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A new non-Fermi-liquid state of quasi-one-dimensional conductors is suggested in which electronic system
exists in a form of collection of bounded Luttinger liquids stabilized by impurities. This state is shown to be
stable towards interchain electron hopping at low temperatures. Electronic spectrum of the system contains
zero modes and collective excitations of the bounded Luttinger liquids in the segments between impurities.
Zero modes give rise to randomly distributed localized electronic levels, and long-range interaction generates
the Coulomb gap in the density of states at the Fermi energy. Mechanism of conductivity at low temperatures
is phonon-assisted hopping via zero-mode states. At higher voltages the excitations of Luttinger liquid are
involved in electron transport, and conductivity obeys power-law dependence on voltage. The results provide
a qualitative explanation for recent experimental data for NbSe3 and TaS3 crystals.
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I. INTRODUCTION

The concept of single-electron quasiparticles is one of the
central ideas of solid state physics. Indeed, systems of inter-
acting electrons in metals and semiconductors are well de-
scribed by Landau’s Fermi-liquid picture in which interac-
tion modifies free electrons making them quasiparticles that
in many respects behave similar to noninteracting electrons.
Basic electronic properties of many solids, including phase
transitions into symmetry-breaking states such as supercon-
ducting or charge-density wave �CDW� states, are well de-
scribed within this concept. Therefore, possibility to observe
non-Fermi-liquid behavior in conducting materials attracts
much interest. The concept of Luttinger liquid is an alterna-
tive to the Fermi liquid elaborated for one-dimensional �1D�
electronic systems. It was found that in 1D electronic sys-
tems the Fermi-liquid picture breaks down even in case of
arbitrarily weak interaction. Single-electron quasiparticles
cannot exist in 1D metals, and electrons form the Luttinger
liquid in which the only low energy excitations turn out to be
charge and spin collective modes with the soundlike spec-
trum. Dynamical independence of these modes gives rise to a
spin-charge separation in 1D systems. Furthermore, correla-
tion functions at large distances and times decay as a power
law with interaction dependent exponents �for a review see
Refs. 1–3�.

One may expect to observe formation of Luttinger liquid
in quasi-1D conductors, i.e., highly anisotropic 3D conduc-
tors with chainlike structure. However, according to present
theoretical point of view, the formation of Luttinger liquid in
quasi-1D conductors at low enough temperatures is problem-
atic because of the instability towards 3D behavior in the
presence of arbitrarily small interchain hopping.4–9 So inter-
chain hopping induces a crossover to 3D behavior at low
energies, while Luttinger-liquid behavior can survive only at
high enough energy scale where it is not affected by 3D
coupling. In contrast to interchain hopping, the Coulomb in-
teraction between electrons on different chains does not de-
stroy the Luttinger-liquid state, it merely modifies the elec-
tronic spectrum of the Luttinger liquid.10–13

Numerous experimental studies of both organic and inor-
ganic quasi-1D conductors at low temperatures demonstrate,
commonly, Fermi-liquid metallic behavior and/or transitions
to broken-symmetry states, which are described in terms of
Fermi-liquid ideas �for a review see Refs. 14 and 15�. For
instance, the most studied inorganic quasi-1D metals �e.g.,
blue bronze K0.3MoO3, TaS3, �TaSe4�2I, etc.� undergo the
Peierls transition from metallic to a semiconducting CDW
state, or to semimetallic CDW state such as NbSe3. Typi-
cally, this transitions occur in the temperature range 50–250
K. Some quasi-1D materials, e.g., TaSe3 do not undergo the
Peierls transition and remain in the normal metallic state at
low temperatures as well.

However, a transition from room-temperature metallic be-
havior to nonmetallic one accompanied by disappearance of
the CDW state at temperatures below 50–100 K was detected
in recent experimental studies of temperature and field de-
pendence of conductivity of TaS3 and NbSe3 nanoscale-sized
crystals.16–18 The low-temperature nonmetallic state was
characterized by power-law dependencies of conductivity on
voltage and temperature similar to that expected in Luttinger
liquid, or by more strong temperature dependence corre-
sponding to the variable-range hopping.18 Resembling de-
pendencies of conductivity were also reported in focused-ion
beam processed or doped relatively thick NbSe3 crystals.19

Transition to nonmetallic conductivity at low temperatures
was observed earlier in fragmented into small pieces and
then sintered NbSe3 crystals.14 Hopping conductivity was
also found out in heavily doped by iron bulk NbSe3
crystals20 in dirty quasi-1D conductors KCP and organic
TCNQ-based metals,21 while pure materials are known to
undergo the Peierls transition to the CDW state.

In order to account for such behavior a possibility of sta-
bilization of the Luttinger state by defects in quasi-1D metals
was put forward recently in the letter of one of the authors.22

Such a possibility is based upon finding made in Refs. 23–25
that a local impurity potential in Luttinger liquid acts, at low
energies, as effectively infinite barrier. This leads to a dis-
crete spectrum of collective charge and spin density fluctua-
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tions, so that the electronic system can be considered as a
collection of bounded Luttinger liquids. In this case, at tem-
peratures below the minimum excitation energy of the col-
lective modes, weak interchain hopping can be considered as
small perturbation, and, therefore, hopping does not destroy
the Luttinger-liquid state.

However, in order to make comparison with the experi-
mental data and to find further evidences that the low-
temperature nonmetallic state observed in quasi-1D conduc-
tors can, actually, be interpreted as a collection of impurity-
induced bounded Luttinger liquids, calculation of
conductivity in the latter state is needed. Such calculations
are the main goal of this paper. We calculate conductivity in
a collection of weakly coupled metallic chains with defects
in the limit of low temperatures, considering both the case of
the contact interaction used in the standard Tomonaga-
Luttinger model1,3 and the case of more physical long-ranged
Coulomb potential.

Note that we consider the case of conductivity limited by
impurities, i.e., we study the bulk effect, so we do not con-
sider contribution due to contacts in this work. In the oppo-
site limit of a wire without defects the contacts are known to
strongly influence the transport properties �see, e.g., Refs.
26–28�.

