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We analyze spin-dependent tunneling in resonant structures using analytic solutions of the time-dependent
Schrödinger equation for the spinor components of the problem. These solutions predict a filtering mechanism
that occurs in the time domain even for unpolarized injection. The filtering is characterized by dramatic time
variations of the spin polarization of tunneling electrons. The time dependence of the transmitted spin critically
relies on the interplay between split resonances and the energy at which the electrons are injected into the
system. The spin filtering is produced by the tunneling time delays of different spin species introduced by the
spin-orbit coupling. We derive a simple expression for the dynamic polarization, which shows excellent
agreement with the exact numerical solution. The spin dynamical filter should be evident in pulsed injection
and probing of charge carriers, and may allow for direct measurement of spin-orbit parameters.
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Spin-dependent transport in semiconductor heterostruc-
tures is an active area of research in the growing field of
spintronics. The ability to manipulate electron spins without
magnetic fields1 in nanostructures is of critical importance
for the design of spin-injection devices and spin filters.

One of the crucial aspects in the control of spin transport
is to understand the effects of the underlying spin-orbit �SO�
interaction on the quantum states of the system. In closed
semiconductor quantum dots, it has been recently shown that
both Rashba and Dresselhaus SO Hamiltonians shift the en-
ergy levels without breaking their spin degeneracy.2 These
bound states exhibit spin splitting only with the application
of an external magnetic field. In contrast, for open systems
where electron transport is governed by resonant tunneling, a
clear splitting of the resonance levels can be accomplished
even in the absence of the Zeeman mechanism, provided that
the incidence of electrons on a heterojunction plane is tilted
rather than strictly perpendicular. The relevance of the non-
zero parallel component �k��0� of the wave vector was no-
ticed early,3 but its importance in SO effects on tunneling
electrons and related quantities is more recent.4–6 For hetero-
structures made of semiconductor material with bulk inver-
sion asymmetry, Perel et al.5 have demonstrated that the k3

Dresselhaus contribution to the effective Hamiltonian of
the system couples the spin states and the dynamics of con-
duction electrons. As shown by Glazov et al.6 this SO cou-
pling leads to a clear spin splitting of the transmission reso-
nances of a double-barrier �DB� system for the different spin
species.

The success of experimental techniques based on Kerr
and Faraday rotation to measure dynamically the electron
spin as it moves in semiconductor heterostructures,7 strongly
motivates theoretical study of time-dependent tunneling phe-
nomena considering SO effects. Even though there is impor-
tant theoretical work of spin-dependent tunneling,4–6 the dy-
namical aspects remain mostly unexplored. It is expected
that the spin splitting of the resonance levels has important
consequences on the transient regime of tunneling. In the
present paper, we analyze the spin-dependent tunneling in
DB resonant structures using a quantum-dynamical approach

that presents analytic solutions of the time-dependent
Schrödinger equation for the spinor components of the prob-
lem, showing that quantum tunneling produces a natural spin
filtering mechanism in the time domain. The spin filtering
occurs as a consequence of the different time delays for the
tunneling of the two spin species. We find spin-polarized
tunneling amplitudes changing with time constants of �1 ps
for typical structures. These time scales make the effect suit-
able for experimental verification and in principle allow for
the direct measurements of SO Dresselhaus parameters by
optical means.

In the approximation introduced by Perel et al.5 �valid for
low kinetic energies�, we can write the k3-Dresselhaus con-
tribution as,

ĤD = ��kx�̂x − ky�̂y��2/�z2. �1�

The role of other SO terms is small in this low-energy re-
gime, although they exhibit interesting angular and energy
dependence.8,9 It is straightforward to show that the net ef-

fect of ĤD is a renormalization of the effective mass of the
electron, so that the effective Hamiltonian for the spinor S±
in each semiconductor layer can be written as6

Ĥ± =
p2

2m±
+

p�
2

2m* + V�z� , �2�

where m±= �1±2�m*k� /�2�−1, S±= �1, �ei��T /�2, the in-
plane momentum is p� = p��cos � , sin �� with p� =�k�, and p
=−i�� /�z. The index � in the Hamiltonian and other quan-
tities refers to the rotated spin states S±. The potential V�z�
consists of a symmetrical DB system that extends along the z
axis.

The time-dependent Schrödinger equation

i�
�

�t
�± = Ĥ±�±, �3�

is solved for �±=�±�z ,k , t�exp�ik� ·r− iE�t /��, leading to an
independent equation for �±�z ,k , t�. Exact analytic solutions
can be obtained for an initial condition of plane waves com-
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ing from the left, �0=	�−z��eikz−e−ikz�, where 	 is the
Heaviside function.

