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We analyze a master equation model for the time-of-flight experiment in an organic material where the
internal transport is due to thermally activated hops between localized molecular orbitals. An expression for the
transit time of a photocreated carrier across a finite one-dimensional sample is obtained in terms of the orbital
energies and the microscopic hopping rates. Two forms of hopping rates commonly used in the literature are
considered, the Miller-Abrahams rate and the small-polaron or Marcus rate. The average of the transit time
expression with respect to an arbitrary, correlated, Gaussian distribution of molecular orbital energies is ob-
tained exactly for both forms of rates. We use this averaged expression to investigate how different forms of
energetic correlations and of hopping rates leave their imprint on the field dependence of the mobility. We find
that a Poole-Frenkel field dependence of the mobility at low fields is obtained both with a power-law and with
an exponential correlation, moreover, the factor � in ��exp���E� is obtained and we find that its temperature
dependence does not distinguish between the two forms of energetic correlation. The form of the hopping rate
only manifests itself in the mobility at fields above a certain critical field whose expression for an arbitrary
form of correlation is explicitly obtained.
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I. INTRODUCTION

The mobility of charge carriers in organic materials is a
determining factor in the performance of organic devices.
Mobility measurements, mainly using the time-of-flight tech-
nique, suggested the following mobility with a Poole-Frenkel
�PF� field dependence

� = �0 exp�− ��T��exp���E� . �1�

In the form proposed by Gill,1 �=�0 /kT and �=B�1/kT
−1/kT0�.

The modeling of organic insulators has a milestone in the
Gaussian disorder model �GDM�. This model describes the
disordered organic as a set of localized states with energies
distributed Gaussianly and with transport between sites ocur-
ing via thermally activated hops. The model rely heavily on
Monte Carlo simulations as a computational tool. In the first
works with this model2 it was claimed that the numerical
results contained a field dependent mobility in the form �
�exp�E /E0�. As more experiments were done, all poynting
to a PF field dependence in the form of Eq. �1�, the numeri-
cal results were reinterpreted and a PF field dependence were
claimed to be present,3 although in a very narrow range of
fields.

As studies of the GDM later showed, it is necessary to
include correlations in the distribution of site energies in or-
der to obtain a mobility with a PF field dependence over the
range of fields observed in the experiments. Garstein and
Conwell4 analyzed numerically a three-dimensional �3D�
model with short-range correlations, Dunlap and co-workers5

studied analytically a one-dimensional �1D� model with
power-law correlations originated from the interactions of
the carriers with randomly oriented dipoles, their findings
were later confirmed by a 3D simulation.6 Yu and
co-workers7 studied analytically a 1D model where the

source of energetic correlation were the thermal fluctuations
on the molecular geometries, the energetic correlation in this
model decays with distance as the Yukawa potential but the
authors studied essentially its power-law limit, their findings
were confirmed by 3D simulations on the same paper. Fi-
nally Parris and co-workers8 studied the power-law correla-
tions with using a small-polaron rate, both analytically in 1D
and numerically in 3D.

The power-law correlations studied in Refs. 5–8 showed
that there is a difference in the PF factor � predicted by the
analytical 1D models and by the 3D numerical simulations.
In 1D one obtains ��C / �kT�3/2, whereas the 3D numerical
experiments suggest ��C��1/ �kT�3/2−1/ �kT0�3/2�, some-
thing more similar to the form proposed empirically by Gill,1

albeit with a different temperature exponent.
Based on these results one may ask whether the power-

law correlation is the only alternative to produce a mobility
with a PF dependence at low fields. Numerical simulations4,9

suggested that short range correlations can have a similar
effect on the mobility but these studies were not followed by
an analytical model that could establish the dependence of
the factor � on the temperature and on the range of the cor-
relations. Our work intends to fill this gap. We analyzed es-
sentially the same 1D model discussed in Refs. 5, 7, and 8,
but considered both a Miller-Abrahams hopping rate and a
small-polaron rate, together with a general form of Gaussian
correlation between the energy sites. Although the analytical
result obtained can be used to discuss any form of correla-
tion, here we concentrated on the power-law correlation and
on the exponential correlation, the latter being the prototype
of short range correlations.

