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We report about the inclusion of many-body electron interactions in the simulation of transport properties.
We derive a general Landauer-like expression for the current, valid also in the case of conductors in which the
charge carriers undergo generic scattering processes. An important focus is put on the derivation of the
theoretical framework, both for the general formalism and for the actual implementation of the method,
including the treatment of electronic correlation. We then show an example of application and compare the
results on the electronic and conduction properties obtained with our new scheme to those given by alternative
computational frameworks.
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I. INTRODUCTION

In order to continue to scale down the size of electronic
devices, modern science and technology are currently en-
gaged in replacing the usual top-down lithographic approach
to device fabrication with an alternative scheme1–11 that
would start from ad hoc nanosized building blocks such as,
e.g., carbon nanotubes or molecules. In this scenario a large
effort is being devoted to develop theoretical and computa-
tional tools able to describe transport properties of systems
obtained connecting two �or more� electrodes with a bridging
nanoscale unit. A detailed theory of transport in mesoscopic
systems has been known for a long time, but the matching of
those ideas with the new problems arising in nanoscopic
objects is not obvious. One needs to describe at the same
time an open and nonperiodic system, as well as details of
the bridging conductor at the atomic level �this is fundamen-
tal in the case of molecular conductors, for example�.

Furthermore, the use of standard electronic structure ap-
proaches based on density functional theory �DFT� for cal-
culating transport properties is not straightforward and suf-
fers from additional problems in the description of
nanodevices. Even if not rigorously exact for transport
theory, DFT is quite well established and it is usually easy to
recognize reliable from out-of-scope results. We can roughly
separate the problems for DFT in the new field of nano-
science in two blocks. The first comprises questions on the
applicability of DFT to the transport properties in the out-of-
equilibrium situation: Few such schemes already exist,12–14

but several open questions about the internal consistency of
the method arose from some claimed �but reproducible�
quantitative failures.15 The second block of problems con-
cerns the emergence—or even dominance—of other effects,
not well described in standard DFT approaches, in the ex-
tremely confined systems representative of nanoscale con-
ductors. This is typically the case of electron-phonon cou-
pling or electron-electron �e-e� interaction. Recent
experiments have in fact demonstrated that some well-known
mesoscopic effects,16 such as Coulomb blockade,17–20 Kondo
effect19,21,22 or Luttinger-liquid behaviors,2,23,24 occur also in

the case of nanoscale conductors. In view of these findings a
suitable description of e-e interaction effects in the treatment
of transport is highly desirable: New formulations including
these effects25–29 are appearing, but a standard approach does
not yet exist.

In the present work we tackle the problem of including
e-e interactions in transport simulations within an ab initio
framework. Along this line, we first derive a general
Landauer-like expression for the current and thus define an
effective transmittance across the conductor accounting also
for interactions among charge carriers and scatterers. We
propose a specific implementation and apply our scheme to
the case of a finite, short platinum atomic chain between
leads, modeling a prototypical break-junction. We focus on
the short-range e-e correlation regime, and model the junc-
tion by turning on the interaction only in the confined con-
ductor. The calculation requires the use of maximally local-
ized Wannier functions30,31 for the basis set, and a matrix
Green’s functions �GF’s� framework32 in the WANT code.33

Our results demonstrate that both the conductance and the
transmittance across the conductor are renormalized by the
interactions. We also show that a large part of the effect can
be ascribed to the incoherent component of charge motion,
arising from a genuine many-body treatment of the e-e inter-
action. We enforce this interpretation by means of a compari-
son with the well established LDA+U scheme.34–36

The paper is organized as follows. In Sec. II we first give
�Sec. II A� a critical survey of the general expression for the
current obtained by Meir and Wingreen,37 then we explicitly
derive �Sec. II B� a Landauer-like formula valid also in the
interacting regime, and finally describe �Sec. II C� the rela-
tion of this formalism with a scattering picture. In Sec. III we
give the details of the actual first principles implementation
of the method, including �Sec. III A� the description of the
mean-field transport approach using maximally localized
Wannier functions and �Sec. III B� the approach to treat elec-
tronic correlation. In Sec. IV we describe the system that was
selected for a prototype application. We analyze the results
that were obtained with the new computational method and
compare them to those given by the LDA+U framework. In
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the Appendix we give some more details on the out-of-
equilibrium framework used throughout the paper.

II. FORMALISM

A. The current through a lead-conductor-lead junction

Let us consider a system composed of three main regions,
two leads �that we label left �L� and right �R�� and a central
conductor �C� connecting them. By using a localized basis
set, it is possible to take advantage of this geometry and
relate each basis element to a precise region, thus writing the
Hamiltonian and other operators of interest in block-matrix
form, i.e., HXY = �Hij� , i�X , j�Y where X ,Y =L ,C ,R. The
L-C-R junction may be described by the following Hamil-
tonian:

H = �
ll��L or R

Hll�cl
†cl� + HC + �

l�L or R

i�C

�Hlicl
†di + h.c.� .

�1�

Here, cl and di �cl
† and di

†� are annihilation �creation� opera-
tors in the leads and conductor, respectively, while HC rep-
resents a general Hamiltonian including two-body interac-
tions acting in the C region �written by means of �di� and
�di

†��. In this picture the description of the leads is cast at the
single particle level, while only the coupling between the
leads and the conductor region makes the problem to be fully
interacting. Physically, this approximation is justified by the
large screening of the Coulomb interaction, which takes
place in usually adopted metallic leads. The assumption
breaks down in the presence of metals with a high degree of
charge localization and consequent less effective screening,
such as some d or f metals and their oxides.

In a seminal work,37 Meir and Wingreen define the cur-
rent flowing through a lead-conductor-lead junction as the
time derivative of the number operator of one lead, namely
NX=�l�Xcl

†cl where X=L ,R. The current entering the L re-
gion can then be written as

IL = − e�ṄL	 = −
ie

�
��H,NL�	 , �2�

where the averages given by �·	 are defined on a suitable
nonequilibrium statistics. Doing the algebraic calculations
for the commutators, the current turns out to be expressed as

IL =
e

�

 d�

2�
Tr�GCL

� ���HLC − HCLGLC
� ���� , �3�

where summations have been hidden in the block-matrix
multiplication notation and the trace should be taken on the
conductor basis elements, including spin degrees of freedom.
Gil

��t1− t2�= i�cl
†�t1�di�t2�	 is the lesser Green’s function and

Gil
���� is its Fourier transform wrt t1− t2.38

It is interesting to note that, should the interaction term in
the Hamiltonian of Eq. �1� be spread over the entire L-C-R
junction, instead of being localized in HC only, a further term
in the current would appear, generated by a two-particle GF:

�IL =
e

�
Im �

ijk�LCR

l�L

�ci
†cj

†ckcl	�Vijkl − Vijlk� , �4�

where V is the two-body spread interaction. It is possible to
translate this expression in terms of some interaction energy
expectation values. This indicates that the approximation of
the Hamiltonian as in Eq. �1� means treating at the mean-
field level the energy fluctuations of the Coulomb interaction
that involve the leads. In turn, it implies that such fluctua-
tions are neglected as driving forces for current flow. As
mentioned before, this approximation is at the basis of our
treatment and is well justified for the class of physical sys-
tems under investigation �e.g., organic nanodevices�. It
yields an important reduction of the complexity of the whole
theory, by avoiding the inclusion of two-particle GF’s.

