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We investigate the effect of orbital overlap on optical matrix elements in empirical tight-binding models.
Empirical tight-binding models assume an orthogonal basis of �atomiclike� states and a diagonal coordinate
operator which neglects the intra-atomic part. It is shown that, starting with an atomic basis which is not
orthogonal, the orthogonalization process induces intra-atomic matrix elements of the coordinate operator and
extends the range of the effective Hamiltonian. We analyze simple tight-binding models and show that non-
orthogonality plays an important role in optical matrix elements. In addition, the procedure gives formal
justification to the nearest-neighbor spin-orbit interaction introduced by Boykin �Phys. Rev. B 57, 1620
�1998�� in order to describe the Dresselhaus term which is neglected in empirical tight-binding models.
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I. INTRODUCTION

The tight-binding �TB� approach to electronic structure is
one of the most used methods in solid state systems.1 The
empirical tight-binding �ETB� method, which dates back to
the work of Slater and Koster,2 assumes mostly two-center
approximation and the matrix elements of the Hamiltonian
between orthogonal and atom-centered orbitals3 are treated
as parameters fitted to experiment or first-principles calcula-
tions. ETB is widely employed to the description of elec-
tronic structure of complex systems4 like interfaces and de-
fects in crystals, amorphous materials, nanoclusters, and
quantum dots because it is computationally efficient �up to
three orders of magnitude faster than the ab initio density
functional methods� and provides physically transparent re-
sults. Many calculations consider just the nearest-neighbor
Hamiltonian with fewer parameters but with additional orbit-
als introduced.5 To consider a higher accuracy, the range of
the Hamiltonian is extended to few nearest-neighbor shells
�up to the first three shells� and, therefore more fitting
parameters.6 However, the use of a nonorthogonal formalism
might scale back the range of the Hamiltonian having the
additional fitting from the overlap matrix. In some
instances,7 when strain is present, nonorthogonality is in-
voked implicitly to accommodate the changes of the on-site
energies due to local displacements in addition to the well
known scaling of the transfer integrals.8 A nonorthogonal
formalism has also a less obvious advantage. Because they
have a longer range than the atomic orbitals, the orthogonal-
ized orbitals samples the local environment, making them
better suited for transferability to complex systems.9

Calculation of optical spectra in the ETB formalism re-
quires the knowledge of additional parameters: the momen-
tum or velocity matrix elements between initial and final
states. In the early work, momentum matrix elements were
considered as extra parameters fitted to the experimental or
first-principles calculated dielectric function. However, ETB
has been extended to include the interaction with electro-
magnetic fields10 by making the substitution p= �m0 /���kH,
such that dielectric function and other optical properties can

be calculated without additional parameters. The scheme is
based on the Peierls substitution of Hamiltonian matrix
elements11 allowing us to calculate directly the momentum
or velocity matrix elements. In Refs. 12 and 13 it is shown
that the substitution p= �m0 /���kH leads to the neglect of the
intra-atomic momentum matrix elements or, equivalently, the
coordinate operator is diagonal in the subsequent basis as we
will indicate below. However, the Peierls-tight-binding �i.e.,
zero intra-atomic position parameters� has been successfully
used in Ref. 14. Pedersen et al.13 introduced an additional
momentum matrix element to accommodate the intra-atomic
transitions. In contrast, Boykin and Vogl15 showed that add-
ing intra-atomic terms suppresses the gauge invariance. To
circumvent this problem Foreman16 used group theory argu-
ments to construct the basis in which intra-atomic matrix
elements are present and the lattice gauge theory to define
the interaction of electromagnetic fields with electrons in
crystals.