II. THE MASTER EQUATION MODEL

In a time-of-flight �TOF� experiment the material of inter-
est is placed between two electrodes and a light source gen-
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erates free carriers in the material, electrons in the lowest
unoccupied molecular orbital �LUMO� and holes in the high-
est occupied molecular orbital �HOMO� in the case of an
organic material. If the carrier photocreation happens in the
vicinity of the cathode we may admit that the holes are
readily absorbed and that the electrons are driven by the
applied field towards the collecting anode �or vice versa if
the field is reversed�. It is desirable that the electrodes do not
inject carriers into the system so that the measured signal is
only due to the photocreated carriers.

The movement of charge inside the material generates a
time-dependent current in the external circuit that connects
the electrodes. The relation between I�t� and the current den-
sity inside the material is

I�t� =
A

L
�

0

L

j�x,t�dx , �2�

where A is the electrode cross section and L is the material
thickness and uniformity in the direction perpendicular to the
field is assumed. From the measured TOF signal one extracts
the average transit time � and obtains the mobility via �
=L / ��E�.

The electrons are transported in the disordered organic
material by thermally activated hops between localized states
corresponding to the LUMO of the organic material �the fol-
lowing applies as well if the carriers being transported are
holes in the HOMO�. This type of transport is conveniently
described using a master equation for the electron population
in the LUMO levels. We will restrict ourselves to a 1D chain
of sites uniformly spaced with lattice spacing a. The site
energy is un=�n−e�n, where �n is the molecular orbital en-
ergy �HOMO or LUMO� and �n=−Ean is the electric poten-
tial at the nth site. We will treat the effect of the disorder by
treating the energies �n as stochastic variables Gaussianly
distributed with zero average and variance 	. This 	 is re-
lated to the width of the photoemission peaks and is of the
order of 100 meV for typical organic materials.10

We will restrict ourselves to nearest neighbors hops only.
The master equation reads

dPn

dt
= wn+1,nPn+1 + wn−1,nPn−1 − �wn,n+1 + wn,n−1�Pn. �3�

We will discuss two forms of hopping rate commonly
found in the literature. The Miller-Abrahams �MA� rate11 for
the hop from a site of energy ui to a site of energy uj is

wi,j
MA = 
0 min�1,exp��ui − uj�/kT�	 . �4�

The Marcus or small-polaron �SP� rate12 is

wi,j
SP = 
0 exp�− �ui − uj − Ep�2/4kTEp� , �5�

here Ep is the reorganization energy and we are ignoring the
temperature and reorganization energy dependence of the
prefactor 
0. Both rates respect detailed balance, wi,j
=wj,i exp��ui−uj� /kT�.

We will consider a chain of N sites and will assume that
the electrodes do not inject carriers into the material. We take
the injection rates as zero, w0,1=wN+1,N=0, and the absorp-
tion rates as constants, w1,0=
c �cathode� and wN,N+1=
a
�anode�.

We have a closed system of ordinary differential equa-
tions

dP

dt
= M · P , �6�

where P= �P1 , . . . , PN� and the tridiagonal matrix M contains
the hopping rates. The solution is P�t�=exp�Mt� ·P�0�. We
chose as initial condition a carrier in the first site, Pn�0�
=�n,1. The fraction of electrons that reaches the anode is
given by �=
0


aPN dt, and the probability of arrival be-
tween t and t+dt can be written as �
a /��PN dt.

Using the exact expression for PN�t� and exploiting the
fact that all eigenvalues of the matrix M are negative, we
obtain

� = − 
a�M−1�N1, �7�

for the fraction of electrons that arrive at the anode, and

� =

a

�
�

0



tPN�t�dt = −
�M−2�N1

�M−1�N1
, �8�

for their average transit time.
In Ref. 13 an exact expression for the matrix elements

�M−1�N1 and �M−2�N1 was obtained in terms of the forward
hopping rates and the site energies. From this reference we
find the fraction of electrons that make it to the anode as

� = �1 + 
c�
k=1

N
exp��k,1�

�k
−1

, �9�

and the average arrival time as

� =
�k=1

N ��n=k

N exp��n,k�
�n

�1 + 
c�m=1

k−1 exp��m,1�
�m


1 + 
c�k=1

N exp��k,1�
�k

.

