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Ground states in a quasi-one-dimensional triangular Hubbard model
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We study the ground state in a quasi-one-dimensional triangular Hubbard model using the exact numerical
diagonalization, the constrained-path Monte Carlo, and the cluster perturbation theory. As the frustration
hopping ¢ is small the system exhibits short-range antiferromagnetic correlation. As ¢ is greater than a critical
point 7., there is a transition from an antiferromagnetic state to a frustrated state, which is accompanied by a
jump of local entanglement and an abrupt change of spin correlation. As ¢ is greater than another critical point

t.r, the insulator-metal transition takes place. The successive order of two transitions depends on the on-site
Coulomb interaction. The calculated spectra indicates that the spin-charge separation is destroyed by the
frustration hopping. The frustrated state corresponds to the appearance of an additional dispersion band near

the Fermi surface.
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I. INTRODUCTION

Geometrical frustration in strongly correlated electron
systems has attracted a great deal of interest over the past
decades.'*® In localized spin systems, magnetic frustration
suppresses long-range order and stabilizes some exotic states
such as the spin liquid resonating valence bond state or the
valence bond crystal.”® For example, due to the competition
between the nearest exchange and the next-nearest exchange,
the inorganic spin-Peierls compound CuGeOs; exhibits a tran-
sition from a gapless phase to a gapped dimerized ground
state.'®!! For an antiferromagnetic Heisenberg model on the
pyrochlore lattice, when the ratio of the two competing ex-
change couplings is varied, quantum phase transitions occur
between spin gap phases and the antiferromagnetic phases.'?
In itinerant systems, the interplay between geometrical frus-
tration and strong electron correlation results in a compli-
cated phase diagram containing many interesting phases. The
2D and 3D pyrochlore Hubbard models at the half filling
show the transition from semimetal to spin-gapped
insulator.'®'* Frustration also assists the formation of Fermi
quasiparticles by effectively suppressing the antiferromag-
netic fluctuations.!>1° For the half-filled Hubbard chain, frus-
tration induces several phases: spin gapped metallic phase,
disorder magnetic insulation phase, and Heisenberg
insulator.!”

The two-dimensional triangular lattice is a typical nonbi-
partite and frustrated lattice. In the triangular Heisenberg
model, the existence of long-range Neel order is confirmed
by quantum Monte Carlo techniques and exact diagonaliza-
tion (ED).'® The Hartree-Fock mean-field theory of the Hub-
bard model on isotropic triangular lattice'® exhibits that with
increasing the interaction strength U, there are four phases:
paramagnetic metal, spiral metal, semimetallic linear spin-
density wave, and an antiferromagnetic insulator. However,
the ED result just indicates a transition between a paramag-
netic metal and an antiferromagnetic insulator.?’ Recently,
frustrated Hubbard ladders also have been studied.”! Half-
filled two-leg Hubbard ladders have spin-gapped short-range
antiferromagnetic correlations while three-leg ladders have
no gap and power law antiferromagnetic correlations.?> For
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half-filled frustrated Hubbard ladders, varying the degree of
frustration can drive them across an insulator-metal
transition.?! Motivated by these developments, in this paper,
we investigate the coupled Hubbard chains shown in Fig. 1.
For the interchain coupling =0, the system is decoupled to
three isolated Hubbard chains. At half filling the physics is
dominated by an antiferromagnetic insulating phase for all
on site Hubbard repulsion U>0. The low-energy excitation
spectra can be explained by underlying spinon and holon
excitations.2> However, if 7 is turned on, the system is frus-
trated and is quite different from the three-leg Hubbard
model, which can be described as an effective spin-% model
for large U. In the large U limit, this Hubbard model maps to
the Heisenberg model, which does not show phase transition.
If the coupling strength U is not strong, due to the presence
of charge degrees of freedom, the magnetic frustration may
affect the double occupancy and the low-energy properties
significantly. Our results of the ED (Ref. 24) and the
constrained-path Monte Carlo (CPMC) (Ref. 25) show that
as t increases there is a transition from an antiferromagnetic
state to a frustrated state with much smaller spin correlation
along the chain. The single particle spectra obtained from the
cluster perturbation theory (CPT) (Refs. 26 and 27) exhibit
that as ¢ increases the feature of spin-charge separation is
destroyed and there is an insulator-metal transition. The frus-
trated state corresponds to the appearance of an additional
dispersive band near the Fermi surface. The successive order
of two transitions depends on the on-site Coulomb interac-
tion.