From Eq. �3� and using the Keldysh nonequilibrium GF
techniques38,39 �for the specific details see Appendix A of
Ref. 40� it is possible to write the final expression for the
current given by Meir and Wingreen:

I =
e

2h

 d�Tr��fL�L − fR�R�AC + i��L − �R�GC

�� . �5�

Here AC= i�GC
r −GC

a � is the spectral function and GC
r,a,�,	 are

the �retarded, advanced, lesser, greater� Green’s functions in
the conductor. As in Eq. �3�, the trace should be taken on the
conductor basis states �including spin�. The terms �L,R rep-
resent the coupling matrices with the L and R leads and are
defined as

�X = i�
X
r − 
X

a� ,


X
r,a = HCXgX

r,aHXC, where X = L,R . �6�

In the latter expression, gX
r,a are the retarded and advanced

GF’s of the X lead, which is considered to be in equilibrium,
with Fermi occupation function fX���. Note also that 
L,R

�

= ifL,R�L,R and 
L,R
	 =−i�1− fL,R��L,R.

Both terms in Eq. �5� reflect the composition of the cur-
rent as a combination of three ingredients: �i� the coupling
between the conductor and the leads, accounted for by the
�’s; �ii� the energy levels in the conductor, given by
the spectral function AC���; and �iii� the occupations of
energy levels, given by fL,R��� for the leads and by GC

����
for the conductor. Indeed, while in the equilibrium case
the fluctuation-dissipation theorem38 gives GC

����
= ifC���AC���, which is by definition a relation between the
lesser and the retarded GF’s, in the general out-of-
equilibrium case no similar relations exist and the “occupa-
tions” in the conductor should be determined by the so-called
Keldysh equation for G�, to be solved together with the
Dyson equation for Gr,38 namely,

GC
�,	��� = GC

r ���
C
�,	���GC

a ��� , �7�

GC
r,a��� = G0,C

r,a ��� + G0,C
r,a ���
C

r,a���GC
r,a��� . �8�

G0,C
r,a are the reference noninteracting �retarded, advanced�

GF’s for the C region and 
C
�,	��� ,
C

r,a��� are the self-

FERRETTI et al. PHYSICAL REVIEW B 72, 125114 �2005�

125114-2



energies for the interacting system that should be determined
by suitable approximations.

B. A generalized Landauer-like formula

If the interaction term in HC of Eq. �1� is neglected, one is
left with a mean-field description of the system and further
analysis can be carried out. The mean-field quantities are
identified here by the subscript 0. An expression for G0C

�,	 is
available for the �mean-field� out-of-equilibrium regime �de-
tails in the Appendix�

G0C
�,	 = G0C

r �
L
�,	 + 
R

�,	�G0C
a , �9�

which is equivalent �cf. Eq. �7�� to the definition of the
noninteracting lesser and greater self-energies as 
0,C

�,	

=
L
�,	+
R

�,	. Subtracting the lesser and greater terms in Eq.
�9� and using the definition Gr−Ga=G	−G�, valid for any
Green’s function, one easily derives

G0C
r − G0C

a = − iG0C
r ��L + �R�G0C

a . �10�

Inserting Eqs. �9� and �10� into Eq. �5� and taking into ac-
count that �LG0C

r �RG0C
a =�RG0C

r �LG0C
a by virtue of the par-

ticle number conservation in the whole system, one arrives to
the so-called Landauer formula,41 as originally expressed by
Fisher and Lee:42

I =
e

�

 d�

2�
�fL − fR�Tr��LG0C

r �RG0C
a � . �11�

This equation connects transport quantities, such as the cur-
rent or the zero-temperature conductance, to a scattering
quantity like the transmittance across the scattering region
�the trace term in the previous equation�, thus allowing for a
deeper insight into the mechanism of ballistic transport itself.
All this formalism and its interpretation break down when
any many-body coupling among charge carriers is switched
on in the conductor.

In order to correctly introduce correlation effects in trans-
port calculations we adopted29 an ansatz previously proposed
in the literature,43,44 to connect retarded and lesser GF’s in
the general interacting out-of-equilibrium case. According to
this ansatz, the matrices 
C

�,	 that appear in Eq. �7� are
defined as


C
���� = 
0C

� ������� ,


C
	��� = 
0C

	 ������� . �12�

���� is a suitable dynamical operator to be determined by
imposing the well-known identity 
	−
�=
r−
a. The
above definitions lead to an explicit expression for ����
which reads

���� = �
0C
r ��� − 
0C

a ����−1�
C
r ��� − 
C

a ���� , �13�

where 
0C
r,a =
L

r,a+
R
r,a� i+ as in mean field and 
C

r,a

=
L
r,a+
R

r,a� i++
corr
r,a . The 
corr

r,a term is a contribution to
the self-energy operators due specifically to the presence of
an electron-electron interaction in the system �more details
are in the Appendix�. The ansatz is obviously valid in the
nonequilibrium mean-field case by definition �just setting �

equal to the identity�, but it is also exact in the equilibrium
many-body case, since in equilibrium conditions the
fluctuation-dissipation theorem holds, and the Gr and G� are
no longer independent. An exact relation to connect 
r and

� should exist in any equilibrium situation, even in the
presence of many-body couplings among charge carriers.
The ansatz of Eq. �12� generalizes the existence of a relation
between Gr and G� to the nonequilibrium many-body case,
by inspiration from the two exact limits described above, i.e.,
nonequilibrium mean-field and equilibrium many-body. It
can be viewed as a tool partly playing the role of the
fluctuation-dissipation theorem itself. This approximation
has already been used to tackle different physical situations
such as the Kondo effect and the Anderson model43–45 �in the
time-dependent or spin-polarized limits�, as well as the
Luttinger-Marginal Fermi liquids.46

With a simple algebra Eq. �13� can also be written as

���� = I + ��L + �R + 2+�−1�corr, �14�

�corr= i�
corr
r −
corr

a � being twice the imaginary part of the
retarded correlation SE. The � correction reads therefore as
the identity �noninteracting limit� plus the ratio between two
� factors, namely the one representing the e-e interaction,
and the one representing the conductor-lead coupling. From
this expression, we expect that � would significantly differ
from zero only in the limit of weak coupling with leads,
because in the case of strong coupling one would most likely
have ��L+�R�� ��corr�, and consequently �� I. One example
of this limit in the interacting case may be the Coulomb
blockade regime.

