFs are unchanged, but now we obtain two equivalent s-like
WFs located in each of the two interstitial sites thereby re-
storing the fcc symmetry, see Fig. 8�d�. We have calculated
the average localization ��� for Nw=6,7,8, and found that
the maximum is attained for the symmetric solution with
Nw=7.

C. Nitrogen absorption on Cu(100)

In this section we study the WFs of a copper �100�-
surface covered with half a mono-layer of nitrogen atoms. As
the system is neither periodic �in all directions� nor isolated,
it represents a very general situation. The section is divided
into two parts. In the first part the WFs are constructed and
analyzed, and in the second part we use the obtained WFs to
study the chemisorption of nitrogen within the Newns-
Anderson model.

1. Wannier function analysis

We model the Cu�100� surface by a slab with a thickness
of two atomic layers. The supercell contains four Cu atoms
and a single N atom adsorbed in a hollow site, and its height
is such that the surface slabs are separated by 9.0 Å of
vacuum. A topographic top view of the surface is shown in
Fig. 10. We sample the first BZ on a uniform �7,7,1� Mon-

ckhorst pack grid containing the � point.
Let us start by considering what we can expect to find on

the basis of our previous experience. First, the result from
the copper crystal suggests that a minimal description of the
metal surface is obtained with five d orbitals and a s-like
orbital per Cu atom. Since there are four Cu atoms per su-
percell this gives a total of 24 WFs. Next, the similarity
between the valency of N and Si together with our experi-
ence from the Si5 cluster points to a description of the nitro-
gen atom in terms of spx hybrides.

In Fig. 11 we have plotted the average localization ��� of
the obtained WFs as a function of Nw for three different sizes
of the external localization space corresponding to Nb=35,
40, 50. In all cases we have set E0=EF in order to ensure that
the occupied eigenstates are exactly reproduced by the WFs.
As expected, the localization improves as the size of the
external localization space increases. In addition, the maxi-
mum of ��� shifts toward larger L values as Nb is increased.
Specifically the maximum shifts from Nw=27 to Nw=29 as
Nb is increased from 35 to 50. This is not unexpected since
we know that ��� will be a monotonically increasing func-
tion of L in the limit Nb→�, see discussion in Sec. IV B.
Again we stress that it is only the degree of localization of
the WFs that change with Nb for a fixed L, and not their
qualitative form. Thus the chemical picture provided by the
WFs does not change with Nb. In fact, for all the values of Nb
we obtain 20 highly localized d orbitals �five located on each
of the four Cu atoms� and four sp3 orbitals centered on the N
atom, see Fig. 13. The remaining Nw−24 WFs are the less
localized s-like orbitals of Cu. Thus, as Nw is increased be-
yond 24, the number of s-like Cu WFs simply increases cor-
respondingly.

To gain further insight into the dependence of the WFs on
Nb and Nw, we show in Fig. 12 the average localization of the
d, sp3, and s orbitals, separately. It is clear that the Nb de-
pendence as well as the maximum of ��� are almost exclu-
sively related to the Cu s orbitals. Except for the case Nb
=50, which is in fact somewhat extreme since states of 20
eV above the Fermi level are included in the external local-
ization space, the average spread of the Cu s orbitals is maxi-
mal for Nw=28. This corresponds to one s orbital per Cu

FIG. 9. Like Fig. 5 except that the WFs have been generated
with Nw=7.

FIG. 10. Topographic view on the Cu�100� surface with ad-
sorbed nitrogen. The white spheres are nitrogen, while the light
gray spheres represent the Cu surface layer. A supercell is indicated.

FIG. 11. Average localization of the WFs of the nitrogen cov-
ered Cu surface for different values of Nb and Nw.
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which is exactly what we anticipated from the analysis of the
copper crystal.

We end by summarizing the chemical picture obtained
from the WF analysis: For Nw=28 the Cu surface is de-
scribed by the minimal set of WFs consisting of five d- and
one s-like orbital per atom. For the nitrogen we obtain four
sp3 hybrids oriented as indicated in Fig. 13.

2. Adsorption in the Newns-Anderson model

The WFs can be used to obtain a detailed and consistent
picture of the hybridization occurring between the nitrogen
states and the states of the substrate. As we shall see the
analysis gives a complete account for the shape of the pro-
jected density of states of a given N orbital, in terms of the
bare orbital energy, a coupling strength, and the density of
states of the so-called group orbital.