The paper is organized as follows. The model and the
computational method are given in Sec. II. The phase dia-
grams, spin correlation, and spectral structure are described
in Sec. III. Finally the discussion and conclusion are given.

FIG. 1. A quasi-one-dimensional triangular Hubbard model.
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II. MODEL AND COMPUTATIONAL METHOD
The Hubbard model on the lattice in Fig. 1 is defined by
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here cziyg(c,,i,g) are the creation (annihilation) operators of
electron with spin o=1,| on the ith site of the I/th cell,
respectively. n;; , is the number operator of electron. U is the
on-site Coulomb interaction. ¢ and #, are hopping integrals.
In the following discussion, we take 7, as energy unit.

Using the ED method, we study the ground state phases
characterized through the following local spin-spin correla-
tions and spin structure factor:

D(l) = E <Slz I+1 1 (2)
S(q) = 17 2 (ST SE (3)
li,mj

with S}, =(n;;1—n;;|)/2. N is the number of the sites. From
the numerical point of view, ED is limited to small lattice
sizes. One must perform a finite size scaling study of the
order parameters. The CMPC allows one to extend the nu-
merical calculations to a much larger system size. In the
CPMC method,? the ground-state wave function is projected
from a known initial wave function as importance-sampled
branching random walks in an overcomplete space of Slater
determinants. The paths of the random walks are constrained
so that any Slater determinant generated maintains a positive
overlap with the trial wave function.

We use the CPT method to calculate the single-particle
spectral function.?®?” The CPT combines ED of finite clus-
ters with perturbation theory to treat intercluster hopping.
The short-distance effects are treated exactly by ED while
the long-distance hopping is treated by perturbation theory.
Compared with the ED, the CPT can deal with the system
with an infinite length. The lattice in Fig. 1 can be divided
into identical clusters each with N sites. Then the system can
be treated as a superlattice of clusters, each cluster being
composed of ordinary lattice sites. According to the usual
Lanczos method,?® we calculate the cluster Green’s function
Gimj,»(z) which is defined as

Gli,mj,(r(z) = <¢0|cl,i,(r c;n,j,a| ¢0>

Z—(H—Eo)

+ <¢0|Cj7-1,j,o' Cl,i,(r| ¢0> > (4)

-
- (EO - H )
where z=w+ie with € being a small positive number. |)
and E, are the wave function and energy of the ground state
of a cluster, respectively. The two terms in Gy, , corre-
spond to electron and hole propagation and are calculated
separately. The Green’s function G(k,z) of the full system
can be obtained from the cluster Green’s function Gy; ,,; ,(2).
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FIG. 2. (a) Spin structure factor S(7) by ED for the cluster N
=12. HS corresponds to Heisenberg model with exchange interac-
tions J=472/U and J0=4t(2)/ U. (b) The phase diagram showing two
ground state phases.

The single-particle spectral function A(k, ) can be obtained
from the Green’s function G(k,z)

Am@=-§mmw@1 5)

The corresponding density of state is defined by

Nw) =D Ak, w). (6)
k

III. RESULTS AND DISCUSSION

In the large U limit, the Hubbard model in Eq. (1) maps to
the antiferromagnetic Heisenberg model with exchange inter-
actions Jy=413/U and J=41*/U. In the following discussion,
we take 7, as the energy unit. Figure 2(a) shows the spin
structure factor S(g) at g= obtained by the ED for a N
=12 sites cluster under periodic boundary conditions. The
curve HS corresponds to the Heisenberg model with ex-
change interactions J and J,. It is seen that with increasing ¢,
the antiferromagnetic correlation decreases due to the mag-
netic frustration. For 1<<6.0, the result of the Hubbard model
for U=50 is in good agreement with the Heisenberg model.
However, as the frustration hopping ¢ increases to a critical
value 7,=6.0, the spin structure factor S(7r) drops to a lower
stage in the Hubbard model while S(7) is still a constant in
the Heisenberg model. This result indicates that in the Hub-
bard model at U=50 and ¢=t¢, there is a transition from the
antiferromagnetic state (AF) to a frustrated state (FS). Both
ground-state phases have the total spin S=0. However, for
the Heisenberg model there is no phase transition. Obviously,
for t>t¢, the Hubbard model cannot map to the Heisenberg
model. For smaller U, this transition is also observed at
smaller critical value f.. The phase diagram is given in
Fig. 2(b).
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FIG. 3. (a) Spin structure factor S(g) by ED and CPMC for the
cluster N=12. (b) and (c) The size dependence of S(7) and local
spin correlation D(/). (d) D(/) as a function of ¢.