The paper is organized as follows. In Sec. II we present
main equations and formulate the problem in terms of
bosonization technique generalized to the case of long-range
Coulomb interaction between electrons in a multichain prob-
lem in presence of impurities. In Sec. III we study electronic
structure of quasi-1D conductors. We consider, first, interact-
ing electrons neglecting interchain hopping and find the so-
lution for the phase operators in the limit of strong impurity
potential ignoring, at the first step, the Coulomb interaction
of electrons at different chains. Modifications induced by the
long-range nature of the Coulomb interaction are discussed
in the next subsection. In the last subsection we show that at
low temperatures the interchain hopping can be considered
as small perturbation, provided the hopping matrix element
is small enough. Section IV is devoted to transport properties
of the system. We show that in the limit of low voltages
conductivity is described in terms of variable-range hopping,
while at large voltages it turns into conductivity described by
a power-law dependence on voltage. And, finally, in Sec. V
we discuss relation of the theoretical results to experimental
data, and make conclusions. In this paper we use units with
Planck and Boltzmann constants equal to unity, �=1, kB=1.

II. GENERAL EQUATIONS

First of all we start with the Tomonaga-Luttinger model
ignoring interchain hopping integral t� in order to formulate
the problem in the zero approximation in t�. Electronic op-
erators for right �r= +1� and left �r=−1� moving electrons
with spin s on chain number n are given in terms of phase
fields as �see Refs. 1, 3, and 11�

�n,s�r,x� = lim
�→0

eirkFx

�2��
�n,r,se

−iAn,r�x,n�,

An,r =
1
�2

����x,n� − r	��x,n� + s��
�x,n� − r	
�x,n��� .

�1�

Phase fields 	��x ,n� are related to charge ��=�� and spin
��=
� densities, while fields ���x� are related to the mo-
mentum operators ��= �1/���x�� canonically conjugate to
	�. Further, �r,s are Majorana �“real”� Fermionic operators
that assure proper anticommutation relations between elec-
tronic operators with different spin s and chirality r, and the
cut off length ��1/kF is assumed to be of the order of
interatomic distance.

The Hamiltonian of the system includes three terms, the
Hamiltonian of the interacting electrons, the impurity scat-
tering term, and the interchain hopping Hamiltonian. The
first term containing kinetic and potential energies of the
electrons is described by the Tomonaga-Luttinger Hamil-
tonian generalized for the multichain case with long-range
interaction that couples electrons on different chains.1,3,11

This Hamiltonian ignores the backscattering terms in the
electronic coupling, i.e., it neglects components of interac-
tion potential with q	 
2kF. In the bozonized form the
Hamiltonian reads

H0 =
�vFd2

2 �
�=�,


� dq�dq	

�2��3 ��2 +
1

�2K�
2q	

2	�
2� , �2�

where d2 is the area per single chain, and integration over q�

is taken within the first Brillouin zone

K��q�,q	� = �1 +
2g�
�vF

�−1/2

, �3�

K� is the standard Luttinger-liquid parameter describing the
strength of the interaction. K� determines velocities of the
charge ��=�� and spin ��=
� modes, v�=vF /K�. We study
the case of spin-independent interaction, therefore, in our
case, the coupling constant for spin channel is equal to zero,
g
=0, and K
=1. For charge channel g��q� coincides with
the matrix element measuring the strength of the forward
scattering due to interaction between electrons on the same
or on different branches of the electronic spectrum. The ex-
act form of g��q� depends on crystalline and electronic struc-
ture of a crystal, but in the long-wavelength limit qd1, one
can describe interaction by the standard Fourier transform of
the Coulomb interaction potential:

g� =
4�e2

d2�q�
2 + q	

2�
, v�

2 = vF
2 +

�pl
2

q�
2 + q	

2 , ��
2 = q	

2v�
2, �4�

where �pl is the plasma frequency and �� is the frequency of
the charge mode.

In the coordinate representation

K�
−2�x,n� = �n0��x� +

2e2

�vF
�x2 + n2d2

, �5�

where the last term is induced by the Coulomb interaction.
Its contribution to the Hamiltonian �2� in the coordinate rep-
resentation reads

S. N. ARTEMENKO AND S. V. REMIZOV PHYSICAL REVIEW B 72, 125118 �2005�

125118-2



�
�=�,


�
n,n�

� dxdx�

��x	��x,n�
e2

�2��x − x��2 + �n − n��2d2

��x�	��x�,n��� . �6�

Since the operator of the particle density is given by expres-
sion �=−��2/���x	�x�, this term has rather transparent
physical meaning.

The second part of the total Hamiltonian is 2kF impurity
backscattering term1–3

Himp = − �
n
� dx�

i

V�x − xi�
��

cos��2	� + 2kFx�

�cos��2	
�x�� , �7�

where kF is the Fermi wave number that is assumed to be the
same for all conducting chain, V�x� is potential of impurity
centered in position i. In calculations below we assume
V�x�
V0���x�, where V0 and ��� are amplitude and radius
of the scattering potential, respectively.

When interchain electron hopping is ignored, equation of
motion for Heisenberg phase operators 	� and �� can be
obtained in standard way from the Hamiltonian H0+Himp
given by Eqs. �2� and �7�:

�t���t,x,n� = vF�
n�
� dx�K�

−2�x − x�,n − n���x�	�
�0��t,x�,n��t ,

�8�

�t
2	��t,x,n�

− vF
2�

n�
� dx��xK�

−2�x − x�,n − n���x�	��t,x�,n��

=
�2V0dvF

�
�

i

��x − xi�sin��2	� + 2kFx�cos��2	
� . �9�

Kane and Fisher23 found that the backscattering impurity
potential for repulsive potential �K��1� flows to infinity un-
der scaling. This conclusion was made for the case of single
chain and a contact interaction potential.

The results of Refs. 23–25 were generalized by Fabrizio
and Gogolin29 to the case of many impurities. It was shown
that the impurity potential can be considered as effectively

infinite provided that the mean distance, l̄, between impuri-
ties satisfies the condition

l̄�
1

kF
� D

V0
�2/�1−K��

, �10�

where D is the bandwidth. We assume that the impurity po-
tential is of the atomic scale, V0�D, and the interaction
between electrons is not too weak �i.e., K� is not too close to

1�. Then condition �10� is satisfied for l̄�1/kF, so the limit

of strong impurity potential should be a good approximation
in a wide range of impurity concentrations.