�10�

We use the shorthand notation �n,k for �un−uk� /kT and �k for
wk,k+1. The above expression only assumed detailed balance,
the energy dependence of the �k as well as the distribution of
the site energies can be arbitrary.

III. ENERGETIC AVERAGE

The physical transit time is computed by taking an aver-
age of Eq. �10� over the distribution of molecular orbital
energies ��1 , . . . ,�N	. When the cathode does not absorb
charge, 
c=0, all carriers arrive at the anode, �=1, and the
energetic average of � can be done analytically for both rates
�4� and �5� and for an arbitrary Gaussian distribution of site
energies. We will discuss this case below recalling that in
Ref. 13 it was shown that the boundary condition at the
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electrodes become unimportant at high fields, eEa�kT.
In this case Eq. �10� becomes

� = �
k=1

N

�
n=k

N
exp��n,k�

�n
. �11�

The corresponding expression used in Ref. 5 was

�Dun = �
k=1

N

�
n=0

N−1
exp��k+n,k�

�k+n
, �12�

where we used our notation and did not assume a particular
form for the forward hopping rate. This expression involves
sites beyond the last site because it was derived by Derrida14

for a periodic one-dimensional system. In this case the en-
semble average appears naturally if one identifies

1

N
�
k=1

N
exp��k+n,k�

�k+n
= � exp��k+n,k�

�k+n
� = fn. �13�

In our approach, based on Eq. �11�, the ensemble average
is introduced in addition and implies that the arrival time so
computed corresponds to a time-of-flight measurement made
on a sample where hops between chains aligned with the
field direction is forbidden. When we take the ensemble av-
erage of Eq. �11�, and assume translational invariance of the
averages, we obtain

��� = �
n=0

N−1

�N − n�fn, �14�

that should be compared with N�n=0
N−1fn of Ref. 5. In the limit

of large N the two expressions coincide. Note, however, that
the derivation of ��� based on Eq. �10� is valid even for a
finite system.

We assume that the probability distribution function for
the molecular orbital energies is

P��� =
1

��2��N�G�
e−�1/2��·G−1·�T

, �15�

where �= ��1 , . . . ,�N� and �G� is the determinant of the matrix
G. The matrix G contains the information about the correla-
tions since Gij = ��i� j�. The average molecular orbital energy
can be taken as zero since �11� only contains energy differ-
ences. Assuming only translational invariance, Gij =G�i−j�,
one can compute analytically the energetic average of �11�
with this distribution both in the case of the MA hopping rate
as in the case of the SP rate, see details in the Appendix.

The energetic average of �11� with the Miller-Abrahams
hopping rate �4� gives, in the general case �N�1�,


0���MA = N�
k=0

N

e−k�Ak, �16�

where

Ak =
eg0−gk

2 �1 + erf�� + g0 − g1 − gk + gk+1

2�g0 − g1
�

+
eg0−gk+1−�

2
erfc�� − g0 + g1 − gk + gk+1

2�g0 − g1
 , �17�

and where we have defined a dimensionless field, �
=eEa /kT, and a dimensionless correlation function, gk
=Gk / �kT�2. erf and erfc are the usual error and complemen-
tary error functions.

The corresponding expression for the small-polaron hop-
ping rate �5� is


0���SP = N�
k=0

N

e−k�Bk, �18�

where

Bk =� �p

�p − g0 + g1
exp��p − 2� + 3g0 + g1 − 2gk − 2gk+1

4

+
�� − gk + gk+1�2

4��p − g0 + g1� � , �19�

and �p=Ep /kT is the dimensionless relaxation energy.
Both expressions can be used with an arbitrary Gaussian

distribution of molecular orbital energies. The mobility can
be obtained from the average transit time using �
=Na / ���E. These expressions are the central result of this
paper and will be used below to investigate how the form of
the hopping rate and of the energy correlation manifest them-
selves in the field and temperature dependence of the mobil-
ity.