The effect of orbital overlapping on electronic structure
has been studied for simple systems.17,18 In this paper we
investigate the optical matrix elements in the presence of
nonorthogonal �overlapping� orbitals. As far as we know, no
study has been done in this direction. We show that intra-
atomic contributions of the coordinate operator are induced
simply by the orthogonalization process. The orthogonaliza-
tion process induces terms equivalent with more distant in-
teractions, such that it gives formal justification for the
nearest-neighbor spin-orbit interaction introduced in Ref. 19
for the TB model with spin-orbit interaction.20 The analysis
of simple systems shows that the nonorthogonal orbitals play
an important role on optical matrix elements. We reanalyze
the example of Pedersen et al.13 to show that the nonorthogo-
nal orbitals improve the optical matrix elements. In the case
of graphene, the overlap and TB parametrization are crucial
in explaining the experimental data. Moreover, similar argu-
ments can be employed in the ab initio tight binding linear
muffin-tin orbitals �TB-LMTO� method,21 leading to faster
calculations of optical matrix elements in a parameter free
theory.
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II. TIGHT-BINDING CALCULATIONS AND
NONORTHOGONALITY

To fix ideas we consider a localized basis ��R�, where � is
the orbital type and R is the center of the orbital �Löwdin
orbitals�.3 The crystal Hamiltonian H is diagonalized within
the Bloch sums of the localized basis

��k� = 1/�N�
R

eikR��R� �1�

as follows:

�nk� = �
�

cn��k���k� , �2�

with

H�k��nk� = Enk�nk� . �3�

The kinematic momentum operator involved in optical tran-
sitions is defined as

p =
m

i�
�r,H� . �4�

In the crystal momentum representation,22 the kinematic mo-
mentum operator is

p =
m

�
�kH�k� , �5�

where H�k� is the Hamiltonian in the crystal momentum rep-
resentation. Equation �5� holds in a complete basis as well as
in an incomplete basis. However, in an incomplete basis the
momentum operator p and coordinate operator r do not sat-
isfy the canonical commutation relations leading to different
formula for effective masses and Peierls-coupling formula
involving the vector potential. These issues are detailed in
Refs. 23 and 24. The coordinate operator r is considered to
have the following matrix elements in the localized basis
��R�:

���R��r��R� = �R���� + d�����RR�, �6�

since the overlapping of the orbitals belonging to different
atoms is supposed to be small. Here d��� is the intra-atomic
matrix element. In the usual tight-binding theory the coordi-
nate operator is diagonal.10 Therefore the intra-atomic parts
are neglected12,13 leading to no need of other fitting param-
eters beyond those of the Hamiltonian and to gauge invari-
ance.

Pedersen et al.13 pointed out that there are cases in which
the neglect of the intra-atomic part may conduct to the un-
derestimation of the momentum operator arguing that by us-
ing Eqs. �1�–�4�,

	nk�p�mk� =
im

�
�
�,��

c�n���k�cm��k��k���k�H��k�

+
im

�

�nk − �mk� �

�,��

c�n���k�cm��k�d���. �7�

The neglect of the second term in Eq. �7� reproduces Eq. �5�.

Therefore in the tight-binding basis, which is finite, by using
Eq. �5� one is neglecting the second term in Eq. �7� or the
intra-atomic part.15 This shortcoming happens because the
momentum and position operators do not satisfy the canoni-
cal commutation relations in a finite basis.15 One way to add
intra-atomic terms is the construction of Foreman.16 How-
ever, intra-atomic terms can be induced if one considers a
non-orthogonal basis. To show this, let us have an atomic
basis with nonzero overlapping

���R����R�� = 1 + S���RR� = 1 + S. �8�

The orthogonal basis corresponding to Eq. �8� is �the Löwdin
procedure�

���� = �1 + S�−1/2��� . �9�

In the orthogonal basis an operator transforms according to

A� = �1 + S�−1/2A�1 + S�−1/2. �10�

Formally, expanding Eq. �9� in power series of S we rewrite
Eq. �10� as

A� = A − 1
2 �SA + AS� + 3

8 �ASS + SSA� + 1
4SAS… . �11�

The inverse transform of Eq. �10� has the following expan-
sion:

A = A� + 1
2 �SA� + A�S� − 1

8 �A�SS + SSA�� + 1
4SA�S… .