Once an explicit form of 
C
���� is known in terms of


C
r,a���, one can write down the two following crucial equa-

tions:

GC
�,	 = GC

r �
L
�,	 + 
R

�,	��GC
a , �15�

GC
r − GC

a = − iGC
r ��L + �R��GC

a . �16�

These are formally analogous to Eqs. �9� and �10� that allow
us to obtain the Landauer formula Eq. �11� from the Meir-
Wingreen expression for the current, Eq. �5�. Thus, they can
be used in the same way to write a general “Landauer-like”
expression29 which is approximately valid also in the general
out-of-equilibrium many-body case:

I =
e

�

 d�

2�
�fL − fR�Tr��LGC

r �R�GC
a � . �17�

Here, the inclusion of electronic correlation gives a twofold
effect, namely the presence of the corrective term � and the
renormalization of the conductor GF’s, which no longer have
the subscript 0 as in the noninteracting case of Eq. �11�. We
note that the same formula was also obtained by Meir and
Wingreen37 in a special case of their formulation and by
Zhang and co-workers.45 While their applications were de-
voted to empirical model, here we focus on an atomistic ab
initio implementation of the method.
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C. Relation to scattering properties

A direct comparison of Eq. �17� with the Landauer for-
mula �which is equal except for the presence of � and the
mean-field Green’s functions� gives a scattering interpreta-
tion also in the many-body case. In fact, the trace in Eq. �11�
is identified as the transmittance �across the C region� in the
mean-field case. In analogy, the term Tr��LGC

r �R�GC
a � in Eq.

�17� plays the same role in the many-body case and can be
defined as an effective transmittance, Teff���, for what con-
cerns the role in transport phenomena. This is an important
observation, because it implies that the introduction of e-e
interactions can be interpreted a posteriori in terms of the
renormalization of a well-defined quantity, characterized by a
simple and straightforward interpretation.

From Eq. �17� we are also able to obtain an expression for
the conductance at zero temperature, just deriving the current
wrt the applied voltage �i.e., the difference between the
Fermi levels of the L and R leads� and setting �=Ef, as in
the standard Landauer approach. The result reads

G =
e2

h
Teff�Ef� =

e2

h
Tr��LGC

r �RGC
a ��=Ef

, �18�

which is exactly the same result obtained in the mean-field
case, except that GF’s are renormalized by the e-e interac-
tion. The � factor disappears here because it is evaluated at
the Fermi level of the whole system �we are in the limit of
almost vanishing bias voltage in which the equilibrium is
reestablished�, where the imaginary part of the correlation
self-energy 
corr

r −
corr
a vanishes by definition, thus leading

to ��Ef�= I in Eqs. �13� and �14�.
Other formulations15,47,48 based on time-dependent exten-

sions of DFT �or current DFT�49,50 recognize the validity of a
single-particle Landauer formula also in the fully interacting
case. This is not in contrast with the present work: it is just a
different approach to make a complex problem computation-
ally tractable. In TDDFT one defines a fictitious auxiliary
noninteracting system whose time-dependent density is equal
to the actual one.49 Therefore, the GF’s and lead SE’s enter-
ing the Landauer formula are calculated for the auxiliary
system and hence are not the same quantities we use here.
That is why the Landauer formula is recovered exactly in the
form of Eq. �11�, but with operators computed for the auxil-
iary system. We note that in this approach some genuine
many-body quantities, such as the spectral features or the
electronic structure, are not rigorously obtained. On the con-
trary, our many-body approach contains a much larger
amount of information through the interacting GF’s. The
main drawback is the larger computational complexity. Hy-
brid approaches have been recently proposed.51

In closing this section, we wish to emphasize that one of
the main advantages of Eq. �17� over its exact counterpart
Eq. �5� is the possibility of identifying an effective transmit-
tance. This is useful in order to give a deeper physical insight
based on a scattering point of view, such as, e.g., eigenchan-
nel analyses. It is also possible to study the linearized behav-
ior of the current without explicitly facing the out-of-
equilibrium problem. The outcome is a useful way to
separate the effect of introducing correlation and that of han-

dling the mean-field nonequilibrium situation, which is still
open and controversial.15

III. IMPLEMENTATION

We numerically implemented the method described above
in two steps: first we used the recently released WANT
package33 for the calculation of coherent transport properties
based on the DFT electronic structure and on the use of
maximally localized Wannier functions �MLWF’s� as basis
set; then we generalized the above formulation to the case in
which an e-e interaction is switched on in the conductor. We
developed the new computational framework by merging the
WANT treatment of the real space GF method with a suitable
way of computing the electron-electron SE’s. The SE’s are
dealt with here for the case of short-range correlations by
means of a nonperturbative approach based on solving an
effective Anderson Hamiltonian.52 The adopted SE approach
is known as the three-body scattering �3BS� method.53,54

A. Coherent transport using maximally localized Wannier
functions

The treatment of the transport problem, in the present
description, needs a localized basis set in order to take ad-
vantage of the different physical properties of the various
regions �L ,C ,R� that compose the system. It was recently
proposed55 that such a basis set could be obtained by com-
puting the maximally localized Wannier functions �WF’s�
through the algorithm given by Marzari and Vanderbilt,30,31

starting from a plane wave electronic structure calculation.
Plane-wave implementations of DFT are very popular and
successful in the solid state research community. The com-
bination of WF’s and GF’s techniques for the transport prob-
lem was developed in the WANT package. The use of WF’s
gives highly desirable features such as the completeness of
the basis in a chosen subset of eigenvectors of the system
and the orthonormality of the localized basis. Whereas the
second issue is useful from a practical point of view, the first
one is of fundamental importance to solve—in principles—
some typical difficulties in the representability �under- and
over-completeness� of wave functions on other localized
bases.

The WANT method is based on a DFT computation of the
electronic structure of the system. The code is interfaced
with the PWscf �Ref. 56� package which adopts plane waves
as basis set and pseudopotentials to describe the ions.

Given a periodic system and its Bloch eigenstates �mk	
computed with the PWscf code, the ith WF at site R can be
defined as

�iR	 =
1

Nk
�

k�BZ
e−ik·R�

m

Uim�k��mk	 , �19�

where the sum for k�BZ runs over the Nk uniform k points
in the Brillouin zone and U�k� is a unitary matrix mixing
different bands at the same k. This form ensures the ortho-
normality and the completeness stemming from the proper-
ties of the Bloch states. The matrix U�k� represents a further
set of degrees of freedom which have been used to maximize
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the localization of the resulting WF’s. In practice, a spread
functional is defined as

��U� = �
i

��i0�r2�i0	 − �i0�r�i0	2� . �20�

The larger is � for a given a set of �U�k��, the more ex-
tended in space are the WF’s. For our purposes, ��U� must
be iteratively minimized with respect to the �U�k�� matrix to
attain the desired maximal localization. For a full description
see Refs. 30 and 31.

In order to solve the transport problem we need to com-
pute the WF’s for the L ,C ,R regions and the mean-field
Hamiltonians on such a basis. Three sets of calculations are
needed for the L and R leads and the C conductor. DFT
calculations are performed by applying periodic boundary
conditions to a unit supercell. One needs to include in the
conductor supercell a part of each lead that should be large
enough to reproduce the behavior of the respective bulk at
the edges of the cell. This is required in order to enable a
well-defined matching of the three regions, and it is also
useful to extract the HCL and HCR Hamiltonian blocks enter-
ing the lead SE’s calculation from the conductor Hamil-
tonian. The WANT scheme applied with this care contains all
the ingredients for the computation of the mean-field trans-
mittance through the C region according to Fisher and Lee as
described in Sec. II C. Further details are in Ref. 55. In the
next section we show how this method can be complemented
by an accurate description of the SE’s to go beyond the
mean-field restriction.