Similar conclusions can be derived for the multiple-chain
system when interaction between electrons on different
chains is taken into account. Indeed, calculations in Ref. 23
are based upon dominant contribution to Euclidian action
expressed in terms of the value of the field 	� at the impurity
site by means of solution of equation of motion in imaginary
time. One can act, similarly, in case of multiple-chain sys-
tem. We express the solution of imaginary-time version of
Eq. �9� for Fourier component of 	� in terms of its value at
the impurity site 	0 and find

	��n,q� =
	0

�n
2 + q	

2v�
2�� d2dq�dq	

�2��3

1

�n
2 + q	

2v�
2�−1

. �11�

In the spirit of renormalization group approach the last factor
in Eq. �11� must be calculated in the limit of small energies.
Since at small � this integral diverges at small q	, we use
v�

2=vF
2 /K�

2 at q	 =0. Then we obtain

� d2dq�dq	

�2��3

1

�n
2 + q	

2v�
2 =

K̄

2vF�
,

where

K̄ � �K��q�,q	 = 0��q�
�
� dq�K��q�,q	 = 0�

� dq�

.

Then using Eq. �11� one finds the action

S = �
i�n

1

vF
���n

2 + q	
2v�

2�	2��n,q��q = �
i�

2
1

K̄
�	0

2�0� .

�12�

This equation is similar to the action in Ref. 23 that was used
to derive the renormalization equation for the interaction pa-
rameter, the only difference being that in case of long-range

interaction action �12� contains the averaged value K̄ of the
interaction parameter instead of parameter K� itself. Thus

impurity potential flows to infinity under scaling if K̄�1.
So at energies close to the Fermi energy the limit of

strong impurity potential can be used. In the main approxi-
mation this limit corresponds to boundary conditions for the
phase operators at the impurity site

�2	� + 2kFxi = n�, �2	
 = m� , �13�

where n and m are integers. Furthermore, n+m must be an
even integer in order to ensure the minimum value of the
impurity Hamiltonian �7�. This connection violates indepen-
dence of spin and charge modes similar to violation of spin-
charge separation in bounded Luttinger liquid discussed by
Eggert et al.30,31

The last term to be added to the total Hamiltonian de-
scribes next-neighbor interchain hopping in the standard way
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H� = t� �
m,n,r,s

� dx�r,s,m
+ �x��r,s,n�x� + H.c.

= �
m,n,r,s

� dx
it��r,s,n�r,s,m

��
�sin�Ar,m − Ar,n�

+ sin�Ar,m − A−r,n + 2irkFx�� , �14�

where indices n and m denote the chain numbers related to
the nearest neighbors.

III. ELECTRONIC STRUCTURE AT LOW
TEMPERATURES

We consider first the case of interacting electrons neglect-
ing interchain hopping and find the solution for the phase
operators in the limit of strong impurity potential. According
to discussion in the previous section this limit should be a
good approximation in a wide range of impurity concentra-
tions. In this approximation the system breaks up into a set
of independent segments. At the beginning we ignore the
long-range Coulomb interaction and consider the case of
contact interaction as in the standard Tomonaga-Luttinger
model, and then discuss modifications induced by long-range
interaction. At the end of the section we will show that at low
temperatures the interchain hopping does not produce quali-
tative modification of the electronic structure based on the
concept of Luttinger liquid.

We begin with solutions for phase operators in case of
contact interaction, taking into account that �� and 	� must
obey the commutation relations1–3 ensuring anticommutation
of electronic operators �1�. Using then the analogy of H0 in
Eq. �2� with the Hamiltonian of an elastic string strongly
pinned at impurity sites, and taking into account commuta-
tion relations, we can write down solutions for the phase
operators in the region between impurity positions at x=xi
and xi+1 as

	� =
���i��� − ��N�i�x̃

li
− ��

j�i

�N�j

+ �
n=1

� �K�
n

�bn�ie
−i�n�it + bn�i

+ ei�n�it�sin
�nx̃

li
, �15�

�� = �� +
���i − ��N�i�vN�t

li

+ i�
n=1

� � 1

K�n
�bn�ie

−i�n�it − bn�i
+ ei�n�it�cos

�nx̃

li
,

�16�

where x̃=x−xi, li=xi+1−xi.
Solutions �15� and �16� consist of two parts. The terms

with summation present a general solution with zero bound-
ary conditions, they describe excitations. Excitation spectra
of the eigenmodes are �n�i=n�v� / li.

The first terms present the particular solution with bound-
ary conditions �13�, they describe zero modes. In the zero
modes

vN� �
vF

K�
2 �

v�
K�

, �N�i =
��N↑i + �N↓i�

�2
,

�N
i =
��N↑i − �N↓i�

�2
,

�N↑i��N↓i� is the number of extra electrons with spin up
�down� in the region between impurities number i and �i
+1�, �2��i is equal to the modulo 2� residue of 2kFli and
finally ��i is the phase canonically conjugate to �N�i obeying
commutation relations ���i ,�N�i�= i.

Note that inside the segments between the impurities the
expressions for the phase fields between the impurity sites
turn out to be similar to those found for bounded 1D Lut-
tinger liquid with open boundary conditions at the sample
ends.29–31 The main difference is that Majorana operators �s
in Eq. �1� are the same for electrons moving right and left,
and that Eq. �15� contain the summation over j� i that insure
proper commutation relations between the electron operators
related to different segments. Thus we conclude that the sys-
tem breaks up into a set of independent segments described
as bounded Luttinger liquids with main properties similar to
those discussed in Refs. 29–31. In particular, as long as ei-
genvalues of �N↑i and �N↓i are integers we find that �N�i
=n�i /�2 and �N
i=n
i /�2 are not independent, because n�i
+n
i must be an even number. Such a limitation ensures the
minimum value of the impurity Hamiltonian �7�. This also
means violation of spin-charge separation due to zero modes
as discussed by Eggert et al.30,31 for bounded Luttinger liq-
uids.

Hamiltonian in the region between impurity positions at
x=xi and xi+1 can be presented as

H = �
�

��� + �
n

�n�b�n
+ b�n� + const, �17�

where contribution of zero modes has a form

�� =
vN����i − ��N��2

2�li
, �
 =

vF���N
�2

2�li
. �18�

One can see that energies of the zero-mode states depend
on number of extra electrons at a segment confined by im-
purities.

From the constitutive relation �1� one can see immediately
that temporal dependence �16� of zero-mode part of �
should result in local energy levels

�n,r,s�t� � exp� 1
�2

��n,� + s�n,
��
� exp�i

���i − ��N�i�vN� + ��N
ivN


�2li

t� .