In the Newns-Anderson model,23 one considers an adsor-
bate state, �a�, of energy a= �a�H�a�, coupled to a continuum
of states, �k�, representing the substrate. The coupling matrix

elements are denoted by Vk= �a�H�k�. A particularly useful
formulation can be obtained by introducing the normalized
group orbital, �g�=V−1�kVk�k�, where V= ��k�Vk�2�−1/2. It is
easily checked, that the coupling between �a� and any sub-
strate state orthogonal to �g� vanishes. Consequently �a� is
coupled to the substrate via the group orbital only, and the
coupling is given by V, i.e., V= �a�H�g�.

Physical quantities such as the projected density of states
�PDOS� of the adsorbate state and the hybridization part of
the adsorption energy, can be obtained from the retarded ad-
sorbate Green’s function, which in turn follows from the
three quantities a, V and �g

0��, where �g
0 denotes the PDOS

of the group orbital in the absence of coupling to the adsor-
bate state. Often �g

0�� is referred to as the band to which the
adsorbate is coupled.

The sp3 WFs of the N atom are not well suited as a start-
ing point for applications of the Newns-Anderson model,
since they do not represent the energy levels of the free atom.
This problem can be overcome by diagonalizing the Hamil-
tonian matrix in the WF basis, within the subspace spanned
by the four sp3 orbitals. The result of the subspace diagonal-
ization is a set of four atomic orbitals consisting of one s-like
and three p-like orbitals, each centered at the N atom. Two of
the p orbitals lie in the surface plane �the xy plane� and are
directed along the arrows shown in Fig. 13, while the third is
oriented along the surface normal �the z axis�. We shall refer
to the p orbitals as px, py, and pz, respectively. The energies
corresponding to the atomic orbitals are �in electronvolts�:
s=−14.8, z=−2.4, x=−3.7, and y =−4.2. We notice, that
the energy of the px and py orbitals differ even though the
symmetry of the system suggests that they should be equal.
The reason for this is that the WFs break the fourfold rota-
tion symmetry of the system, i.e., the subspace spanned by
the four sp3 WFs is not invariant under the same symmetry
transformations as the Hamiltonian. This is not surprising,
since the WFs are constructed solely from a criterion of
maximal localization and no attempts are made to conserve
symmetries. On the other hand we have found that by in-
creasing the parameter E0 above the value E0=EF used in the
present example, the symmetry between px and py can be
restored. The price one has to pay is that the copper s-like
WFs become less localized due to the further constrains on
the localization space implied by the larger value of E0.
From the Hamiltonian in the WF basis we can also obtain the
coupling V between each of the atomic nitrogen orbitals and
its corresponding group orbital. These are quite similar and
vary from 3.1 to 3.8 eV.

In Fig. 14 we show the calculated PDOS for each of the
three nitrogen p orbitals �upper panel�. Although the on-site
energies of the px and py orbitals differ �as discussed above�,
their PDOS are rather similar. The PDOS of the correspond-
ing group orbitals have been calculated with all coupling
matrix elements to the N orbitals set to zero, i.e., the adsor-
bate states have effectively been decoupled from the surface.
The result is shown in the lower panel of Fig. 14. For all
three orbitals, the on-site energies lie within the band. Due to
the strong coupling, bonding, and antibonding resonances are
formed at the band edges around −7 and 0 eV as can be seen
in the upper panel of the figure. This is the limit of strong

FIG. 12. Average localization of the d-, sp3-, and s-like WFs
considered separately for different values of Nb and Nw.

FIG. 13. �Color online� Orientation of the four sp3-like WFs
belonging to the N atom. Seen from above the orbitals point to the
bridge sites of the Cu atoms in the surface. Each orbital points
either up from or down into the surface. An example of each type is
shown in the lower panel.
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chemisorption.23 Since the four orbitals span all states with
significant weight on the N atom, this representation pro-
vides a full representation of the nitrogen bonding.

VI. CONCLUSIONS

We have presented a practical method for constructing
partly occupied WFs for a wide range of systems. The
method employs a bonding-antibonding closing procedure to
filter out a set of unoccupied states, called the extra degrees
of freedom, which serve to improve the localization of the
WFs. The determination of the extra degrees of freedom is
based on a minimization of the spread of the resulting WFs.
We derived expressions for the gradients of the spread func-
tional and showed how these can be combined with a
Lagrange multiplier scheme to minimize the spread func-
tional.