B. Introduction of many-body effects

Electron-electron interactions are directly accounted for
via the inclusion of a related SE operator. It is important to
stress here that the large part of the mean-field machinery for
transport calculations �e.g., the evaluation of lead self-
energies and related quantities� can be used also in the pres-
ence of interactions: this property is desired for the imple-
mentation of a Landauer-like formula as Eq. �17�. This has
clearly important consequences in the actual implementation
of the method. Moreover, due to the fact that we aim at
computing equilibrium properties such as the effective trans-
mittance, the e-e retarded SE is easily connected to the lesser
one and thus we need to compute just one of them.

The way the SE is calculated depends on the system under
study and therefore on the specific range of correlation. In
this work we focus on the case of short-range interactions
used to model conductors with highly localized orbitals
�typical cases in transition metals�. We include some effec-
tive on-site Anderson terms and consistently avoid double
counting by eliminating the respective mean-field terms. We
then compute the self-energy for the conductor region �which
must contain part of the leads, as described above� consider-
ing a fictitious periodicity �supercell approximation�. This is
important in order to simulate the nonfiniteness of the open
system without treating it explicitly, giving the correct ther-
modynamic limit and analytical properties of the interacting
GF’s.57,58 The conductor Hamiltonian in the presence of
Hubbard-like e-e interactions reads �see Eq. �1��

HC = �
�

�
ij�C

Hij,�di,�
† dj,� +

1

2�
�

�
pq

�Upq − Jpq�np,�nq,�

+
1

2�
�

�
pq

Upqnp,�nq,−�, �21�

where site and spin indexes are explicitly separated, Upq and
Jpq are the direct and exchange Coulomb integrals, and np,�
is the density operator for orbital p. Indexes p and q run over
the orbitals defined on sites where charge carriers are corre-
lated. The U and J matrices do not couple orbitals on differ-
ent sites. We remark that the ij orbitals on which the first
term in the Hamiltonian of Eq. �21� is expressed belong to a
generic basis set �and we will assume them to be the com-
puted Wannier functions presented in Sec. III A�. Differently,
the pq orbitals used in the second and third terms �i.e., the
orbitals on sites where U and J are switched on� have a
different meaning: they should carry the physical informa-
tion on correlated electrons. The WF’s could not be used in
these terms because of their intrinsic nonuniqueness. We thus
decide to define the pq orbitals in Eq. �21� as the d- or
f-atomic orbitals present in the system. At the end of its
evaluation, the correlation self-energy is finally expressed on
the WF’s basis in order to be inserted in the transport calcu-
lation.

The solution of the Hamiltonian in Eq. �21� �e.g., in terms
of GF’s� is not straightforward in the general case and some
further approximations are needed. Here we adopt a
scheme53,54 which is nonperturbative in the U / t parameter; t
is a measure of the mean-field hopping term given by Hij,� in
Eq. �21�. The nonperturbative approach allows us to focus on
the regime U� t, which is forbidden by alternative schemes
designed specifically to solve the two perturbative limits
U / t→0 and t /U→0. The method is based on a configura-
tion interaction expansion of the states with one particle �an
electron or a hole� added to the Fermi sea. This expansion is
truncated after a certain number Neh of electron-hole pairs is
added to the state with N±1 electrons. With the choice to cut
the expansion within one added electron-hole pair, the prob-
lem can be recast as an effective three-body scattering �3BS�
and its solution determines the GF for the original Hamil-
tonian. Because the generic Hubbard Hamiltonian H is peri-
odic in real space, we move to the basis of Bloch eigenvec-
tors �akm�� of the mean-field problem, defining the electron
��� and hole ��� GF according to the Lehmann
representation:58

Gkm�n��
+ ��� = �GS�akm�

1

z − H
akn��

† �GS	 , �22�

Gkm�n��
− ��� = �GS�akn��

† 1

z − H
akm��GS	 , �23�

where z=�+E0�N�+ i�+ for electrons and z=�−E0�N�− i�+

for holes, E0�N� being the energy of the many-body ground
state �GS� with N electrons �indicated as �GS	�. In order to
calculate the GF, one needs to evaluate the Hamiltonian H in
the subspace related to N+1 and N−1 electron states for G+

and G−, respectively. The expansion of the N−1 Hamiltonian
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up to three bodies added to the mean-field ground state
��GS0	� contains, for each k and �, the terms

�s−	 = akm��GS0	 ,

�t−	 = aq1m1�1

† aq2m2�2
aq3m3�3

�GS0	 , �24�

where

q1 − q2 − q3 = k, �1 − �2 − �3 = � . �25�

Analogous relations hold for the N+1 expansion. For inter-
nal consistency, in the calculation of �GS	 one should include
zero- and two-configuration states in the configuration inter-
action expansion. It was demonstrated elsewhere54 that this
procedure does not lead to a renormalization of the ground
state: therefore, �GS3BS	= �GS0	. We are able to write the in-
teracting GF as the matrix element of the propagator operator
on the �sp	 states:

Gss�
p ��� = �sp�

1

zp − H
�s�p	 �26�

where �s�p	 and �sp	 differ only in the band index and with
p= + ,− for the electron and hole case according to the above
definitions. We also note that, because the Hubbard Hamil-
tonian commutes with the total z component of the spin, �GS	
can be chosen as an eigenstate of Sz, so that the GF is diag-
onal in the spin index � �besides being diagonal in the k
vector index by virtue of lattice symmetry�.

By projecting the Hamiltonian on the N−1 electron states
through the closure relation �the label “�” is dropped�
�s�s	�s�+�t�t	�t�= I, we obtain three terms:

H1 = �
ss�

�s	�s�H�s�	�s�� , �27�

H3 = �
tt�

�t	�t�H�t�	�t�� , �28�

V = �
st

�s	�s�H�t	�t� + h.c., �29�

which give the Hamiltonian as H�H1+H3+V. Defining the
resolvent of the three-body interaction H3 as

F3�z� =
1

z − H3
, �30�

and following Ref. 54 we are able to write the GF as

Gss�
− ��� = z − H1ss� + �

tt�

VstF3tt�Vt�s��−1
. �31�

The last term on the rhs of Eq. �31� is an effective self-
energy for the hole propagator only: we denote it 
−. Analo-
gous relations are valid for the N+1 electron case. A detailed
discussion of the theoretical framework of the methods �in-
cluding the calculation of the three-body resolvent F3� can be
found in Ref. 54 and references therein.

The calculation of the resolvent operator and then of the
SE’s 
± requires in input the projected density of states

�pDOS’s� related to the localized orbitals in the expression
for the Hubbard Hamiltonian and directly extracted from the
DFT calculation. The final expression for the hole and elec-
tron SE’s according to the three-body formalism are then
given as


q�
± ��� = �q�	
q�

orb±����q�� , �32�

where q’s are the localized orbitals where Hubbard terms U
and J are switched on. The terms 
q�

orb±��� are the so-called
orbital self-energies which are the output of the three-body
scattering calculation. Once the SE is written by means of
the atomic projectors as in Eq. �32� we can move back to the
Bloch states by knowing the atomic projections of the band
eigenvectors and then again to the WF basis by a further
unitary transformation �which is known once the WF’s have
been calculated�.