Strictly speaking, the single-electron energy levels can be
found from poles of single-particle Green’s functions. Its cal-
culation is similar to that in Ref. 31. As long as we study the
low-temperature behavior of the system, we need explicit
expressions for Green’s function at T�0,�. It is presented in
the Appendix.
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A. Zero modes

Now we concentrate on zero modes. Consider the zero-
mode state �n� ,n
� with extra charge n� and extra spin n
s in
one of the segments. Such a state contains �n�+n
� /2 extra
electrons with spin s and �n�−n
� /2 electrons with spin −s.
Energy �18� for formation of the zero-mode state �n� ,n
� can
be conveniently presented in a form �in this subsection, for
brevity, we drop the index related to the number of a seg-
ment�

� = �� + �
, �� =
�0��� − n��2

4
, �
 =

�0
n

2

4
, �0� =

�vF

K�
2l

,

�19�

where we introduced a random factor �=�2�� /� , ����1.
Since factor � is related to 2kFl and, hence, depends on po-
sitions of impurities confining the segment under consider-
ation, it is different for different segments.

The low-lying frequencies of the single-particle Green’s
function G+− and G−+ introduced by Keldysh �see Ref. 32
describe, respectively, energy levels of electron and hole
states. So according to Eqs. �A2� and �A3� the energy levels
induced by zero-mode states �n� ,n
� are

�n�n

=

1

2
��0�n� + �0
n
s − �0��� ± �0�� , �20�

where signs ± are related to electron and hole states, respec-
tively, �0= 1

2 �1+ �K� /K
�2�. �We remind that we consider
spin-independent interaction, so in our case K
=1.�

As long as typical values of � and �0 are of the order
unity, a characteristic energy for formation of a zero-mode
state �19� and characteristic energy scale for position of a
zero-mode level �20� can be estimated as

�̄0 =
�vF

K�
2l̄

,

with l̄=1/Nimp, where Nimp is the impurity density per single
chain. If impurities are distributed randomly, then probability
to find a segment of length l is given by the Poisson distri-
bution, w�l�=Nimp exp�−Nimpl�. Then, for a given segment,
probability to find a value of frequency �0 that is much
smaller, than �̄0, is exponentially small. Hence, at low tem-

peratures TvF / l̄, only energies of modes with �n� ,n
�
equal to �0, 0�, �1, ±1�, and to �−1, ±1� can be of the order of
temperature. Other frequencies except mentioned above are
at least by �0 larger. Furthermore, for a given value of � not
more then two states can have energies near the Fermi level
simultaneously.

So in the statistically averaged zero-mode part of the
Green’s function presented in the Appendix we can keep
only terms related to the states mentioned above

�ei���−��N���xa−vN�ta�/�2l�e±i��xa−vN�ta�/4l

�
1

2
�ei�q1,1xa−�1,1ta� + ei�q1,−1xa−�1,−1ta��n1 +

1

2
�ei�q−1,1xa−�−1,1ta�

+ ei�q−1,−1xa−�−1,−1ta��n−1 + ei�q0,0xa−�0,0ta��1 − n1 − n−1� ,

�21�

with qn�,n

= �� /2l��n�+sn
�1−��. Distribution functions

for electrons at zero-mode level are given by expressions

n±1 =
1

1 +
1

2
exp��0���0� ��

2T
� . �22�

Note that the distribution functions must not coincide neces-
sarily with Fermi-Dirac ones because electrons are corre-
lated, and factor 1 /2 in the denominator of Eq. �22� reflects
the presence of two spin states.

Thus zero modes form the system of local electronic lev-
els near the Fermi energy. The energies of these levels are
determined by random factors ����1, and density of these
states at the Fermi energy is finite in case of short-range
interaction.

B. Modifications of zero modes by long-range interaction

Zero modes in case of long-range Coulomb interaction
can be found from equations of motion �8� and �9� with time
derivative equal to zero,

�x��
�0��x,n� = 0, �23�

��
�0��x,n� = �� + �

n�
� dx�vFK�

−2�x − x�,n − n���x�	�
�0�

��t,x�,n��t , �24�

with boundary conditions �2	�+2kFx=�k, where k is an
integer.

The energy of zero modes in coordinate representation
reads

E =
1

2� �
�,n,n�

� dx� dx�vFK�
−2�x − x�,n − n��

��x	�
�0��x,n��x�	�

�0��x�,n��

=
1

4 �
�,n,n�

� dx� dx�vFK�
−2�x − x�,n − n��

���
�0��x,n���

�0��x�,n�� �25�

with K� determined by Eq. �5�.
Analytical solution of Eqs. �23� and �24� is not a simple

matter. Therefore, we consider a simplified model in which
we neglect variations of the interaction when each coordinate
varies inside a segment between the impurities. That is, we
approximate interaction parameter K�

−2�x−x� ,n−n�� by its
value K�

−2�i− j�, spatially averaged with respect to coordi-
nates x, n and x�, n� inside given segments labeled as i and
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j. This model does not violate effects of long-range interac-
tion which determine conductivity at low temperatures cal-
culated in the next section. It is not difficult to find solution
of Eqs. �23� and �24� for such model interaction. The solu-
tion for the zero-mode part of the phase operators �� has a
form

��i
�0� = �� + vF�

j
K�

−2�i − j����j��� − ��N�j�t . �26�

This expression for the phase operator enables us to calculate
the energy levels of zero-mode states given by eigenfrequen-
cies of Green’s function. This is not difficult because contri-
butions from zero modes are separated from excitation in the
Green’s function similar to the case of the short range inter-
action considered in the Appendix. So for the energy levels
in segment i we find

�i = −
vF

�2
�
�j

K�
−2�i − j����j��� − ��N�j� ±

�vF

4 �
�

K�
−2�0� ,

�27�

where signs ± are, again, related to electron and hole states,
respectively.

For i= j the averaged interaction parameter can be esti-
mated as

K�
−2�0� 


1

l̄
�1 +

8e2

�vF
ln

l̄

d
� , �28�

where we used dimensional units with � for clarity.
The second term in Eq. �28� for typical values of Fermi

velocity in quasi-1D conductors is quite large. For vF
2
�107 cm/s, which is typical value for transition metal tri-
halcogenides, its value is about 80. This corresponds to the
case of strong interaction and leads to quite large values of
coupling parameters. So we can estimate the typical energy
of zero-mode levels as

�̄0 �
e2

l̄
.