It is known that the ED results suffer from finite-size ef-
fect. In order to confirm the result in Fig. 2, we perform the
CPMC simulation for clusters with size N=12, 18, 24, 30,
36, 48, and 60 clusters. To justify the CPMC program, we
compare the results obtained from the ED and the CPMC on
the 12-site system. The spin structure S(g) shown in Fig. 3(a)
indicates that the results by two methods are in good agree-
ment in full Brillouin zone. Our experience shows that for
small Coulomb interaction, the CPMC method presents us
accurate energy and reliable correlation functions even if the
trial wave function is a free-electron wave function. For U
=1 and r=0.3, the AF phase is clearly identified with a peak
of S(q) at g=m. When 1 increases to r>1t, (e.g., t=0.8, t.
=0.7 for U=1) the spin structure factor shows no evident
peak structure. This indicates a transition from the AF phase
to the FS phase. From Fig. 3(b) it is found that the spin
correlation S(77) in two phases decreases with the cluster
sizes and tends to zero in the thermodynamic limit. Hence
both phases exhibit no long-range order. Therefore it is more
convenient to study the local spin correlation D(I) defined in
Eq. (2). The calculation shows that the translational symme-
try is not broken in both phases and D(l) is independent of
unit cell /. Figure 3(c) shows D(I) by the two sides (1=0.6
and 0.8) of the transition point (¢=0.7) for different clusters
with N=12, 18, 24, 30, 36, 48, and 60. Although D(l) exhib-
its a large finite-size effect for small systems one can find
that for N>30, D(/) in antiferromagnetic phase (¢=0.6) and
the frustrated phase (r=0.8) reaches their stable values in
thermodynamic limit. Figure 3(d) shows D(l) as a function
of t for several clusters with different sizes. The abrupt
change near the transition point is very clear for different
clusters. The transition point is at about r=0.7 for different
clusters. The finite-size effect becomes small for clusters
with N>30. Combining Figs. 3(c) with 3(d) I conclude that
to extrapolate to the thermodynamic limit, this phase transi-
tion should be still observed.
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FIG. 4. Local entanglement E,, and local spin correlation P(/) as
functions of ¢ for different U.

The local entanglement is an important quantity to de-
scribe quantum phase transition.”® For the Hubbard model at
half-filling, the local entanglement E,, is

E,==2wlog, w—2(1/2 —=w)log,(1/2 — w), (7)

here w=(n;;n,; ) is double occupancy. Figure 4(a) shows
the local entanglement E,, as a function of ¢ for different U.
With increasing ¢, double occupancy w and the local en-
tanglement E,, increases. At transition point, E, jumps to a
higher value. Hence E, can be employed to describe the
phase transition. In a one-dimensional (1D) extended Hub-
bard model, the local entanglement either reaches the maxi-
mum value or shows singularity at the critical point.”?? Obvi-
ously, the behaviour of E, in the present case is quite
different from the 1D extended Hubbard model. The abrupt
change of the local spin correlation function D(l) can be
explained by the behavior of E,. Because single occupancy is
an essential prerequisite for antiferromagnetic correlation,
accompanied by a jump of w or E,, the local spin correlation
function D(I) drops to a lower stage at the critical point.

In order to exhibit the basic physics of the magnetic frus-
tration, we also calculated the local spin correlation P(l)=
—(87;S;;» between different sites of a unit cell. From Fig.
4(b), one can see that with increasing ¢ this correlation is
enhanced. At the critical point t=t¢,, there is a jump to its
maximum. This feature can be explained by following sce-
nario. For small ¢, when ¢ increases the effect exchange in-
teraction J=4¢>/U increases so that the antiferromagnetic
correlation P([) is enhanced. At r=1,, the system transits to a
frustrated state (FS) with a maximum P(I). As ¢ increases
continuously, the Hubbard model cannot map to the Heisen-
berg model due to a large double occupancy so that P(/)
decreases. Hence P(I) can be used to measure the extent of
the magnetic frustration.