In order to obtain the time-ordered SE’s �which are the
needed objects to introduce correlation in the transport cal-
culation� we must calculate both electron and hole GF’s
�from Eq. �31��. As it is common in most approximated cal-
culations, the correct analytic properties of the GF are not
guaranteed and they can be recovered by considering only its
imaginary part and determining anew the real part by
Kramers-Krönig relations.58 Another possibility, which is re-
liable and numerically stable when the occupations of the
localized orbitals are far from half-filling,54,59 is to do first
the Kramers-Krönig transform on the imaginary part of the
hole and electron orbital SE’s, and then use the result as the
full retarded self-energy. The latter is our choice in the re-
mainder of this paper.

IV. RESULTS

Break-junction techniques60 have recently obtained large
success in producing ultimate nano-junctions. The realization
of a break-junction is conceptually simple, although practi-
cally sophisticated: A metal wire is first etched and then me-
chanically stretched until it is broken. Due to the high me-
chanical precision of the procedure, tiny junctions and
ultimate atomic contacts have been attained.60 Some metals,
such as gold, platinum, and iridium, are able to form61–64

one-dimensional �1D� atomic chains of variable length. This
fact has been recently60 related to an interplay between lo-
calization of d orbitals and spin-orbit effects, which is typical
of 5d transition metals. According to the above description,
the system in a break-junction configuration is divided into
two physically distinct regions: the massive bulk tips and the
1D wire in between them, as depicted in Fig. 1�a�. From the
point of view of short range electronic correlations it is ex-
pected that the 1D chain gives rise to larger effects than the
bulk tips, because of a more prominent U / t ratio: we remind
the reader that t is a measure of the average hopping terms of
Eq. �21�, hence of the band width. The increase of the U / t
value in 1D systems is due to two simultaneous effects: �i� t
decreases because of the band-width shrinking related to di-
mensionality effects, and �ii� the U parameter is expected to
be larger in 1D than in 3D systems because of the less effec-
tive screening by the metallic environment.

Focusing on the case of late 5d transition metals, no im-
portant short-range correlation effects are expected in the
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case of gold because of its closed d shell, whereas platinum
and iridium may give rise to such effects. To confirm this
intuitive vision and verify that a Pt break-junction is suitable
to test our method, we perform an in-depth analysis of the Pt
electronic structure, comparing the mean-field and the corre-
lated spectral functions for the Pt 3D bulk and 1D wire. We
adopt a Pt-Pt distance of 3 Å for the wire and a fcc cell of
side a=3.92 Å for the bulk. The maximum kinetic energy for
plane waves included in the basis set is 50 Ry and norm-
conserving LDA pseudopotentials are used. In order to sepa-
rate lateral replicas of the wire, we fix the supercell size to
10.6�10.6 Å2 in the plane orthogonal to the atomic chain.
The value U=2.0 eV is used for the Hubbard parameter
when electronic correlation is switched on: this is a rough
but conservative estimation, plausible for the bulk but quite
low for the wire. Figure 2 reports the results of this compari-
son. It shows that bulk properties �Fig. 2�a�� are unchanged
by the insertion of correlation terms in the electronic struc-

ture, whereas significant effects are noted for the wire �Fig.
2�b��, even in the conservative approximation chosen for U.
In fact, in the 1D case we can observe a shift of the main d
peak near the Fermi level EF and the appearance of low-
energy satellite structures �around −4.0 eV�. This prelimi-
nary analysis confirms that correlation effects may play an
important role in the Pt wire between two break-junction
tips, due to dimensionality, whereas the effect on the tips
themselves can be neglected due to the higher screening of
the metallic bulk. This outcome fixes the framework for our
choice for the model of a break-junction, explained in the
following and shown in Fig. 1�b�.

In order to further investigate the inclusion of correlation
effects on 1D atomic chains we focus our attention on a
simplified junction model: we neglect the full complexity of
the tip-wire interfaces and substitute the massive leads by
semi-infinite mean-field platinum wires while the central
conducting wire is treated at the many-body level. The sub-
stitution of the bulk leads with linear atomic chains is oper-
ated to make the prototype application of our method as
simple as possible. The neglect of electronic correlations in
the 1D leads is justified by the comparison just discussed
above, in the sense that they should simulate 3D metals in
which correlations are demonstrated to be ineffective �Fig.
2�a��. The result of this modeling is an infinite wire having
Hubbard U operative only on a finite number of Pt atoms, as
illustrated in Fig. 1�b�. Whereas this approximation misses
an important contribution in the description of the true break-
junction, it permits us to directly focus on the effect we want
to analyze �e-e correlation�, just leaving apart the widely
studied and well-known effects of the contact resistance.60,65

A comparative analysis including the effects of the contact
interface is reported elsewhere.29

As described in Fig. 1�b�, we divided our model system in
the usual leads and conductor regions. We set up a conductor
supercell containing 11 Pt atoms in order to have room for
making the electron-electron interaction well decaying inside
the cell, recovering the electronic structure of the leads at the
interface. We checked that within these conditions we can
correlate up to seven central atoms in the C cell �conver-
gence details in the following�. The lateral dimensions of the
cell, the kinetic energy cutoff of plane waves, and the value
of the Hubbard U parameter �U=2.0 eV� were chosen as
before. We included four k points in the Brillouin zone sum-
mations in the DFT self-consistent calculation.

A. Electronic structure

We start with an in-depth discussion of the electronic
structure for the Pt wire, to highlight the role of electronic
correlation: The total and atom-projected DOS �pDOS� are
reported in Fig. 3. Due to the cylindrical symmetry of the
system with respect to the axis defined by the wire itself, the
Hamiltonian commutes with the z component m of the total
angular momentum, making m a good quantum number. It is
therefore possible to distinguish among the atomic pDOS
components according to m. In particular we identify the
term corresponding to platinum d orbitals having m=0 as d0
and those with �m�=1 ��m�=2� as d1�d2� �±m terms are de-

FIG. 1. �Color online� �a� Schematic geometry of a break-
junction forming an atomic wire. �b� The atomic model that we
adopt to highlight correlation effects. Circles represent platinum
atoms: thin �thick� circles indicate atoms where the Hubbard term is
U=0 �non-negligible, U=2 eV�.

FIG. 2. Spectral functions for platinum: �a� periodic 3D fcc bulk
system and �b� infinite 1D wire. Shaded areas are the mean-field
DFT results, thick solid lines include many-body effects within the
3BS framework. The Fermi energy is set to zero in both panels.
Spectral function scales are different in �a� and �b� and use arbitrary
units.
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generate�. Figure 3 shows that, as expected on the basis of
symmetry constraints, s and d0 states are strongly hybridized
�same peaks and band widths in the pDOS� while d1 and d2
remain pure narrow-band d states �in a simple s-d picture�.
The s and d0 states can mix because they have the same m
quantum number. In Table I we report a summary of some
parameters �including band widths and occupations� that de-
scribe the electronic structure of the system. We find an ef-
fective number of 1.06 d holes per atom. The importance of
correlation effects is related both to the strength of the e-e
interaction U / t and to the band occupation. In the extreme
case of a completely filled band, where in the 3BS picture no
e-h pairs can be added, correlation effects are absent, irre-
spectively of the strength of the e-e interaction. In this case,
even a tiny number of holes is sufficient to activate correla-
tion effects. The present case with U / t�1 and one hole out
of ten d states can be defined as a regime of relatively high
correlation.