Thus the zero modes describe quantization energy levels tak-
ing into account Coulomb interaction. And if the interaction
is strong, the energy of the zero modes is determined by the
charging energy of the segments.

Since interaction factor K� has the long-range contribu-
tion, the energy of “single-electron local levels” in Eq. �27�
are shifted due to interaction with charges in other segments.
Further, because of the slow decay of interaction factor K�

−2

with distance described by the Coulomb law, the summation
in Eqs. �26� and �27� may diverge. In particular, ���i

2 � and
��i

2� diverge for random distribution of “number of particles”
�2���j /�−�N�j���j−n�j, at segments j. The problem can
be resolved by correlated distribution of localized charges in
different segments resulting in the Coulomb gap at the Fermi
energy similar to the case of localized shallow impurity lev-
els in semiconductors.33,34 Indeed, Eq. �27� has some simi-
larity to the energy of a local impurity level in the potential
induced by all other impurities. Furthermore, energy of zero-

mode local levels has a form somewhat resembling the ex-
pression for the electrostatic energy of localized impurities

E =
vF

2��
�,i,j

���i��� − ��N�i�K�
−2�i − j����j��� − ��N�j� .

�29�

So we adopt to our case arguments by Efros and
Shklovskii33 for the Coulomb gap originally used for a sys-
tem of shallow impurities in semiconductors, though there
are considerable differences between equations used in Ref.
33 and Eqs. �26�–�29�. First, the latter contain operators of
number of extra electrons �N�i. But at low temperatures only
a single eigenvalue of these operators plays a role, because
the states with other egenvalues n
i correspond to energies
much larger than temperature. So we can consider the opera-
tors as c numbers. Another difference is the presence of the
terms related to the spin channel. Below we will see that this
does not change the result.

So following Ref. 33 we consider process of transfer of an
electron with spin s from segment i in the ground state to
segment j. An increase of the energy of the system induced
by such transfer calculated from Eq. �29�, with Eq. �27�
taken into account, is equal to

�E = �j − �i −
e2

ri,j
+
�vFn
i�s + �n
i�

2li

−
�vFn
j�s − �n
j�

2lj
� 0, �30�

where �n
i is the difference of n
i values in the state i after
and before the transfer of the electron, and ri,j is the distance
between segments i and j. Since for the process of transfer
considered here, variation of n
i in the initial state due to
removal of an electron with spin s equals �n
i=−s, while
addition of the electron to the final state is described by
�n
j=s, two last terms in Eq. �30� vanish, and we obtain the
relation similar to that derived for the case of impurity levels
in semiconductors. One can see that small energy differences
between the zero-mode levels can be found only for seg-
ments situated far from each other

ri,j�
e2

�j − �i
. �31�

As it was shown in Ref. 33, this results in a minimum in the
density of localized states, g�����2 near Fermi energy, i.e.,
to the Coulomb gap. In particular, for electron transitions

with energies �EvF / l̄ important at low temperatures, the
distance between the segments participating in electron tran-
sitions must be much larger, than the typical segment length.
For such remote segments our simplified model, in which we
neglected the spatial variation of the interaction within dis-
tance of the order of segment length, is asymptotically exact.

C. Effect of long-range interaction on excitation
spectrum

Solution of equation of motion �9� with long-range inter-
action �5� satisfying boundary conditions �13� is similar to
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the problem of interacting segments of elastic strings of ran-
dom length. Analytical solution of this problem is difficult.
So, again, we consider a simplified model in which the im-
purities are nearly arranged in planes perpendicular to the
conducting chains, so that positions of the impurities differ
by the value much smaller, than the mean distance between
the impurities. Solution of Eqs. �8� and �9� consists of two
parts. The first part corresponding to particular solution with
boundary conditions �13� describes zero modes, their spec-
trum having the form of the randomly distributed localized
levels discussed above. Levels are situated randomly because
the values of 2kFxi which determine positions of zero-mode
levels are random.

The part describing the excitations corresponds to general
solution with zero boundary conditions. The latter can be
found by means of Fourier transformation with respect to
chain numbers. We take into account that according to Eq.
�4� only excitations with long wavelengths along the chains
correspond to low lying excitations �otherwise frequencies
are of the order of plasma frequency�. So we consider the
limit q��q	 and neglect q	 in the denominator of the inter-
action parameter K� �5�. Then we easily find expressions
similar to the last terms in Eqs. �15� and �16� describing the
excitations, but with interaction factors and eigenfrequencies
depending on q�,

1

K�0
2 = 1 +

8e2

vFd2q�
2 , � = n

�

li
�vF

2 +
�pl

2

q�
2 . �32�

Thus the spectrum of the modes in this case consists of the
bands, the minimum excitation energy being fixed by the
maximum value of q� determined by the transverse recipro-
cal lattice vector �� /d. Its characteristic value can be esti-
mated as

�min =
vF

l̄
��2 + �2d2 =

vF

l̄
��2 +

8e2

vF
, �33�

where �=�pl /vF is Thomas-Fermi screening length in the
metallic state.

Contribution of the excitations to the Green’s functions
can be calculated similarly to the case of the contact interac-
tion presented in the Appendix. Factors in the square brack-
ets in functions B in Eq. �A4� originate from summations
over eigenfrequencies in products of phase fields 	� and ��.
If interaction parameter K� depends on q� these factors ac-
quire a more complicated form, e.g., the first factor in square
brackets in B must be substituted for

exp�−
1

8
� 1

K�0
+ K�0 + 2�ln�1 − e−iz−�̃��

q�

, �34�

where z=��xa−v�ta� / l. Similar substitutions occur in other
factors in square brackets in Eq. �A4�

In the next section we will need Green’s functions for
calculation of conductivity at large voltages, so we need to
calculate Green’s functions at energies ���̄0. Then in time
and coordinate representation we need Green’s functions for
v�ta ,xa l, where ta and xa are differences of time and coor-
dinate arguments of the Green’s functions �see the Appen-
dix�. In the same time we consider v�ta ,xa�� since the en-
ergy is small compared to Fermi energy. In this limit,
expression �34� reduces to factor �z−�1/2���+1� with