Now we discuss the possible insulator-metal transition.
The Hubbard model in Eq. (1) is metallic in the absence of
electron-electron interaction. The three bands are given by
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FIG. 5. Spectral function A(k,w) for U=5.0 and =0 and 0.5,
respectively. wy denotes Fermi level.

€,(k) = =21 -2tycos k, (8)

€ 3(k) =1 —2t,cos k. 9)

Obviously €,(k) and e;(k) are degenerate. For t=0 and U
>0, the Hubbard model in Eq. (1) decouples to the 1D Hub-
bard model and is an antiferromagnetic insulator. Hence it is
interesting to judge whether there is a transition from insu-
lator to metal when the frustration hopping ¢ increases. The
charge gap is an important order parameter to discuss this
problem.® It has been plausibly argued that the charge gap is
twice the excitation gap,>' which can be obtained from the
spectral function. Figure 5 shows the single-particle spectral
function A(k, w) obtained by the CPT for the system with an
infinite length. The Fermi surface is at w=wp. The spectral
weights for o< wy and w > wp correspond to the photoemis-
sion spectra and the inverse photoemission spectra, which is
created by removing an electron or a hole from the ground
state, respectively. The case for =0 corresponds to the 1D
Hubbard model. To compare the upper panel of Fig. 5 of this
article with Fig. 3 of Ref. 26, one can clearly identify the
spinon A and holon B branches, characteristic of a Luttinger
liquid with a charge gap. Other branches corresponding to
Fig. 3 of Ref. 26 are also observed clearly. As ¢ is turned on,
the particle-hole symmetry in spectra is destroyed since the
structure is not a bipartite lattice. For #=0.5, spin-charge
separation cannot be identified in the spectra while the exci-
tation gap decreases. This result means that the magnetic
frustration is not in favor of the Luttinger liquid. As ¢
increases continuously, the excitation gap may disappear.
Figure 6 shows the density of state N(w) for U=5 and dif-
ferent . It is found that as ¢ increases to another critical point
t.,=0.9 the gap disappears indicating a transition from insu-
lator to metal. Combining results in Figs. 2 and 6, we find
that for small ¢ the system is an antiferromagnetic insulator
(AFT), which turns to an antiferromagnetic metal (AFM) at
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FIG. 6. Density of state (DOS) N(w) for U=5.

t.»=0.9. Further increasing ¢, at t=¢,=1.0 a frustrated metal
(FSM) corresponding to the jump of E, and P(/) in Fig. 4 is
stabilized.

To confirm the quantitative reliability of the CPT method,
I give a comparison between the ED and CPT methods. In
their original paper,”® Sénéchal et al. has given a detail com-
parison between the ED and CPT methods. For the 1D Hub-
bard model, the quality of the CPT spectrum for cluster N
=4 is comparable with that of the ED spectra for cluster N
=12. In the present model, the excitation gap is an important
quantity since I use the CPT method to estimate the
insulator-metal transition. Figure 7 shows N(w) for U=5.0
and r=0.9 by the ED and CPT methods. The spectral struc-
tures by the two methods are similar while the peaks by the
ED method are more sharp. Moreover, the CPT predicts that
at t=0.9 the gap disappears and there is an insulator-metal
transition while the ED does not. Now, I discuss why these
differences exist. The ED treats a single cluster with N=12
sites while the CPT treats an infinite system consisting of

ED

N()

CPT

-5 0 5 10
[

FIG. 7. Density of state N(w) by the ED and the CPT for U
=5 and r=0.9.
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FIG. 8. Density of state N(w) by the ED and the CPT for 1D
Hubbard model for U=5 and cluster size N=4, 8, and 12.

identical clusters each with N=12 sites. As a result, the
finite-size effect is large for the ED since the cluster of four
unit cells is too small. In order to estimate the finite-size
effect of the excitation gap, for the 1D Hubbard model I
calculate the quantity N(w) with different lengths N. The
results by the ED and CPT methods are shown in Fig. 8. It is
found that with increasing N, the gap by the ED decreases
and shows a large finite-size effect. However, the gap by the
CPT for N=4 is comparable with that of the ED for N=12
and shows very small finite-size effect. For small clusters,
the gap by the ED is larger than that by the CPT (e.g., in Fig.
7). In the present model, the largest size that can be treated
by the ED is N=12 (four unit cells), the precise treatments of
the finite-size effects is impossible. Hence, the CPT method
is more appropriate to treat the insulator-metal transition in
present model.

