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In this paper we explore the influence of self-affine roughness on the phase maps for switches used in nano-
and/or microelectromechanical devices in the presence of the Casimir and electrostatic forces. It is shown that
the phase map depends significantly on the characteristic roughness parameters �roughness amplitude w,
correlation length �, and roughness exponent H�. The phase maps depend sensitively on the short wavelength
roughness as it is described by the roughness exponent H. For conditions close to instability the precise
knowledge of the latter is highly important since minor variations of H�±0.05� cause the system to become
unstable that if both electrostatic and Casimir forces are acting.
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The design of micro- and/or nanoelectromechanical
�MEMS/NEMS� applications such as nanotweezers, nanos-
cale actuators, etc., requires, in many cases, the use of
microswitches.1–10 A typical switch is constructed from two
conducting electrodes having one usually fixed and the other
one moving but suspended by the use of a mechanical spring.
With the application of a voltage difference between the two
electrodes, the movable electrode moves towards the ground
electrode because of the electrostatic force. At a certain volt-
age, the moving electrode becomes unstable and collapses or
pulls in to the ground plate.3 A two-degrees of freedom
pull-in model is presented in Ref. 4 for a direct calculation of
the electrostatic actuators. Residual stress and the fringing-
field effect have also been shown to have great influence on
the behavior of rf switches and to strongly influence their
failure characteristics.5,6

The pull-in voltage when van der Waals forces are present
between the plates was studied in Ref. 11 by ignoring its
influence on the pull-in gap. However, in Ref. 12 the effect
of the van der Waals force on the pull-in gap was investi-
gated and an analytical expression of the pull-in gap and
pull-in voltage based on a more general model was
presented.12 The dynamical behavior for nanoscale electro-
static actuators was studied by considering the effect of the
van der Waals force in Ref. 13. In addition, the Casimir
effect on the pull-in gap, pull-in voltage, and phase maps of
NEMS switches was also studied in Ref. 10. An approximate
expression of the pull-in gap with the Casimir force was
presented by using the perturbation theory.14 Notably, the
Casimir effect is a prediction of quantum electrodynamics
that results from the perturbation of zero point vacuum fluc-
tuations by conducting plates.16–18

Recently, the influence of the Casimir force was studied
on the nonlinear behavior of nanoscale electrostatic actuators
for the case of flat electrodes.15 It was also found that the
phase maps show periodic orbits to exist around the Hopf
point, and a homoclinic orbit to pass through an unstable
saddle point.15 Up to now the previous studies did not con-
sider the influence of plate roughness through the Casimir
force and the electrostatic force on the phase maps. More-

over, in many cases the roughness of deposited metal layers
�e.g., by sputtering, thermal evaporation, e-beam evapora-
tion, etc.� is termed as self-affine19 and its influence will be
considered here in significant detail in terms of analytic mod-
els for the power spectrum in Fourier space.

Furthermore, we consider here a parallel plate configura-
tion with the electrostatic force and Casimir force pulling the
plates together, while an opposing elastic restoring force
�with mass-spring form� is present. The initial plate distance
is d, the average flat plate surface area Af, the plate spring
constant k and its mass m, the voltage across the plates V,
and �o the vacuum permittivity. The restoring and electro-
static forces for a plate separation r��d� are given by15

Fk = − k�d − r� and Fe �
�oAr

2

V2

r2 . �1�

Ar is the surface area of a rough plate surface. Assuming
single valued roughness fluctuations h�R� of the in-plane po-
sition R= �x ,y� the Casimir energy is20

Ecr � Ecf +
1

2
� �2Ecf

�r2 ��
m=1

2 � d2q

�2��2 Pm�q��	hm�q�	2
 , �2�

with Ecf =−��2c /720r3�Af, and �	hm�q�	2
 the roughness
spectra ��hm
=0�. For r��P with �P the surface plasmon
wavelength we have Pm�q�=qr /3�qr�1�.20 Furthermore,
Eq. �2� yields, assuming the same roughness for both plates,

Fcr = −
dEcr

dr
� Fcf�1 +

2Cr

3r
�,

Cr = �
Qd

Qc

q�	hm=1,2�q�	2

d2q

�2��2 , �3�

with Qd=2� /d and Qc=� /ao where ao is of the order of
atomic dimensions.

If we set u=r /d, M =m /kT2, �= t /T �T a characteristic
time�, 	=�2Af /kd5, and 
=�oAfV

2 /kd3,15 the second law of
Newton m�d2r /dt2�= �	Fk	− 	Fe+Fcr	� that describes the plate
motion takes the alternative form
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with meaningful solutions for 0�u�1 and Ar=AfRr. More-
over, for Gaussian height distribution21 we have Rr
=�0

+�e−y�1+rms
2y�1/2dy, where the average local surface

slope rms= ��	�h	2
1/2 is given by rms

= ��0
Qcq2�	h�q�	2
d2q / �2��21/2 �Ref. 22�.

A wide variety of surfaces and interfaces that appear in
films grown under nonequilibrium conditions possess the so-
called self-affine roughness.19 In this case the roughness
spectrum shows a power law scaling19 �	h�q�	2
�q−2−2H if
q��1 and �	h�q�	2
�const if q��1. This is satisfied by the
analytic model �	h�q�	2
= �2�w2�2 / �1+aq2�2�1+H23 with a
= 1

2H�1− �1+aQc
2�2�−H�0�H�1�, a= 1

2 ln�1+aQc
2�2��H

=0�. Qc=� /ao with ao of the order of atomic dimensions.
Small values of H��0� characterize jagged or irregular sur-
faces; while large values H��1� surfaces with smooth hills
and valleys.19 For other models see also Refs. 24 and 25.