� =
1

4
� 1

K�0
+ K�0 − 2�

q�

. �35�

Since density of states N��� is determined by Fourier trans-
formation of Green’s function in ta at xa=0, and distribution
function n�p� of electrons on momentum along the chains
can be found by means of Fourier transformation with re-
spect to xa at ta=0, this means that at energies ���̄0N���
��� and n�p�� �p−kF��, similarly to the case of Luttinger
liquid without impurities �see Refs. 1, 3, and 11�. Further-
more, if we neglect weak logarithmic dependence of v� in
Eq. �34� on q�, the we find that Greens function in the con-
sidered limit behave similar to that in the unbounded Lut-
tinger liquid at any relation between v�ta and xa. In other
words, for such relatively large energies effect of impurities
on Green’s function and, hence, on energy spectrum can be
neglected. So we conclude that in the electronic system with
Coulomb interaction the electronic spectrum consists of dis-
crete levels due to zero modes, and of quasicontinuum spec-
trum of excitations of the Luttinger liquid at energies more
than �̄0 apart from Fermi energy.

D. Effect of interchain hopping

Now we demonstrate that inter-chain hopping of electrons
do not destroy the description of quasi-1D conductor with
impurities at low temperatures based on the picture of col-
lection of bounded Luttinger liquid. We take into account the
hopping in a standard way, considering the perturbative se-
ries for Green’s functions with respect to the hopping inte-
gral t�. It is not difficult to calculate corrections to the
Green’s functions due to hopping for small energy ��̄0,
because at such energies Fourier-transformed Green’s func-
tions presented in the Appendix acquire a simple form. For
example, at such energies the zero-temperature causal
Green’s function reduces to a form

G−− =
�̃�1/4��1/K�+K�+2����̃2 + 4 sin2q0x1���̃2 + 4 sin2q0x2���1/16��1/K�−K��eikFxa+iqixa

2���� − �i + i0 sgn ��
, �36�
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where �i and qi are energy and wave vector of the zero-level
state at segment number i �see Eq. �21��.

So calculating in a standard way corrections to the mass
operator in the second order in t� we find that hopping re-
sults in a shift of the zero-mode level by

��0 � �
j

t�
2

�i − �j
��

l
�2�

, �37�

where �j are zero-level energies at neighboring segments.
Note that the probability to find similar values of zero-

state energies at neighboring segments is negligible, so the
energy difference in the denominator of Eq. �37� is of the
order of typical energy of the zero level �̄0. So the shift of
the energy due to hopping can be estimated as

��0 �
t�
2

�̄0
��

l
�2�

. �38�

The higher order terms give smaller corrections propor-
tional to higher order powers of factor

� t�

�̄0
�2��

l
�2�

. �39�

So corrections are small provided this factor is small.
Note that our calculations are based on discrete nature of

the electron spectrum near the Fermi energy, because we
used an assumption that both characteristic energy and the
hopping matrix element t� are much smaller than typical
energy of zero-mode levels �̄0. The characteristic energy is
determined by temperature T. Thus interchain hopping does
not destroy the Luttinger-liquid picture in the limit T�̄0,
which does not exist in pure infinite Luttinger liquid. In the
opposite limit of larger temperatures there are many levels in
the energy interval of the order of temperature, and, hence,
the continuum limit is applicable, our approach is not valid.
So at temperatures T��̄0, the discreteness of the excitation
spectrum cannot be neglected, hence, according to Refs. 4
and 6–9, interchain hopping is expected to give significant
contributions and to destroy the Luttinger liquid.

IV. ELECTRON TRANSPORT

In this section we calculate current in the Luttinger-liquid
state of quasi-1D conductors by means of Keldysh diagram-
matic approach.32

A. Conductivity at low voltages

Consider, first, Ohmic conductivity due to hopping be-
tween the segments confined by impurities. Taking into ac-
count the similarity with the case of impurities in semicon-
ductors, discussed above, it is natural to expect that the
mechanism of conductivity is phonon assisted variable-range
hopping.

There are two ways for electron transfer: via inter-chain
transitions, and via transitions along conducting chains
through potential barriers induced by impurities. In case of
hopping conductivity there is no principal difference be-
tween both channels. So we concentrate on the case when

probability of transitions between conducting chains domi-
nates over probability of tunneling through impurities. Cur-
rent flowing from segment i to its neighbors can be calcu-
lated as

I � t��
k

�Fi,i+k�1,1� − Fi+k,i�1,1�� , �40�

where Fi,i+k=Gi,i+k
−− +Gi,i+k

++ , and summation is performed over
neighboring segments. Green’s functions Gi,i+k

�� can be calcu-
lated by means of diagrams presented in Fig. 1.

Having in mind that conductance is determined by the
states with energies in vicinity of the Fermi energy we can
use in the diagrams electron Green’s functions in the form
given by Eq. �36�. Performing calculations we find that the
total current through segment i consists of contributions de-
scribing currents flowing via numerous segments j. Current
from segment i to segment j is induced by a voltage differ-
ence Vi,j defined as the difference of the electrochemical po-
tentials at these segments. Expression for such current re-
sembles corresponding expressions of the variable-range
hopping theory33,34 and has a form that has very transparent
physical interpretation

Ii,j �� d�ph� t�

�̄0
��

l̄
���2m

���ni�1 − nj�Nph − nj�1 − ni��1 + Nph��

����i − �j + �ph + Vi,j�+ �ni�1 − nj��1 + Nph�

− nj�1 − ni�Nph����i − �j − �ph + Vi,j�� . �41�

Here �i, �j and ni, nj are electron energies and distribution
functions for zero-mode levels at the respective segments,
and Nph��ph� is the distribution function of phonons. It is
clear that different items in Eq. �41� describe processes of
electron hopping between segments accompanied with pho-
non emission or absorbtion. The first factor under the integral
originates from virtual transitions between the segments
along the way between segments i and j, and power index m
describes the number of virtual transitions

m ���ni − n j�2 + � xi − xj

l̄
�2

. �42�

Contribution of each virtual transition to the current is re-
flected by factor similar to that presented in Eq. �39�.