�12�

Now suppose that in the Löwdin basis the intra-atomic ma-
trix element d��� is zero, such that the Hamiltonian fulfills
the gauge invariance conditions. In the original nonorthogo-
nal �atomic� basis, however, there are intra-atomic elements.
These can be easily seen if one applies the inverse transform
Eq. �12� �Fig. 1�a��. Thus in the atomic basis, up to the sec-
ond order in S, the intra-atomic matrix element is

FIG. 1. �a� Schematic representation of the intra-atomic matrix
elements of the coordinate operator induced by the orbital overlap;
the generic model has two orbitals per site, s-like �solid lines� or-
bitals and p-like �dashed lines� orbitals. We illustrate the matrix
elements r of the coordinate operator in the orthogonal basis by
small dashed arrows, the overlap matrix elements S by dashed ar-
rows, the matrix elements d of the coordinate operator in nonor-
thogonal basis by solid arrows, and the Hamiltonian matrix ele-
ments H in the nonorthogonal basis by dotted arrows. �b� Schematic
representation of the increase in the range of the Hamiltonian in the
orthogonalized basis by using the first order approximation in Eq.
�10�. The long-range matrix element of the Hamiltonian in the or-
thogonal basis connecting site 0 with site 2 for a nearest-neighbor
Hamiltonian is shown by full arrow.
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dR�R�� =
1

8 �
R���

�− rRSR��,R���SR���,R� − SR��,R�SR���,R�rR

+ 2SR��,R���rR�SR���,R�� . �13�

Equation �13� shows us that in the atomic basis the intra-
atomic matrix elements of coordinate operator are nonzero.
Hence, considering the overlap, intra-atomic optical transi-
tions can be incorporated. Although the intra-atomic correc-
tions are second order in the overlap S, the overall correc-
tions to the optical matrix elements are first order in S. In the
same time the range of the Hamiltonian has been increased
by applying the transformation given by Eq. �11� to the
Hamiltonian matrix �Fig. 1�b��. This result suggests that al-
though a nearest-neighbor Hamiltonian might give a good
reproducibility of the electronic structure, it completely
misses the intra-atomic terms of optical matrix elements. The
relationship between the overlap and longer ranged Hamilto-
nians is able to explain the nearest-neighbor spin-orbit inter-
action introduced in Ref. 19 in order to reproduce the
Dresselhaus terms in zinc blend structures. Thus, the spin
orbit contribution to the optical matrix elements, �kHSO�k�,
is nonzero. In the same time the initial prescription given by
Chadi20 is preserved. The overlap and long-range Hamilto-
nians are also closely interrelated in quantum wire transport.
Using nearest-neighbor Hamiltonians, the overlap is crucial
in explaining antiresonances in quantum wires.25 However,
the same antiresonances are reproduced with a Hamiltonian
in which the effect of overlapping has been transferred to the
second nearest-neighbor hoping elements.26

In a recent paper21 it is shown that a piece-wise constant
coordinate operator �and therefore diagonal� in ab initio TB-
LMTO methods is analogous to the coordinate operator in
semi-empirical methods. The most localized representation
�TB representation�, where the Hamiltonian is short ranged,
is not the best for calculations although it is advantageous for
numerical treatments. On the contrary, the coordinate opera-
tor was considered diagonal in the �nearly� orthogonal rep-
resentation �with a long-ranged Hamiltonian� and used in
transport calculations. The results were in very good agree-
ment with the experimental values and with the results with
the exact evaluation of the coordinate operator. Thus nonor-
thogonality plays an important role not only in empirical
models but also in first-principles methods. If one assumes
that the coordinate operator is piecewise constant and that
the assumption is good enough, the calculations of the opti-
cal matrix elements can be obtained faster from electron
band calculations. From Eq. �7�, the k derivative of the
Hamiltonian is calculated by fast Fourier transformations.
Thus it is more computationally efficient than the usual
scheme presented in Ref. 27. However, the applicability of a
piecewise constant coordinate to optical properties of various
physical systems remains to be investigated.

III. OPTICAL MATRIX ELEMENTS IN SIMPLE TIGHT-
BINDING MODELS WITH OVERLAP

In the following we analyze the one-dimensional mono-
atomic crystal with two orbitals per atom, the one-dimen-

sional diatomic crystal with one orbital per atom, and the
two-dimensional graphene.