The successive order of two transitions may be different
for different Coulomb interaction U. Figure 9 shows the
spectra for U=8 and different ¢. It is found that for small 7
=1.1 the spectra exhibits a large excitation gap and the sys-
tem is AFL. As t>r.=1.3 [e.g., r=1.4 in Fig. 9(b)], another
branch having a clear dispersion between k=0 to /4 ap-
pears near the Fermi level. The system becomes a frustrated
insulator (FSI). The presence of this quasiparticle band in the
FSI phase corresponds to the jumps of the local entangle-
ment and double occupancy at the critical point 7. in Fig. 4.
In photoemission spectra, the spectral weight near (far from)
the Fermi level is created by removing an electron from a
doubly (singly) occupied site. Since at the critical point ¢,
double occupancy increases abruptly as in Fig. 4, there is the
additional spectral weight with low binding energy. This qua-
siparticle branch is another signature of the FSI phase. Let us
discuss it. For r=0, the model in Eq. (1) decouples to a 1D
Hubbard model and the Fermi level is at kp=/2. The prop-
erties of the system are dominated mainly by the 1D
Hubbard model and the spin-charge separation is observed in
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FIG. 9. Spectral function A(k,w) for U=8.0.

Fig. 5. As ¢ increases, the interaction between holons and
spinons is enhanced and their separation cannot be identified.
As t is large enough, for the noninteracting system, the lower
band €;(k) is filled and the higher band €, 5(k) is partly filled
with the Fermi point ky=/4 [see Eqgs. (8) and (9)]. Figure
9(b) indicates that as ¢ increases to a critical f,, the low-
energy quasiparticle band follows the free-particle dispersion
w=wp—2t, cos k between k=0 to kp=/4. In the triangular
lattice, it was also observed that frustration assists the forma-
tion of Fermi quasiparticles by effectively suppressing the
antiferromagnetic fluctuations. '3

As t increases to another critical point ¢.,=1.8, the gap
vanishes in Fig. 9(a) while the low-energy quasiparticle
branch near the Fermi level still exists. The system trans-
forms to FSM phase. For small U (e.g., U=5), this additional
branch is also observed in the FSM phase but not shown
here. The phase diagram showing four different ground-state
phases AFI, AFM, FSI, and FSM is given in Fig. 10. Because
the CPT method is adequate at intermediate coupling we just

15

10 4

FIG. 10. Phase diagram showing four ground state phases. The
dashed line is the extrapolated results from the CPMC.
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give the result for 10> U>4. It is found that with increasing
t there are two transitions from antiferromagnetic state to
frustrated state and from insulator to metal, which successive
order depends on U. The dashed line indicates the extrapo-
lated value of 7, by the CPMC. Our experience shows that
for small Coulomb interaction U, the CPMC method presents
accurate energy and reliable correlation functions even if the
trial wave function is a free-electron wave function. But for
large U, the choice of the trial wave function is important to
obtain reliable results. Hence I just present the extrapolated
results for U<<4 in Fig. 10. In this paper, the CPMC method
is just employed to confirm the existence of the critical point
t. separating the antiferromagnetic and a frustrated state.
Most of the results are obtained from the ED and CPT meth-
ods and are qualitative.

In summary, we study the magnetic frustration in a quasi-
one-dimensional triangular Hubbard model with many-body
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methods including ED, CPMC, and CPT. As the frustration
hopping ¢ is small the system exhibits antiferromagnetic cor-
relation. As t>1., there is a transition from an antiferromag-
netic state to a frustrated state. This transition is accompa-
nied by a jump of local entanglement and an abrupt change
of spin correlation. As t>f.,, the insulator-metal transition
occurs. The successive order of two transitions depends on
the coupling strength U. The calculated spectra indicates that
the spin-charge separation is destroyed by ¢. The frustrated
state corresponds to the appearance of additional dispersion
band near the Fermi surface.
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