Of importance in the discussion that follows is the high-
field limit of the average arrival time, when the sums in �16�
and �18� can be approximated by just the first term. One
finds for the MA hopping rate that

�MA →
�0

�
, � � g0 − g1, �20�

and for the SP hopping rate that

�SP →
�0

�
��p − g0 + g1

�p
exp�−

�� − �p�2

4��p − g0 + g1��,

� � 1 +
g0 − g2

2
, �21�

where �0=ea2
0 /kT is our natural unit of mobility, and
where, in the SP case, we assumed �p�g0. Notice that the
domain of validity of these asymptotic expressions define a
critical field where the transport start to be dominated by the
actual form of the hopping rate. Below this critical field the
disorder and the energetic correlation determine the mobility
in a manner almost independent of the hopping rate, see
below.

IV. ENERGETIC CORRELATION

We begin discussing the role of the energetic correlation
with the uncorrelated case, where gk=s2�k,0 �s=	 /kT�. This

FIELD DEPENDENCE OF THE MOBILITY IN ORGANIC… PHYSICAL REVIEW B 72, 125112 �2005�

125112-3



single-site variance 	 is of the order of 100 meV in disor-
dered organic materials as pointed out above. In this case the
sums in �16� and �18� can be done exactly. We find for the
Miller-Abrahams hopping rate


0���MA =
N

2
�1 + erf� �

2s
 + es2−� erfc�� − 2s2

2s
 + � es2

e� − 1


��1 + erf�� + s2

2s
 + e−� erfc�� − s2

2s
�� , �22�

and for the small-polaron hopping rate we find


0���SP = N� �p

�p − s2�exp� ��p − ��2

4��p − s2��
+ � 1

e� − 1
exp��p − 2� + 3s2

4
+

�2

4��p − s2��� .

�23�

The critical field in the uncorrelated case is �c=s2 for the
MA rate and �c=1+s2 /2 for the SP rate. In Figs. 1 and 2 we
show the mobility versus the square-root of the dimension-
less field �=eEa /kT for both rates in the uncorrelated case.
It is evident from the figures that: �i� the analytical result �22�
reproduces very well the 3D Monte-Carlo results of Ref. 15.
�ii� The MA rate produces a mobility with a PF field depen-
dence over a very narrow range of fields, besides having a
nonobserved 1/� decaying behavior at high fields, ��s2.
�iii� The SP rate at high-fields, ��1+s2 /2, have a mobility
in the form �−1e−�� − �p�2/4��p−s2�, which produces a field de-
pendence closely resembling the PF behavior for ���p. The
higher the value of the relaxation energy �p and the smaller
the disorder parameter s, the wider the field range of this
approximate PF behavior. For kT=25 meV �room tempera-
ture�, 	=100 meV, Ep=1 eV, and for a lattice spacing of a
=10 Å this corresponds to 2�106 V/cm�E�107 V/cm.
This range of fields does not correspond to the experimental

observations that show a PF field dependence starting at
fields as low as 8�103 V/cm.16

Now we discuss two important cases of energetic correla-
tion: the power-law decaying correlation, G0=	2, Gk
=r	2 / �k��, �k�0�; and the exponentially decaying correla-
tion, Gk=	2e−�k�/�, � being the correlation length in units of
the lattice parameter.

Depending on the exponent � in the power-law case, the
parameter r �assumed positive� must fall within a certain
range to ensure that all eigenvalues of the G matrix are posi-
tive in the N→ limit. For instance, if �=1 one must have
0�r�0.72. In the exponential case any value of the corre-
lation length � can be used.

The power-law case is important since, as it was shown in
Refs. 4 and 5, the electrostatic interaction of the electrons
with randomly oriented dipoles in the organic material can
give rise to a correlation in the molecular orbital energies
decaying as a power law, with an exponent �=1. In the
charge-dipole model of Ref. 5 the parameter r appeared in
the form of the ratio between the typical molecular size and
the lattice parameter. The exponentially decaying correlation
has not yet, to our knowledge, been explicitly investigated.
However, the relevance of short range correlations and their
possible physical origin have been discussed in Refs. 4 and
9. Another form of correlation that combines the exponential
form and the power-law form �with unit exponent� was dis-
cussed in Ref. 7.