A. Monoatomic chain with two orbitals per atom

Schematic representation of a monoatomic chain with two
orbitals per atom is given in Fig. 1. In a Bloch basis con-
structed from the overlapping orbitals, the nearest-neighbor
tight-binding Hamiltonian for a monoatomic chain with two
orbitals per site is a 2�2 matrix

H�k� = �ES + 2VSScos�kL� 2iVSPsin�kL�
− 2iVSPsin�kL� EP + 2VPPcos�kL�  , �14�

where ES and EP are the energies of s-like and p-like orbit-
als, respectively, VSS and VPP are the coupling of two nearest
neighbor s-like and p-like orbitals, respectively, and VSP is
the coupling of a s-like orbital with the nearest neighbor
p-like orbital. L is the length of the unit cell and k is the
wave vector. The overlap matrix has a similar form

S�k� = �1 + 2SSScos�kL� 2iSSPsin�kL�
− 2iSSPsin�kL� 1 + 2SPPcos�kL�  . �15�

In the orthogonal basis constructed according to Eq. �9�, the

Hamiltonian matrix H̃ is given by Eq. �10�. The electronic
bands are given by solving the eigenvalue problem

H̃�k��nk�=Enk�nk� and the interband matrix element of the

kinematic momentum operator is p�k�=m /�	1k�H̃��k��2k�,
with H̃� the derivative of H̃ with respect to k. We apply the
above model to approximate the lowest two bands of the
one-dimensional Kronig-Penney model. The Kronig-Penney
model is a set of quantum wells of width a separated by
barriers of height V0 and width b. The case is investigated by
Pedersen et al.13 to suggest the need for intra-atomic contri-
butions to optical transitions. We consider their strong-
coupling case with a=8 Å, b=1 Å, and V0=5 eV. The first
state in the quantum well is an s-like state, while second state
is a p-like state. Accordingly, in the tight-binding counterpart
of the Kronig-Penney model, the overlap matrix elements
SSP and SPP have to be negative. We adopt the same
procedure13 for fitting the energy bands of the Kronig-
Penney model. The absolute values of the overlap matrix
elements are chosen to be the same for SSS, SSP, and SPP. The
results are shown in Fig. 2 for an overlap of 0, 0.03, and 0.05
in comparison with the exact results of the Kronig-Penney
model. While the energy bands are indistinguishable for
tight-binding counterparts and agree well with the exact val-
ues, the interband momentum matrix elements vary and
move toward exact values of the Kronig-Penney model. Be-
cause the absorption spectra are determined by the square
modulus of the momentum matrix elements the above result
is quite remarkable in the following sense as we explain
below. Although we considered the strong coupling case
�thin barriers�, the coupling between s-like and p-like states
is weak �the matrix element VSP is an order of magnitude
smaller than the other matrix elements� such that the electron
bands have almost either s-like or p-like character over the
entire Brillouin zone. Therefore, VSP determines the magni-
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tude of the interband momentum matrix element. In the same

time the validity of p�k�=m /�	1k�H̃��k��2k� is appropriate
for strong interatomic coupling, such that the nearest-
neighbor tight-binding model with orthogonal orbitals is in-
appropriate to calculate optical properties for the above
model. Finally, we want to mention that in one-dimensional
crystals with inversion symmetry the coordinate operator is
diagonal in the basis generated by the Wannier functions.28

Hence, the “closer” to the Wannier functions are the Löwdin
orbitals, the better reproduced are the momentum matrix el-
ements.

B. One-dimensional diatomic crystal with one orbital per atom

The chain is represented by s-like orbitals at positions nL
and p-like orbitals at nL+L /2, where L is length of unit cell
and n is integer. The interaction up to the second-nearest
neighbor is illustrated in Fig. 3. The corresponding Hamil-
tonian matrix is

H = �ES + 2VSScos�kL� 2iVSPsin�kL/2�
− 2iVSPsin�kL/2� EP + 2VPPcos�kL�  . �16�

Similar form holds for the overlap matrix. This can be an
approximate model for superlattices of type II, such as InAs-
GaSB. In the InAs-GaSB superlattice the central feature is
that the top of the GaSb valence band lies higher in energy
than the bottom of the InAs conduction band, such that the
electron and hole wave functions are overlapping. The
electron/hole wave function is modeled by s-like/ p-like or-
bitals. Keeping only the nearest neighbor interaction and
overlap, the effect of overlapping is to decrease the momen-
tum matrix elements as it is shown in Fig. 4. This simple