Starting from the projection of Bloch states onto atomic
orbitals we apply the 3BS formalism to compute the many-
body corrections. As described in Eq. �32�, the self-energy
operator in the 3BS scheme is written as a sum of projectors
onto localized states. This particular form of the SE defines
the so-called orbital SE’s that are reported in Fig. 4. Since
the SE operator is non-Hermitian by definition, the orbital
SE’s are complex functions: the real part tends to shift the
position of the quasi-particle �QP� poles, while the imaginary
part accounts for finite QP lifetimes. In a simplified picture
�neglecting the sd0 Hamiltonian coupling term�, the inver-
sion of the Dyson equation would lead to poles for the inter-
acting GF given by the solutions of the equation �−�dm
=
dm

orb���, where the � energy is defined on the entire com-
plex plane and �dm

runs over all the eigenvalues correspond-
ing to dm symmetry. If � is constrained on the real axis, the
spectral function would exhibit a strong peak where �−�dm
intercepts the real part of the orbital self-energy 
dm

orb���. The
imaginary part of the SE would fix the energy width of such
a peak.58

Using this kind of analysis we can compare the different d
components of the wire orbital SE’s �Figs. 4�b�–4�d��. Figure
4�a� shows as a reference the largest orbital SE obtained for
Pt bulk: it is spread over a broad energy range and the inten-
sity is much smaller than the orbital self-energies of the wire.
Indeed, the main difference among wire and bulk is in the

FIG. 3. Total and projected DOS for the mean-field Pt chain. In
each panel, shaded areas represent the pDOS while thin lines are the
reference total DOS. Vertical scales are the same for each graph.
Panel �a� shows the Pt s-pDOS; �b�, �c� and �d� the d-pDOS corre-
sponding to m=0, �m�=1 and �m�=2, respectively. The Fermi energy
is set to zero. pDOS in panels �a� and �b� have been magnified by a
factor of 2 for clearness.

TABLE I. Atomic projected DOS �sd states� description. Occu-
pations account for spin and are referred to singly degenerate
orbitals.

s d0 d1 d2

Degeneracy 1 1 2 2

Band width �eV� �10 3.60 1.90 0.75

Occupation 1.05 1.68 1.67 1.98

Hole no. 0.95 0.32 0.33 0.04

FIG. 4. Orbital self-energies. �a� The largest orbital SE of Pt fcc
bulk �reported as reference�. Inequivalent orbital SE’s for �b� d0, �c�
d1, and �d� d2. The energy scale of panel �a� is different but the SE
scale is maintained equal to the others. Solid lines �shaded areas�
give the real �imaginary� part of the self-energies. The Fermi energy
is set to zero. The wells in the real and imaginary SE’s near the
Fermi level are probably connected to the numerical matching of
hole and electron GF’s �see Sec. III B�.
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order of magnitude of the orbital SE’s: this is due to the fact
that wire and bulk are characterized by very different U / t
ratios. The energy range where correlation effects are impor-
tant is also quite different in the two cases: while the bulk
orbital SE of Fig. 4�a� is non-negligible at energies lower
than 6–8 eV, the wire orbital SE’s of Figs. 4�b�–4�d� are
dominant in an energy range much closer to Fermi energy.
This property can be inferred also from Fig. 2: the only slight
correction in the bulk spectral function �Fig. 2�a�� occurs in
the low-energy region, whereas the wire undergoes correc-
tions well around Fermi energy �Fig. 2�b��. In Figs.
4�b�–4�d� we analyze the details of SE’s with different angu-
lar momenta. All the peaks in the d0 SE occur at energy
values where the d0-pDOS is nonvanishing �Fig. 3�b��.
Therefore, they effectively modify the electronic structure
and contribute to the appearance of satellite peaks in the total
DOS of the wire. In particular, the low-energy peaks of the
d0-SE account for the satellite structures around −4.0 eV in
the DOS of Fig. 2�b�. At higher energies, the d0-SE peaks are
responsible both for the satellite structures and for the short-
lifetime states closer to the Fermi level, which are expected
to play a major role in transport phenomena. Conversely, the
spike-like peaks in the d1 and d2 SE’s are unable to produce
any spectral features, because they occur at energy values
where the corresponding pDOS curves are zero.

To close this section, let us remark on a few technical
aspects that allow for efficient simulations with our simple
atomic model in which we want only selected atoms to carry
many-body effects. Because of the particular form of the
3BS self-energy, we can easily switch on the correlation on a
variable set of platinum atoms in the linear chain, just by
including the d orbitals of the chosen atoms in the sum over
projectors in Eq. �32�. Therefore, the analysis of the orbital
SE’s applies both to the case of the infinite correlated wire
illustrated above and to the atomic model of Fig. 1�b�. We
further note that the Wannier functions do not change with
the number of correlated atoms, because they depend exclu-
sively on the mean-field electronic structure. Therefore, they
are computed only once for the Pt wire and used for different
numbers of correlated atoms. Six WF’s for each atom de-
scribe the sd states. In the MLWF basis set for the Pt wire
computed as described in Sec. III A, we found four WF’s
which are quite similar to the atomic states with �m�=1,2,
and 2 WF’s which differ significantly from the atomic orbit-
als. This result reflects the strong s-d0 hybridization dis-
cussed earlier. Numerically, the 3BS self-energy operator on
the MLWF basis set is found to decay on the nearest neigh-
bor atoms of the many-body region, validating the assump-
tions on the SE localization previously described.

B. Transport properties

In this section we focus on the transport properties of the
prototype platinum chain. The curves computed for the ef-
fective transmittance as a function of energy are reported in
Fig. 5, for various numbers N of correlated atoms in the wire.
The step-like noninteracting transmittance is given as a ref-
erence �thin line in both the main plot and inset�. The case of
N=3 correlated atoms is shown in the main panel and dis-

cussed in more detail in the text. The most evident feature
that stems from the inclusion of the electron-electron inter-
action is a strong quenching of the transmittance in the hole
region of the spectrum, while no important modifications oc-
cur above the Fermi level. The physical reason can be found
in the shapes of the SE’s, which are almost completely con-
fined below the Fermi energy �see Fig. 4�, a consequence of
the large occupation of d-electrons in platinum �Table I�.

Moving from one to four correlated atoms we can observe
an even larger depletion of the hole transmittance. This find-
ing supports the idea that electron-electron interactions in a
platinum wire tend to freeze the holes, making transport to
occur via electron carriers.