The mobility in the high-field limit is given by Eqs. �20�
and �21�. To obtain the mobility in the low-field limit we
could follow the strategy of Ref. 5 and ignore in Eq. �11�
nearest neighbor energy differences, this amounts to replac-
ing �n by 
0 in the MA case, and by 
0e−�p/4 in the SP case.
In fact we shall use an even better approximation, that was
implicitly used in Ref. 8, that consists in replacing �n by
��n��=0. Furthermore we convert the sums in Eqs. �16� and
�18� into integrals which, for both forms of correlations, are
then evaluated in the saddle-point approximation. We find for
the power-law correlation with exponent �=1,

FIG. 1. Field dependence of the mobility, in the uncorrelated
case, with the MA rate and for various disorder parameters. The
curves change their field dependence to 1/� when ��s2. Compare
with Fig. 5 of Ref. 15 obtained with a 3D Monte Carlo simulation.
The arrow signals the position of the crossover field in the case of
s=4, �c=16.

FIG. 2. Field dependence of the mobility, in the uncorrelated
case, with the SP rate ��p=60� and for various disorder parameters.
For fields ��1+s2 /2, in the asymptotic domain, an approximate
e��� field dependence is observed. The arrow signals the position of
the crossover field in the case of s=4, �c=9.
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�pow →
�0f

��2rs2��1/4 exp�− s2 + 2�rs2��� . �24�

For a general exponent � the argument in the exponential
involves �rs2�1/�1+����/�1+��. As for the exponential correla-
tion we obtain

�exp →
�0f

�2����1/2 exp�− s2 + �� − �� ln���/s2�� . �25�

In the low-field limit the only signature of the actual form of
the hopping rate is in the overall factor f , the average nearest
neighbor hopping rate at zero field in units of 
0. We find

fMA = 1
2 �1 + exp�g0 − g1�erfc��g0 − g1�� , �26�

fSP =� �p

�p + g0 − g1
exp�−

�p
2

4��p + g0 − g1�� . �27�

The disorder and the energetic correlation completely deter-
mine the temperature and field dependence of the mobility in
the low-field limit.

To access the validity of these approximate expressions
we compare them with a numerical evaluation of the N
→ limit of the sums in Eqs. �16� and �18� in the following.

In Fig. 3 we show the case of the MA hopping rate and a
power-law decaying energy correlation, with exponent �=1.
The disorder is fixed by the parameter s=	 /kT=4. One ob-
serves that the approximate expression in Eq. �24�, using the
fMA of Eq. �26�, does capture the mobility field dependence
at low fields. It is also evident from the figure that the critical
field that separates the low and high-field regimes is given
with reasonable accuracy by �c=g0−g1=s2�1−r�.

In Fig. 4 we show the case of the MA rate and an expo-
nentially decaying energy correlation. Like in Fig. 3 we fixed
the disorder parameter at s=4. One observes that the ap-
proximate expression in Eq. �25�, also using the fMA of Eq.

�26�, does capture the mobility field dependence at low
fields. The position of the critical field is also correctly given
by �c=g0−g1=s2�1−e−1/��.

In Fig. 5 we show the case of the SP hopping rate. One
observes that, both in the case of the power-law correlation
as in the case of the exponential correlation, the low-field
limit of the mobility is well captured by the expressions in
Eqs. �24� and �25�, using the factor fSP of Eq. �27�. In the
high field limit one has the expression in Eq. �21� which also
contains an apparent PF dependence. The position of the
critical field, in the SP case, is given by �c=1+ �g0−g2� /2.
This field is indicated by arrows in the figure.

Of relevance in a comparison with experiments is the
temperature dependence of the factor � in the PF field de-
pendence, ��e��E. The approximate expression of Eq. �24�

FIG. 3. Field dependence of the mobility with the MA rate and
with an energy correlation decaying as a power-law with exponent
�=1 and s=4. The parameter r is the ratio G1 /G0 and must be
smaller than 0.72 as explained in the text. The dashed lines corre-
spond to the low-field approximation of Eq. �24� and the solid line
corresponds to the high-field limit 1 /�. The two arrows mark the
predicted location of the critical fields, �c=s2�1−r�.

FIG. 4. Field dependence of the mobility with the MA rate and
with an energy correlation decaying exponentially. The dashed lines
correspond to Eq. �25� and the solid line corresponds to 1/�. The
two arrows mark the predicted location of the critical fields, �c

=s2�1−e−1/��.