result might help in explaining the increase of the photolu-
minescence intensity with the reduction of the electron-hole
wave function overlap,29 which is not explained by the em-
pirical pseudopotential calculations used to for this
purpose.30 The empirical pseudopotential method30 used is
nonatomistic, i.e., in their approach the Hamiltonian of the
InAs/GaSb superlattice is constructed from the potential
form factors of the InAs and GaSb bulk constituents. The
potentials of the two bulk constituents are matched continu-
ously at the interfaces such that there are no In-Sb or Ga-As
bonds at the interface as there must be. As pointed out in
Ref. 31 an atomistic description is desired to take into ac-
count charge redistribution, segregation, and interdiffusion at
the interface between InAs and GaSb. In contrast to Ref. 30,
Magri and Zunger31 solve the single-particle Schrödinger
equation for each atom in the structure making their method

FIG. 2. �a� Band structure of the exact Kroning-Penney model
and its approximations with a tight-binding model with overlap �see
the text�. Notice that following the same fitting procedure, the ap-
proximate bands are indistinguishable. �b� Momentum matrix ele-
ments of the exact Kroning-Penney model and its approximations
with a tight-binding model with overlap. Notice the large variation
of the momentum matrix elements with respect to the overlap while
the bands are almost identical.

FIG. 3. Schematic representation of the diatomic linear chain
with one orbital per atom and lattice constant L. The first type of
atoms is depicted as small and full circles and the second type as
stripped circles. The interactions between atoms are shown by
arrows.

FIG. 4. �a� Optical matrix elements of the tight-binding model
with overlap for a diatomic linear chain with one orbital per atom.
�b� Energy bands of the tight-binding model with overlap for a
diatomic linear chain with one orbital per atom. Full line is for 0
overlap, dash line for a 0.01 overlap, dot line for a 0.05 overlap, and
dash-dot line for a 0.1 overlap. We choose arbitrary units because
the system is rather generic.
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atomistic. In this sense, TB models preserve the atomistic
description of interfaces.

C. Graphene

Recently, graphene as a two-dimensional sheet of graphite
has been widely studied in the context of carbon nanotubes.32

Graphite consists of a stack of graphene sheets piled up and
weakly interacting one with each other. Graphene has a hex-
agonal structure with two atoms in the unit cell �Fig. 5� and
very strong sp2 bonds, causing a threefold coordinated planar
structure. The remaining pz orbitals are perpendicular to the
plane, forming � �bonding� and �* �antibonding� states. The
overlap of � electrons with the intraplane sp2 orbitals is
small and � and �* electronic states dominate the physical
properties at low energy, around Fermi level. From Fig. 5 we
easily deduce the nearest-neighbor tight-binding Hamiltonian
and overlap matrix for � and �* states as

H�k� = � EP 	0f�k�
	0f*�k� EP

 �17�

and

S�k� = � 1 s0f�k�
s0f*�k� 1

 , �18�

with f�k�=eikya/�3+2e−ikya/2�3cos�kxa /2� , 	0 is the nearest-
neighbor transfer integral, Ep is the energy of � orbitals, s0 is
the nearest-neighbor overlap integral, a �=0.246 nm� is the
lattice constant of graphite, and k is the two-dimensional
wave vector. Experimental data or first principles calcula-
tions put 	0 between 2.5 and 3 eV, Ep=0 eV, and s0 is found
to be below 0.1.33 Due to their similar form, Hamiltonian
matrix and overlap matrix have the same eigenvectors �u±�
= �1/2 , 
e−i� /2�, with � defined as f�k�= �f�k��ei��k�

=w�k�ei��k�. This yields the electronic eigenvalues

E±�k� =
Ep 
 	0w�k�
1 
 s0w�k�

. �19�

We note that the overlap makes the energy bands asymmetric
with respect to the Fermi level and has large influence on

bands. The full form of the Hamiltonian with overlap, H̃, is

H̃�k� =
1

1 − s0
2w2�k�

� EP − s0	0w2�k� �	0 − s0Ep�f�k�
�	0 − s0EP�f*�k� EP − s0	0w2�k�  .