As was mentioned before, the very nature of the electron
correlation is enforced by a SE operator which is dynamical
�energy dependent� and non-Hermitian. We pointed out in a
previous work29 that proper and important effects of intro-
ducing correlation on the effective transmittance are linked
to the presence of an anti-Hermitian �imaginary� component
of the SE. In order to support the latter statement, we studied
the transmittance separately for each angular momentum
channel �d0+s ,d1 ,d2�, also dividing the effect of their Her-
mitian �H� and anti-Hermitian �A� parts. This last operation
can be rigorously defined because the SE can be written as a
sum of H and A parts, 
���=
H���+
A���, where


H��� = 1
2 �
��� + 
†���� , �33�


A��� = 1
2 �
��� − 
†���� . �34�

The transmittances obtained in this way for the case of an
N=3 correlated atom wire are reported in Fig. 6 �see the
caption for a full explanation of the curves�. Focusing on
Fig. 6�a�, which describes the transmittance for the d0+s
component, we note that the result of the complex SE
�shaded area� is almost superimposed to that due to the anti-

FIG. 5. Effective transmittance of the Pt atomic chain for dif-
ferent numbers of correlated atoms N, i.e., atoms in which the
many-body e-e interaction operates. Main plot: Calculated effective
transmittances for N=3 correlated atoms, obtained using the Her-
mitian part of the SE �H, solid thick line�, the anti-Hermitian part
�A, dashed line�, or the full physical SE �F, shaded area�. Inset:
transmittances �obtained using the full SE’s� for N=1 �solid line�, 2
�dashed line�, and 4 �dot-dashed line� correlated atoms.
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Hermitian SE �dashed thick line�, while the one related to the
Hermitian SE �solid thick line� is very similar to the mean-
field case, except for the smoothing below −2.5 eV and for
the narrow peak near −0.5 eV. Figure 6�b� describes the ef-
fective transmittance for the d1 channel. In contrast with the
d0+s case, we see that both the H and A parts of the d1 SE
have a non-negligible role in the computed effective trans-
mittance. In the case of d2, reported in Fig. 6�c�, both A and
H components of the SE are responsible for quenching the
mean-field peak. As expected, the transmittance is mainly
given by the d0+s component, which is the least localized
and most itinerant of all the analyzed components �as in-
ferred from the high band-width values�.

We can easily read the above results in terms of a simple
sd model. Due to the symmetry of the problem, only the s
and the d0 terms can be coupled by the e-e Hamiltonian,
whereas d1 and d2 states maintain a pure d character. This
makes the d0 band largely more dispersive than the other
d-like terms. From the point of view of correlation, the or-
bital SE’s �which take components from every d state� are
mainly due to the localized states d1 and d2 which have
larger U / t ratios. The transmittance of these channels is
strongly suppressed. On the other hand the d0 SE becomes
itself more effective due to the localization of d1 and d2 and
corrects DOS and transmittance on the whole hole energy
range. The emerged scenario is thus based on a sort of inter-
play between localization and itinerancy: the former intro-
duces correlation effects, the latter links correlation to trans-
port.

The ultimate effect of the SE on the effective transmit-
tance is the sum of the various angular momentum channels
d0+s ,d1 ,d2, and is shown in Fig. 5, divided into H and A
contributions �solid and dashed lines, respectively�. The anti-

Hermitian part of the self-energy �dashed line in Fig. 5� gives
a transmittance which is very close to the one obtained using
the whole complex SE, which bears the physical meaning.
This outcome is very significative: It stresses the key role of
the finite lifetimes of quasi-particles in the case of transport
in correlated systems. In fact, the real part of the SE is re-
sponsible for energy shifts of the peaks in the DOS �hence, in
the transmittance�, whereas the imaginary part is responsible
for spreading of the peaks, indicative of finite lifetimes. Let
us additionally point out that the presence of an interface
between the conductor and the leads �which is neglected
here� is expected to lower the importance of the real part of
the SE, further enhancing the effects of the imaginary part.
This follows because the H self-energy in the present case
contributes to misalign levels between conductor and leads,
while the introduction of massive leads means increasing the
spectrum of available states for conduction, thereby making
misalignment less effective.

C. 3BS versus LDA+U

In order to further analyze the very effect of the electron-
electron scattering carried by the non-Hermiticity of the cor-
relation SE, we performed some LDA+U34–36 calculations
of the electronic and transport properties of the Pt wire.
LDA+U is the standard method for adding short-range cor-
relation contributions to the mean-field DFT electronic struc-
ture. This approach corrects the total energy with a specific
Hubbard term, which is introduced in the Kohn and Sham
Hamiltonian as a non-local mean-field potential, Hermitian
by definition. Therefore, the method can describe energy
shifts due to many-body coupling, but is not able to treat
quasi-particle lifetimes. We compare the LDA+U �Fig. 7�
with the 3BS results �Fig. 5�: the latter incorporate the full
dynamic and non-Hermitian SE. The LDA+U calculations
were performed in the same geometry of Fig. 1�b� and using
the same parameters for k-point sampling and cell dimen-
sions. Nonzero Hubbard U values were taken into account
only on the three central atoms in the conductor, thus com-
paring to the N=3 case of Fig. 5. The calculation of U was
not performed self-consistently,66 but several values were
tested. Since it is not easy to compare U integrals used in

FIG. 6. Effective transmittance resolved for different angular
momentum channels in the case of three correlated atoms in the Pt
wire. Panels �a�, �b�, and �c� report the results for the d0+s, d1, and
d2 components. In each panel solid �dashed� thick lines describe the
results obtained with the H�A� part of the SE, the shaded area is the
transmittance obtained by using the complex SE �both Hermitian
and anti-Hermitian components�, and the thin solid line is the ref-
erence mean-field transmittance for each channel.

FIG. 7. Transmittance versus energy calculated by means of
LDA+U for various values of the Hubbard parameter U.
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calculations with different methods �3BS and LDA+U� we
analyze U values in a viable range.

In Fig. 7 we report the transmittance curves obtained for
U=2,3 ,4 eV. We observe that the U=4 curve presents a
large well close to the Fermi energy, suggesting that for this
value one gets close to the Mott-Hubbard metal-insulator
transition. This value is therefore to be considered already
out of the regime that we studied in this paper. We also
checked the case with U=6 eV and indeed found a scenario
very close to the insulating behavior. From the analysis of
the curves reported in Fig. 7 we suggest that the value of
U=2.0 eV that we used within the 3BS method is compa-
rable to the range U=2–3 eV in the LDA+U scheme: we
take the U=3 curve �shaded area, dashed line� in Fig. 7 as
the reference calculation. Comparing the two sets of results
�shaded areas in Figs. 5 and 7� we see that only the main
features due to the Hermitian part of the SE are reproduced
in the LDA+U calculation. In particular, the two peaks
around −1.0 eV and the Fermi energy in Fig. 7 correspond to
those near −0.8 eV and the Fermi energy in Fig. 5. A direct
comparison is not straightforward because the exact equiva-
lent values of U in the two approaches are not known and
can only be estimated. However, the observation that the
static Hermitian LDA+U potential reproduces only the ef-
fects given by the dynamic Hermitian part of the 3BS SE
underline the larger extent of our method in the description
of correlated transport phenomena. While the dynamical na-
ture of the SE is fundamental for studying the low level
satellite structures found in the photoemission experiments,
here the main role is played by the anti-Hermitian compo-
nent of the SE in a sufficiently large neighborhood of the
Fermi energy.