FIG. 1. A diagram for calculation of the current. The dashed line
symbolizes the phonon propagator, Greek letters denote Keldysh
time indices ‘‘+’’ and ‘‘− , ’’ and �̄ means the time index opposite
to �. Crosses denote hopping matrix elements t�. Dots between the
crosses stand for a way connecting segments i and j corresponding
to sequential transitions via the neighboring segments. The lowest
order contributions to current in t� are given by diagrams with the
least number of transitions.
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Energies in arguments of the distribution functions in Eq.
�41� are shifted by values of electrochemical potential at
given segment. Linearizing expression �41� with respect to
potentials and performing the integration over phonon fre-
quencies we find expression for the current between seg-
ments i and j similar to that describing current between lo-
calized impurity states in semiconductors33,34

Ii,j =
Vi,j

Ri,j
, Ri,j � exp�2m ln� �̄0

t�

� l̄

�
��� +

��i − �j�
T

� .

�43�

This expression leads to different results for the case of
short-range interaction of the Tomonaga-Luttinger model,
and for the case of long-range Coulomb interaction of elec-
trons at different segments. In the former case, following
standard arguments of theory of variable-range hopping33,34

we arrive at Mott’s law describing three-dimensional
variable-range hopping conductivity


�T� � exp�− �TM

T
�1/4�, TM � �̄0 ln3� �̄0

t�

� l̄

�
��� .

�44�

The result is different in case of long-range interaction.
Then there is the Coulomb gap in the density of states at the
Fermi energy, and hopping of electrons occurs effectively
only between the segments situated far from each other, at
distances given by condition �31�. Since distances between

impurities l̄ is much larger than the interchain distance d a
given distance ri,j=��ni−n j�2d2+ �xi−xj�2 can be found for
much smaller values of m, Eq. �42�, if the segments are situ-
ated at the same or at adjacent chains, than for segments
situated at remote chains. As current �43� between the seg-
ments exponentially decreases with m increasing, the strong
dependence of distance between the segments on direction
results in effectively one-dimensional hopping. Using, again,
the arguments of theory of variable-range hopping we find
that conductivity obeys Efros-Shklovskii law


�T� � exp�− �TES

T
�1/2�, TES � �̄0ln� �̄0

t�

� l̄

�
��� ,

�̄0 �
e2

l̄
. �45�

Nearly 1D character of hopping results in enhancement of
anisotropy of conductivity. The anisotropy can be estimated
as the ratio of the characteristic hopping lengths in directions
parallel and perpendicular to the chains. It was argued above
that hopping in the perpendicular direction occurs effectively
over distances of the order of interchain distance d. The hop-
ping length along the chains can be found as that correspond-
ing to the minimum value of the exponent in Eq. �43�. So for
anisotropy of the conductivity we find


	


�

�
e2

d�TEST
. �46�

Note that the conduction mechanism in the considered
system is similar not only to that in a system of shallow
impurities in semiconductors. In disordered granular metals
conduction is also controlled by the interplay of hopping of
an electron to large distance and long-range Coulomb inter-
action, and conductivity is described by the Efros-Shklovskii
law.34 So our results on conductivity bear resemblance to
recent studies of transport in disordered metals in Refs.
35–37.

B. Nonlinear conductivity

Now we discuss electron transfer at high voltages and
make rough estimates of nonlinear current-voltage depen-
dencies. We assume that the typical voltage drop per single
segment can reach the value of the order of or even larger
than the typical energy of the local levels ��̄0 but it is still
small compared to the effective strength of the impurity po-
tential V0 which is assumed to be of the atomic scale, see Eq.

�10�. As long as the average length between impurities l̄ is
large compared to the interatomic distance, this condition is
fulfilled easily.

Let the voltage between m segments is equal to mV. If the
voltage drop over the hopping length becomes larger then the
energy of the local levels ��̄0 then electron transitions be-
tween the quasicontinuum spectrum of excitations in seg-
ments become possible without phonon absorption. This hap-

pens at electric field E �TTES/el̄. Current between such
segments can be calculated by means of diagrams similar to
that presented in Fig. 1, but without phonon line. The dia-
grams contain virtual transitions via intermediate segments
that contribute to the expression for current small factors
similar to the first factor in Eq. �41�. Further, at large volt-
ages current is roughly proportional to factor �mV�2�+1 be-
cause of the power-law energy dependence of the density of
states in Luttinger liquid �see discussion below Eq. �35��:

I � � t�

�̄0
��

l̄
���2m

�mV�2�+1. �47�

Consider, first, the case when the voltage is not too large so
that electron transitions between the regions of quasicon-
tinuum spectrum of excitations are possible at m�1 only.
Then index m is related to the average electric field along the

chains by relation meV
meEl̄ �̄0. So the most rapid, ex-
ponential, dependence of current on electric field originates
from increase of m in the first factor in Eq. �47�, in other
words, from switching on new channels for nonlinear current
flow between more and more closely situated segments. The
second factor in Eq. �47� gives slowly varying function of
field E of the order of �̄0

2�+1, its field dependence can be
neglected in comparison to the exponential growth due to the
first factor. So for this regime we find

I � exp�−
E0	

E
�, E0	 �

TES

el̄
. �48�

Note that condition m�1 means E�E0	.
For current in direction perpendicular to conducting

chains index m is related to the average electric field by the
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relation meEd �̄0. Then for this direction the characteristic
field can be estimated as E0��TES/ed. This is much larger
value then E0	 which demonstrates strong anisotropy of the
non-linear conductivity.

At larger voltages, when E E0, the voltage drop is large
enough to induce electron transitions between the neighbor-
ing segments. In this case the I-V curves can be estimated as

I � V2�+1. �49�

The power index here is different if tunneling along the
chains via impurities is more effective than interchain tun-
neling. In the latter case the density of states at the ends of a
segment is described by different power index, similarly to
bounded Luttinger liquids,29–31 so index 2� in Eq. �49� must
be substituted for �1/K�0−1�q�

.