�20�

Since s0 is less than 0.1 we can safely discard the prefactor in
Eq. �20�. The diagonal part of the Hamiltonian matrix is
proportional to the unit matrix in both cases, with or without
overlap, and it does not contribute to the interband momen-
tum matrix element. Therefore, one can easily calculate the
intraband momentum matrix element in a compact form as

p =
m

�
	u+� � H̃�k��u−� =

im

�
�	0 − Eps0�

w�k�
1 − s0

2w2�k�
� ��k� .

�21�

Equation �21� shows us that for the most used parametriza-
tion �Ep=0 eV�, the overlap does not play any role on the
interband momentum since s0 is less than 0.1 and we can
safely discard the second order term is s0. However, in order
to fit the experimental dielectric function with the nearest-
neighbor model, orbital overlapping is invoked in Ref. 34. It
was found that 	0=2.7 eV and Ep=−5 eV by assuming s0
=0.1. With this parameterization the numerical results are
shown in Fig. 6 for the electronic bands and momentum
matrix elements. The momentum matrix elements for the
case with overlap are practically the same as those of the first
order approximation Hamiltonian �Eq. �11��. In the same
time, the electronic bands generated by the first order Hamil-
tonian are different from those of the full Hamiltonian with
overlap.

FIG. 5. �a� The unit cell of two-dimensional graphite is shown
as the dotted rhombus. �b� The Brillouin zone of two-dimensional
graphite is shown as the shaded hexagon. ai, and bi, �i=1;2� are
basis vectors and reciprocal lattice vectors, respectively. Energy dis-
persion relations and optical matrix elements are calculated along
the perimeter of the dotted triangle connecting the high symmetry
points, �, K, and M.

FIG. 6. �a� Optical matrix elements of the tight-binding model
with overlap for the two-dimensional graphene. Since we are inter-
ested in the relative change of the momentum matrix elements with
respect to overlap, arbitrary units are used. �b� Energy bands of the
tight-binding model with overlap for the two-dimensional graphene.
The values used are the following: 	0=2.7 eV, Ep=−5 eV, and s0

=0.1. Full line is for s0=0, dot line is for s0=0.1, and dash line
is for the first order approximation Hamiltonian �Eq. �12�� with
s0=0.1.
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IV. CONCLUSIONS

We investigated the influence of the nonorthogonal orbit-
als on optical matrix elements in tight-binding models. A
diagonal coordinate operator in the orthogonalized basis not
only ensures the gauge invariance but also induces intra-
atomic contributions to the coordinate operator in the origi-
nal �atomlike and nonorthogonal� basis. Moreover, the
Hamiltonian matrix in the orthogonal basis is longer ranged
than the Hamiltonian matrix in the initial nonorthogonal ba-
sis. As a consequence, one can justify the nearest-neighbor
interaction of the spin-orbit coupling.19 It enables to describe
the Dresselhaus term, which is not considered in the usual
treatment of the spin-orbit coupling.20

Simple models are analyzed. The first model studied was
the monoatomic linear chain with two orbitals per site as an
approximation to the Kronig-Penney model. The model was
also used in Ref. 13 to show the role played by the intra-
atomic matrix elements of the momentum operator. We
found that, although the tight-binding model with overlap
exhibits almost the same energy bands as the one with or-
thogonal orbitals, the optical matrix elements are closer to
the exact matrix elements of Kronig-Penney model. The sec-

ond model studied was the biatomic linear chain with one
orbital per site. This case showed that optical matrix ele-
ments decrease with overlap increasing. We also analyzed
the optical matrix elements of the tight-binding model for
two-dimensional graphite at low energies �between � and �*

electronic states�. Optical matrix elements remain unchanged
with respect to the overlap when the usual parametrization
EP=0 eV is adopted, while the bands change drastically.
However, nonvanishing orbital overlapping and EP=−5.0
eV are needed for better agreement with experimental data.34

In complete analogy with the above arguments, one can
use a piecewise constant coordinate operator in the orthogo-
nal representation of tight-binding linear muffin-tin orbitals
methods21 to calculate optical spectra from ab initio. The
procedure will be faster because it will enable to calculate
optical spectra directly from energy band calculations by em-
ploying the fast Fourier transformation and without directly
evaluating the momentum operator.
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