The generality of the scheme was demonstrated by apply-
ing the method to three different systems. As an example of
an isolated system, we considered a Si5 cluster, and showed
how different sets of WFs could be obtained by varying the
number of extra degrees of freedom. A similar analysis was
performed for a copper crystal, where we found results very
similar to those of Souza et al.18 Finally we studied in detail
the WFs of a Cu�100� surface with a nitrogen coverage of
0.5. In many cases we were able to obtain a special set of
WFs with a particularly high degree of symmetry and local-
ization, by maximizing the average spread of the WFs.
Moreover, the condition of maximal average localization was
shown to coincide with a complete matching of bonding and
antibonding states.

ACKNOWLEDGMENTS

We acknowledge support from the Danish Center for Sci-
entific Computing through Grant No. HDW-1101-05.

APPENDIX: SPREAD FUNCTIONAL FOR VANDERBILT
ULTRASOFT PSEUDOPOTENTIALS

For Vanderbilt ultra-soft pseudopotentials21 the optimal
smoothness of the pseudo-wave functions is obtained by re-

laxing the norm-conserving constrains for the pseudo-wave
functions. This results in a generalized orthonormality
relation21

��i�S�� j� = �ij . �A1�

The Hermitian operator S is given by

S = 1 + �
I

�
nm

qnm��n
I ���m

I � , �A2�

where the index I denotes the atoms in the system, and qnm is
given by

qnm =� drQnm
I �r� . �A3�

The functions ��n
I � and �Qnm

I � are all localized functions cen-
tered at atom I. The functions �Qnm

I � describe the augmenta-
tion charge not contained in the smooth pseudowave func-
tions, and they must therefore be included in the calculation
of the spread of the wave functions.

1. Large supercells

In the case of large supercells, using the �-point approxi-
mation, Bernasconi and Madden24 derived the following ex-
pression for the contribution to Z�

�0� from the augmentation
charges Qnm

I �r�:

Z�,ij
�us,0� = �

I,nm

��i��m
I ���n

I �� j� � dre−iG�·rQmn�r� . �A4�

2. Periodic systems

For the periodic case, using a uniform k-point grid, we
write Z�

us as

Z�
us = �

kk�

Z�
�us�kk�. �A5�

Here again we use the exact correspondence between the
Bloch states �nk and the �-point eigenstates of the repeated
cell. In the repeated cell we use the notation

hik
Int = ��ik��n

I,t� = ��ik��n
I,t=0�eik·Rt �A6�

and

Qnm
It = �

G
Qnm�G�e−iG·�r−Rt�. �A7�

Rt is here a real space translation vector, given in terms of
the basis a , t1a1+ t2a2+ t3a3 , t= �t1 , t2 , t3�. We will use hIn

=hI,t=0,n in what follows. Inserting hik
Int and Qnm

It from Eqs.
�A6� and �A7�, together with the Bloch states �ik into the
�-point expression for Z�

�us,0� in Eq. �A4�, we find

Z�,ij
�us,0�,kk� = �

t
�
I,nm

hik
Inthjk�

Imt� dre−iG�rQnm
It �r� . �A8�

The sum over t is for ti=0,… ,Ni−1, see Eq. �21�. Inserting
the left-hand side of Eqs. �A6� and �A7�, and rearranging, we
find

FIG. 14. �Color online� Top: PDOS for the atomic p orbitals
obtained by diagonalizing the Hamiltonian in the subspace spanned
by the sp3 WFs of the N atom. Bottom: PDOS for the group orbitals
corresponding to each of the atomic p orbitals.
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Z�,ij
�us,0�,kk� = �

I,nm

hik
Inhjk�

Im �
t

e−i�k−k��Rt

��
G

Qnm�G�e−iG·Rt� drei�G−G��r. �A9�

Finally, we arrive at our expression for Z�,ij
�us,0�,kk�

Z�,ij
�us,0�,kk� = �

I,nm

hik
Inhjk�

Im �
t

e−i�k−k�−G��RtQnm�G = G�� ,

�A10�

which is nonzero only when k and k� fulfills the condition in
Eq. �29�. Again we see that this expression contains the
�-point formalism, Eq. �A4�, as a special case.
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