V. CONCLUSIONS

In this paper we presented a formalism for electronic
transport through spatial regions hosting interacting charge
carriers, suitable for ab initio implementations. As a first step
of our formalism, we recast a well-known expression for the
current37 in a Landauer-like form using an ansatz to relate
greater and lesser Green’s functions to advanced and retarded
Green’s functions.43 From the Landauer-like formula for the
current in a correlated conductor, we then defined an effec-
tive transmittance. The computation of the latter quantity
may unravel the effects of electronic correlation on transport.
We numerically implemented the method in the WANT
package,33 which describes transport by means of the matrix
Green’s function technique using maximally localized Wan-
nier functions as real space basis set. Many-body terms in the
electronic structure were included following the nonpertur-
bative three body scattering formalism.53,54 We focused our
analysis on the case of short-range electron-electron interac-
tions �Anderson regime� and applied the formalism to an
atomic platinum chain, where only some atoms are consid-
ered beyond the mean-field regime, as a schematic simulator
of break-junction experiments.

Our results indicate that short-range many-body interac-
tions influence the transport properties. The specific nature of
the correlation gives rise to quasi-particle spectral features

which include the renormalization of energy levels and the
appearance of finite lifetimes. The latter are found to be the
dominant feature in determining the shape of the effective
conductance of the correlated conductor. Indeed, a direct
comparison with LDA+U results for the same system shows
that the inclusion of finite lifetimes, neglected in the LDA
+U approach and accounted for in the 3BS method, is
needed to describe the major effects of transmittance quench-
ing.
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APPENDIX: KELDYSH FORMALISM IN DEVICE
CONFIGURATION

For the sake of completeness, we report a derivation of
the final form of Eqs. �7� and �8� presented in this paper,
starting from the general nonequilibrium Green’s functions
�NEGF’s� formalism as proposed by Keldysh. This is par-
ticularly useful in view of the study of interacting conduc-
tors. More detailed descriptions can be found in Refs. 38–40
and references therein. It is important to remark that in the
original Keldysh formalism no distinction is made between
different parts of the investigated system, whereas in our
approach the target system is a L-C-R junction, where it is
important to describe the relevant quantities �GF’s and SE’s�
as block matrices in the L ,C ,R zones. Hence, this appendix
is essentially devoted to establishing a connection between
the SE operators spread over the whole many-body system

�denoted with a ˜ overhead in this appendix� and the same
operators in a block-matrix form in the conductor region
�denoted with a C subscript�.

The starting point is fixed by the coupled equations in-
volving the retarded, advanced, and lesser GF’s for the whole
system, that is, in the cases of interest for us, the sum of the
L ,C ,R regions:

Gr = G0
r + G0

r
̃rGr, �A1�

G� = �I + Gr
̃r�G0
��I + 
̃aGa� + Gr
̃�Ga. �A2�

The G0 GF’s are related to a noninteracting out-of-
equilibrium reference state and the self-energies �SE’s�
account for the inclusion of the interactions. In our target
L-C-R problem all the GF’s and SE’s can be cast in a 3�3
block-matrix form defined on the L ,C ,R regions. The pur-
pose of this appendix is to show a procedure by which Eqs.
�A1� and �A2� can be modified in order to extract some ex-
pressions for the conductor-diagonal block of the GF’s.

The Dyson equation �Eq. �A1�� can be rewritten in the
final form of Eq. �8� by introducing the lead self-energies
defined as
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X
r,a = �HCX + 
̃CX

r �gX
r,a�HXC + 
̃XC

r �, X = L,R , �A3�

and adding them to the C block 
̃C
r of 
̃r. This comes from a

direct inversion of the 3�3 block matrix �I−H−
r. Note
that the above definition of the lead SE’s differs from the one
given in Eq. �6� because of the presence of the nondiagonal


̃CX
r block elements. When the SE decays inside the C region

�eventually making the conductor larger and larger�, 
̃CX
r can

be neglected, thus justifying Eq. �6�. In systems where this
approximation does not hold, the expressions in Eq. �6�
should be updated as in Eq. �A3�. The final effective self-
energy thus reads


C
r = 
L

r + 
R
r + 
̃C

r , �A4�

which is the one given in Eq. �13�, once we set 
corr
r = 
̃C

r .
The sum in Eq. �A4� defines the conductor self-energy of Eq.
�8�.

To obtain instead Eq. �7� from the general Keldysh for-
malism, we observe that it is possible to write the equilib-
rium mean-field lesser GF as

G0,eq
� = G0,eq

r 
̃0,eq
� G0,eq

a , �A5�

where 
̃0,eq
� =2feq����+I and �+ is the limit �→0+. There-

fore, using the same Eq. �7�, with the initial state the equi-
librium mean-field system and the final state the nonequilib-
rium mean-field system, one obtains

G0,neq
� = G0,neq

r �
̃0,eq
� + 
̃0,neq

� �G0,neq
a , �A6�

where 
̃0,neq
� accounts for the nonequilibrium properties of

G0,neq
� . In the same way, it is possible to add the full nonequi-

librium many-body correction by adding a suitable SE opera-

tor 
̃�:

G� = Gr�
̃0,eq
� + 
̃0,neq

� + 
̃��Ga. �A7�

This last expression describes the lesser GF we are interested
in for transport calculations.

We make explicit use of the assumption that the 
̃0,neq
� and


̃� SE’s can be neglected out of the conductor-diagonal
block, or described as constant mean-field terms in the L or R
diagonal blocks. This accounts for a possible rigid shift of
energy levels. The operation is viable by virtue of the fact
that the system is out-of-equilibrium and interacting only in
the conductor region. Within the above discussed approxima-
tions the expression for the C block of the lesser GF reads

GC
���� = GCL

r �
̃0,eqL
� + 
̃0,neqL

� �GLC
a

+ GC
r �
̃0,eqC

� + 
̃0,neqC
� + 
̃C

��GC
a

+ GCR
r �
̃0,eqR

� + 
̃0,neqR
� �GRC

a . �A8�

Using the same techniques as for the retarded, advanced lead
SE’s it is possible to derive

GLC
r,a = gL

r,aHLCGC
r,a,

GRC
r,a = gR

r,aHRCGC
r,a,

GCL
r,a = GC

r,aHCLgL
r,a,

GCR
r,a = GC

r,aHCRgR
r,a, �A9�

which finally give

GC
���� = GC

r �
L
� + 
R

� + 
̃0,eqC
� + 
̃0,neqC

� + 
̃C
��GC

a .

�A10�

Here the definitions of the lead lesser SE’s are coherent with
the ones given in Eq. �6�.

It should be noted that, whereas some other SE’s persist,

the 
̃0,eqC
� and 
̃0,neqC

� terms in Eq. �A10� can be neglected
because the �+ term is overcome by other leading terms.
These approximations lead to the final expression for the

lesser self-energy as 
C
�=
L

�+
R
�+
corr

� , where 
corr
� = 
̃C

�,
as given in Sec. II B after Eq. �13�.
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