V. DISCUSSION

Now we discuss relation of our theoretical results to real
materials and to experimental data. Our calculations are
based on the Luttinger model which does not take into ac-
count backscattering terms, i.e., 2kF Fourier component of
the interelectronic interaction. These terms are known to lead
to two qualitatively different consequences �for a review see
Ref. 1�. In case of attractive spin-independent interaction it
results in the spin gap, while the backscattering terms are
irrelevant if the interaction is repulsive. So, strictly speaking,
our results can be applied for the case of Coulomb repulsion
of the electrons at all wave vectors. On the other hand, the
effective interelectronic interaction can be considered as con-
taining both repulsive Coulomb interaction and attraction
due to electron-phonon coupling. It can happen that the Cou-
lomb repulsion dominates at small values of wave vectors,
while attraction induced by electron-phonon coupling domi-
nates at wave vectors close to 2kF. Though such picture ig-
nores retardation effects in the electron-phonon coupling it is
quite fruitful in description of quasi-1D CDW conductors,15

electron-phonon interaction being described by means of at-
tractive electron-electron coupling constant at 2kF wave vec-
tor. Note that the mean-field expression for the CDW gap15 is
similar to the expression for the spin gap obtained within the
renormalization group approach with the cutoff length � in
equation for spin gap estimated as ��1/kF. Therefore, we
can conclude that a possible value of spin gap in such mate-
rials as NbSe3 and TaS3 can be of the order of few hundreds
K. Since the spin gap implies long-range order in 	
 field
and expected values of spin gap are quite large, the fluctua-
tions of this field at low temperatures must be small. The
energy in the spin channel is minimized by �2	
=2�n,
which satisfies boundary conditions �13� for even values of
integer m. So we can expect that in the presence of large spin
gap the electron system at low temperatures can be consid-
ered as spinless electrons in the Luttinger state, the spin de-
grees of freedom being frozen. In this case the results of the
preceding sections are still valid, and only minor rather sim-
plifications than modifications in the course of derivation of
results are needed.

Thus we conclude that our results can be applied to
quasi-1D conductors NbSe3 and TaS3 where transition from

metallic to nonmetallic behavior was observed. However, de-
tailed quantitative comparison with experimental data is dif-
ficult. The first reason for this is some contradictory data on
temperature dependence of Ohmic conductivity at low tem-
peratures. In Ref. 18 the temperature dependence corre-
sponding to the variable-range hopping described by the
Efros-Shklovskii law was observed, while in Refs. 16 and 17
a power-law dependence of conductivity on temperature was
observed down to liquid helium temperature. Another diffi-
culty for making detailed comparison is that the impurity
density in the samples is not known. However, our results
agree with general tendencies observed in these materials.
Namely, more impure samples demonstrate transition from
metallic to nonmetallic behavior at higher temperatures,
characteristic temperature in Eq. �48� increasing from few
tens K in more perfect samples to few hundreds K in the
most dirty samples. In a sample with characteristic tempera-
ture EES
80 K temperature dependence of Ohmic conduc-
tivity transforms from metallic to nonmetallic behavior in the
temperature range 100–200 K. Then we conclude that �̄0

�100 K, and since �̄0�e2 / l̄, according to our approach we

can estimate the mean segment length as l̄�10−5−10−4 cm.
According to Eq. �48� this length corresponds to electric field
of the order of 102−103V/cm for transition from Ohm’s law
to power law dependence. This is in order of magnitude
agreement with the experimental data of Ref. 18. But to
make convincing conclusions more theoretical and experi-
mental work is needed.

It is important to note that low temperature behavior of
both NbSe3 and TaS3 in Refs. 16–19 is very similar, in spite
of the fact that relatively pure samples of these materials
behave quite differently: NbSe3 remains metallic in the
CDW state, while TaS3 below the Peierls transition becomes
an insulator with quasiparticle density obeying the Arrhenius
law. Whereas the main properties of quasi-1D conductors at
higher temperatures are well understood,14,15 they demon-
strate many intriguing properties at low temperatures which
are still not explained convincingly. In particular, in TaS3 at
temperatures below 20 K a behavior typical for hopping con-
ductivity was observed38,39 instead of Arrhenius law, and
anomalous behavior of the dielectric function interpreted as a
new glassy phase40 was detected at frequencies 1–107 Hz.
One can speculate that this unusual behavior can be related
to the formation of the Luttinger phase at very low tempera-

tures because characteristic energy �̄0�e2 / l̄ is small due to

small impurity density Nimp=1/ l̄.
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APPENDIX: SINGLE-ELECTRON GREEN’S FUNCTION

Here we present Green’s functions introduced by Keldysh
G+− and G−+:

iGn,s
+−�1,2� = ��n,s�1��n,s

+ �2�� ,

− iG−+�1,2� = ��n,s
+ �2��n,s�1�� , �A1�

with notations 1= �r1 ,x1 , t1�, 2= �r2 ,x2 , t2�. These functions
are proportional to distribution function of holes and elec-
trons, respectively. Other Green’s functions can be easily de-
rived by applying time ordering to expressions for G+− and
G−+. In particular, the causal Green’s function can be found
as G−−=G+− at t1� t2 and G−−=G−+ at t1� t2.

Performing the calculations in the standard way1,3 we find

G+−�1,2� = − iB�1,2��exp� i���i − ��N�i��xa − vN�ta�
�2li

��
�exp� i��xa − vN�ta�

4li
� . �A2�

The function related to distribution function of electrons has
a form

G−+�1,2� = iB�2,1��exp� i���i − ��N�i��xa − vN�ta�
�2li

��
�exp�−

i��xa − vN�ta�
4li

� , �A3�

where B�1,2� originates from bosonic excitations of the Lut-
tinger liquid, and the last factors are related to zero modes.
For r1= +1 and r2=−1 this function has a form

B�1,2� =
eikFxa

2���
�

�̃�1/4��1/K+K����̃2 + 4 sin2q0x1�

���̃2 + 4 sin2q0x2���1/16��1/K−K�

��1 − ei���ta−q0xa�−�̃�−�1/8��1/K+K+2�

��1 − ei���ta−q0xs�−�̃�−1/8�1/K−K�

��1 − ei���ta+q0xa�−�̃�−�1/8��1/K+K−2�

��1 − ei���ta+q0xs�−�̃�−�1/8��1/K−K�, �A4�

where xa=x1−x2, xs=x1+x2, ta= t1− t2, q0=� / li, �̃=�� / li.
Green’s functions with other values of indices r describ-

ing branches of left�right� moving electrons can be found
from relations

G�r1 = + 1,x1;r1 = − 1,x2� = G�r1 = + 1,x1;r1 = + 1,− x2� ,

G�r1 = − 1,x1;r1 = + 1,x2� = G�r1 = + 1,− x1;r1 = + 1,x2� ,

G�r1 = − 1,x1;r1 = − 1,x2� = G�r1 = + 1,− x1;r1 = + 1,− x2� .
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