The calculations of the phase maps were performed with
lower roughness cut-off ao=0.3 nm, effective system mass
M =1, and initial conditions u=0.67 and du /d�=0 �at �=0�.
Figure 1 shows calculations of phase maps �du /d� vs u� for
various roughness consecutive roughness exponents H. With
decreasing roughness exponent H �or for a roughened sur-
face at short wavelengths� the phase map is squeezed in size
in a rather sensitive manner even for consecutive exponents.
This is rather significant since under normal experimental
conditions the roughness exponent H is determined with ac-
curacy �e.g., by scanning probe microscopy, x-ray reflectiv-
ity, electron diffraction, etc.19� of approximately
±�0.05–0.1�. Thus, the latter has significant implications on
the accurate prediction of the phase maps for MEMS/NEMS
switch systems and their stability.

For lower roughness exponents H��0.7� an instability de-
velops that is due to the fact that the surface area term in-
creases leading to larger effective parameters 
Rr approach-

ing forbidden values that prevent stable behavior for 0�u
�1. In the weak roughness limit �or rms�1�, which is the
case that Eq. �2� for the Casimir force applies, we have Rr
�1+rms

2 /2, which gives the correction to the parameter 
,
namely 
rms

2 /2. Notably in terms of the analytic model for
�	h�q�	2
 we have also the analytic form rms

= �w /��2a�(���1+aQc
2�2�1−H−1 / �1−H��−2a)1/2 �Ref. 22�

and thus an analytic correction for 
 �indeed 
�0.2 for flat
surfaces15� for any roughness exponent H.

Furthermore similar behavior develops with increasing
the long wavelength roughness parameter w while decreasing
the lateral correlation length � as shown in Figs. 2 and 3. In
all cases surface roughening �at short and/or long lateral
roughness wavelengths� leads to squeezed phase maps.
Clearly if we compare Figs. 1–3, the highest sensitivity to-
wards unstable behavior arises from the roughness param-
eters w and H, with the roughness exponent H having the

FIG. 1. Calculation of phase maps du /d� vs u for ao=0.3 nm,
M =1, d=200 nm, w=5 nm, �=200 nm, a=10, 
=0.1, and various
consecutive values of the roughness exponent H as indicated.

FIG. 2. Calculation of phase maps du /d� vs u for ao=0.3 nm,
M =1, d=200 nm, w=5 nm, a=10, 
=0.1, roughness exponent H
=0.9, and correlation lengths � as indicated.

FIG. 3. Calculation of phase maps du /d� vs u for ao=0.3 nm,
M =1, d=200 nm, �=100 nm, a=10, 
=0.1, roughness exponent
H=0.8, and various roughness amplitudes w as indicated.
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most sensitive contribution. In this case a change of the latter
even with the limits of its measurement can lead to signifi-
cant changes of the phase maps and to unstable behavior. On
the other hand, the effect of the roughness amplitude w be-
comes significant when the latter changes by more than an
order of magnitude towards the strong roughness limit that is
dictated by local surface slopes rms�1.

Clearly if we compare Figs. 1–3 where both attractive
�Casimir and electrostatic� forces contribute with Figs. 4�a�
and 4�b�, the presence of the Casimir force, although weak,
can strongly alter the phase maps of the device. Despite the
fact that the major influence of the surface roughness comes
through the electrostatic term, the presence of the Casimir
force modifies the system motion and confines to permissible
values u�1. Clearly the influence of the roughness exponent
H plays a prominent role as Figs. 1 and 4 clearly shown.
Therefore, in devices where metallic surface layers are de-
posited in between moving surfaces, accurate roughness
characterization is required in order to gauge properly the
morphology influence on device performance.

Finally, we should mention that in this paper the Casimir
force and energy are calculated assuming perfect conductors.
However, the Casimir force and energy depend on the dielec-
tric properties of the materials in a complicated manner.26 On
the other hand, in NEMS and MEMS, real materials are in-
volved and dielectric properties are important for the Casimir
force. If, however, we restrict ourselves to the influence of
roughness, the assumption of perfect conductors is valid.
Moreover, we should note that the perturbative calculations
of the Casimir force always lead to a roughness correction
that is larger than the result obtained within the proximity
force approximation20,27 �PFA�. In the present paper we con-
sider our calculations for the case of perfectly reflecting mir-
rors assuming plate separations r��P,20 while for shorter
distances the effect of finite conductivity should be
considered.27

In conclusion, phase maps of switches with self-affine
rough plate surfaces where both electrostatic and Casimir
forces are present appear to depend sensitively on the short
wavelength roughness as it is described by the roughness
exponent H. For situations close to instability the precise
determination of the latter is highly important. We should
point out that although the major influence of the surface
roughness comes through the electrostatic term, the presence
of the Casimir force modifies the system motion and makes
more sensitive its dependence on the characteristic roughness
parameters. Therefore, proper surface roughness measure-
ments are necessary to characterize the morphology �e.g., by
x-ray scattering techniques, electron diffraction, scanning
probe microscopy,19,23–25 etc.� at all relevant roughness
wavelengths in order to gauge its influence on the Casimir
and electrostatic forces.
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