FIG. 5. Field dependence of the mobility with the SP rate for
both forms of energetic correlation and with s=4. In the power-law
correlation we took �=1 and r=0.7, in the exponential correlation
we took �=1. The dashed lines correspond to Eqs. �24� and �25�,
whereas the solid lines correspond to the high-field limit of the SP
rate, Eq. �21�. The two arrows mark the predicted location of the
critical fields, �c=1+ �s2 /2��1−r /2� in the power-law case, and
�c=1+ �s2 /2��1−e−2/�� in the exponential case.
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implies that in the presence of a power-law decaying corre-
lation

�pow = 2�r	2ea/�kT�3, �28�

a result already known from Ref. 5. The approximate expres-
sion �25� does not have an exact PF field dependence but
only an approximate one. The argument of the exponential,
F���=��−�� log��� /s2�, can be approximated by �s2 /4�
��1+log 4�+s log 4����−s /2� in the low field region.
Therefore, in the presence of an exponential correlation one
has

�exp = �log 4���	2ea/�kT�3. �29�

Both factors � contain the same T−3/2 dependence. In Fig. 6
we illustrate how well the field dependence of the mobility
can be represented by a pure PF dependence using the factors
� of Eqs. �28� and �29�. In the figure we reproduce the low
field region of some of the curves shown in Figs. 3–5 to-
gether with the PF fit. The fit ignores the field dependence of
the prefactors in Eqs. �24� and �25�. The range of fields
where the relative error, ��−�fit� /�, is within 10% is some-
what limited for the MA rate: 0.86���1.88 for the power-
law correlation and 2.56���4.24 for the exponential cor-
relation, and quite large for the SP rate: 0.46���4.24 for
the power-law case and 0.86���6.30 for the exponential
correlation. Interestingly enough the exponential correlation
has a wider range of pure PF dependence than the power-law
correlation, for both rates. With regard to the precision with
which the PF dependence can be inferred from a time-of-
flight measurement of the mobility see Ref. 17.

It is evident that the PF field dependence can be obtained
either with a power-law correlation or with an exponential
correlation and that the temperature dependence of the factor
� does not distinguish between the two forms of correlation.
The field dependence of the mobility would distinguish be-
tween the two forms of hopping rates only at fields ��s2,
see Fig. 6. For a=10 Å, 	=100 meV and at room tempera-

ture one has to have E�4�106 V/cm. To push this field to
lower values requires more ordered samples, higher tempera-
tures and larger average hopping distances.

These results are based on an analytical solution of a 1D
model for the organic material. What gives us confidence
that these results are still valid in a 3D version of our model
are: �i� the results of the simulations of Ref. 6 that validated
the 1D results of Ref. 5, whose analysis were on the same
line as ours but restricted to a symmetric hopping rate and a
power-law correlation, �ii� the 3D simulation of Ref. 8 on a
system with SP hopping rate and power-law correlation that
validated the 1D model of the same reference and �iii� the
earliest simulation of a correlated system, Ref. 4, that treated
a system with MA hopping rate and with short range corre-
lations, not exponential though. In this work it was qualita-
tively found that the factor � increases with the range of
correlations but, since the work was not accompanied by an
analytical 1D model, the dependence of the PF factor � on
the temperature and on the correlation length, that we estab-
lished to be in the form of Eq. �29� when the correlation
decays exponentially, was not obtained.

In fact, the mobility in 3D for the MA hopping rate and
power-law correlation was shown6 to depend on temperature
and field as exp�−�3s /5�2+0.78�s−2/�s��r��, compare with
Eq. �24�. This indicates that the � factor is smaller in 3D in
comparison to the 1D result for the same amount of disorder.
The same type of effect was seen in the case of the Marcus
rate, see Ref. 8.

V. CONCLUSION

The main results of this work are: �i� the exact expression
for the average transit time in a one-dimensional model of a
time-of-flight experiment performed on an organic insulator,
Eq. �10�, �ii� the exact average of its simplified version with
a general, correlated, Gaussian distribution of site energies
for both the Miller-Abrahams, Eqs. �16� and �17�, and the
small-polaron hopping rates, Eqs. �18� and �19�, �iii� the ex-
pression for the critical fields, that mark the transition from
the disorder dominated to the hopping rate dominated mobil-
ity, in the MA and SP cases, showing the influence of the
correlation, Eqs. �20� and �21�, and �iv� the expression of the
PF factor � in the case of an exponential correlation, Eq.
�29�.

We used the general expressions of the average arrival
time to compare two forms of energy correlation: the power-
law, that had already been discussed along these lines in
Refs. 5 and 8, and the exponentially decaying correlation,
not yet discussed in the literature although being the proto-
type for short range correlations of any kind. We found that
the mobility contains a PF field dependence at low fields in
both cases. In the power-law case one must have an exponent
exactly equal to one whereas in the exponential case the
correlation length has to be of the order of the lattice spacing
in order for the field range of PF behavior to be significant.
We found the explicit temperature and correlation length de-
pendence of the factor � in the exponential case, Eq. �29�,
and verified that it has the same temperature dependence as
the factor � in the power-law case with unit exponent.

FIG. 6. Field dependence of the mobility for both forms of
energetic correlation and both forms of hopping rate. The disorder
parameter was taken to be s=4. In the power-law correlation we
took �=1 and r=0.7, in the exponential correlation we took �=1.
The solid lines correspond to a PF fitting using the parameter � of
Eqs. �28� and �29�.
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With regard to the form of the hopping rate, its mark on
the field dependence of the mobility only shows up at fields
above 	2 / �eakT�, in fact the precise expression for the criti-
cal fields for both rates and for an arbitrary correlation was
obtained, see Eqs. �20� and �21�. At low fields the only char-
acteristic that distinguishes SP rate from MA rate is the fac-
tor exp�−Ep /4kT� that makes the mobility of the former case
smaller than the latter case, assuming the same prefactor 
0
in both rates. For further discussions on this point see Ref. 8.
To our knowledge the measurement of the mobility has not
yet provided a clear indication of the underlying hopping
mechanism in the organic.

With regard to developments of the present work we
need: �i� a 3D simulation with an exponential correlation to
verify if the factor � predicted in Eq. �29� keeps its form.
Based on the 3D simulations of the power-law case,6 that
confirmed factor � found in the 1D analytical model,5 we
suspect that the same will happen for the exponential corre-
lation, �ii� to verify how the off-diagonal disorder, that adds a
random prefactor in the hopping rate proportional to the ex-
ponential of the overlap integral of the molecular orbitals,3

modifies our results and �iii� to check if the positional disor-
der, that makes the electrostatic energy of the molecular or-
bitals to depend on the random location of the various mol-
ecules, has an influence on the mobility field dependence, in
this regard see Ref. 18.

APPENDIX: CORRELATED ENERGY DISTRIBUTION

To establish the notation used in the text we list bellow
some formulas for a set of N Gaussianly distributed corre-
lated stochastic variables, �= ��1 , . . . ,�N�.

First the full distribution function

P��� =
1

��2��N�G�
e−�1/2��·G−1·�T

, �A1�

where �G� is the determinant of the matrix G.
This distribution is normalized and the following averages

can be readily obtained

��i� = 0, �A2�

��i� j� = Gij , �A3�

�ec·�� = e�1/2�c·G·c, �A4�

where c is a constant vector �independent of ��.
The reduced distribution functions, obtained by integrat-

ing �A1� over a subset of ��1 , . . . ,�N	, are also Gaussian. We
define the following submatrices of the G matrix

g�i� = Gii, g�i, j� = �Gii Gij

Gji Gjj
�, etc. �A5�

The n-reduced distribution function is

p��i, . . . ,�k� =
1

��2��n�g�i, . . . ,k��
e−�1/2��·g�i, . . . ,k�−1·�,

�A6�

where �= ��i , . . . ,�k� is an n vector. In particular, the one-
reduced distribution is

p��i� =
1

�2��Gii�
e−�1/2��i

2/Gii. �A7�

In the text we assumed spacial uniformity so that the pair-
correlation Gij only depends on �i− j�. We therefore defined
G�i−j�=Gij. Equations �17� and �19� are averages involving at
most three Gaussian variables

� � � d�kd�nd�n+1
exp���n − �k − �n − k�eEa�/kT�

�n

�p��k,�n,�n+1� , �A8�

and can be explicitly evaluated both for the MA rate, �n
=
0 min�1,exp���n−�n+1+eEa� /kT�	 and for the SP rate,
�n=
0 exp�−��n−�n+1+eEa−Ep�2 /4kTEp�.
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