Since the spinor equation leads in this case to decoupled
differential equations for each spinor component �±, one can
follow along the procedure for the �=0 case10 and the formal
solutions for z
L�t�0� are

�± = Tk
±M�yk

±� − T−k
± M�y−k

± � − �
n=−�

�

TnM�ykn
±

± � . �4�

The quantities Tq
± refer to transmission amplitudes for q=

−k, and +k, and the factors Tn
±=2ikun

±�0�un
±�L�exp

�−ikn
±L� / �k2− �kn

±�2� are given in terms of the resonant eigen-
functions 	un

±�z�
 of the time-independent Schrödinger equa-
tion with outgoing boundary conditions. The corresponding
complex energy resonant eigenvalues are given by En

±

=�2�kn
±�2 /2m*=En

±− in
± /2, where kn

±=an
±− ibn

± �bn
±�0 and

a−n
± =−an

±�. The sum runs over the complex poles 	kn
±
 distrib-

uted in the third and fourth quadrants in the complex k plane.
The �Moshinsky� M functions are defined as M�yq

±�
=exp�im±z2 /2�t�w�iyq

±� /2, in terms of the complex error
function w�z�=exp�−z2�erfc�−iz�, with arguments yq

±

=e−i�/4�m± /2�t�1/2�z−�qt /m±�, where q=−k , +k ,kn
± ,k−n

± .
With the above analytic solutions, we can calculate the

dynamic spin polarization at any position z
L. At the right
edge of the DB system z=L, we define

P�E,t� =
��+�L,E;t��2 − ��−�L,E;t��2

��+�L,E;t��2 + ��−�L,E;t��2
. �5�

This quantity provides information about the spin state of the
tunneling electrons that emerge from the right edge of the
system, as a function of both time t and energy of the inci-
dent wave, E=�2k2 /2m*.

Let us consider a DB system with the same parameters as
in Glazov et al.,6 appropriate for AlxGa1−xSb. The solution
�4� requires the complex poles kn

± of the Green’s propagator
as input. Figure 1 illustrates the values of the first few poles
in the complex k plane for the DB system considered. The
splitting of the complex poles �lower inset� is due to the
different effective masses produced by the SO interaction,
m±. Here the red �full� dots correspond to “�” spin states and
blue �hollow� dots to “�” spin states. Also sketched in the
upper inset of the figure is the potential profile with some of
its splitting energy resonances �red is for � and blue for ��.

Although the series expansion of the formal solution, Eq.
�4�, involves an infinite number of poles, one can truncate
the sum using an appropriate subset of resonances for prac-
tical purposes. In our example the incidence energies consid-
ered lie in the region of the first resonances; thus the consid-
eration of the first few poles is sufficient to evaluate the
solution. The calculation of the dynamic polarization using
the first 12 poles �i.e., n= ±1, ±2, ±3, for s=± states� in Eq.
�4� are shown in the contour map of Fig. 2. One can clearly
appreciate that there exist regions of intense � polarization
�blue� alternating with regions of intense � polarization �yel-
low�, as well as regions with “zero polarization” �green�, and
intermediate situations.

The role of the resonance doublet E1
± is crucial on the

behavior of P�E , t�. Here, the position of these two reso-
nances, whose numerical values are E1

−=5.09 meV and E1
+

=7.02 meV, are indicated with arrows on the left axis in the
figure, and are aligned with the regions of strongest and
time-independent polarization. Their corresponding reso-
nance widths are 1

−=0.49 meV and 1
+=0.64 meV.

The interesting interplay between the incidence energy
and the two resonances seen in Fig. 2 allows one to control
the polarization of the transmitted electrons. Depending on
the value of E, we will see different behaviors of P�E , t�;
note, for example, that when the incidence energy is exactly

in between the two resonances, E= Ẽ��En
−+En

+� /2
=6.05 meV, the resulting polarization is essentially constant

FIG. 1. �Color online� S-matrix poles kn
± for a symmetrical DB

system for the first few resonances �n= ±1, ±2, ±3�. The visible
splitting of these complex poles is a consequence of the SO inter-
action; this effect is clearer in the lower inset, where just the four
poles with �n�=1 are displayed. The potential profile �upper inset�
has the parameters: barrier heights V0=230 meV; barrier widths:
b0=50 Å; well width: w0=30 Å; and well depth Vw=−200 meV.
We consider m*=0.053m, k� =0.01 Å−1, and �=76 eV Å3, appropri-
ate for the AlxGa1−xSb system.

FIG. 2. �Color online� Contour map of the polarization P�E , t�
around the first resonances E1

± of the system in Fig. 1. Blue �dark
gray� regions correspond to the strongest positive polarization while
yellow �light gray� is for the strongest negative. Note that at certain
incidence energies the polarization has dramatic variations with
time, as for example going along the cut at Ef =2.2 meV �dashed
line�.
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in time and its value is actually near zero �see the horizontal
green stripe in Fig. 2�. When the incidence energy matches
one of the resonances E1

±, the polarization changes smoothly
from zero to a constant value �near ±1, respectively�, as these
plateaus are their corresponding asymptotes. The most inter-
esting behavior of P�E , t� occurs for energies slightly below
E1

− �or above E1
+�, where dramatic variations of the polariza-

tion occur with time; in this case P�E , t� can adopt positive
and negative values at different times.

To illustrate further this variation of P�E , t�, let us make a
cut on the contour plot of Fig. 2 at the incidence energy Ef
=2.2 meV �see the horizontal dashed line in Fig. 2�; the cor-
responding one-dimensional plot is shown in Fig. 3�a� �red
solid line�. Notice that, as expected, the time-dependent po-
larization P�E , t� tends to the value of the stationary polar-
ization �green dotted line�, which is given in terms of the
transmission coefficients T±�E� by the expression

P�E� =
T+�E� − T−�E�
T+�E� + T−�E�

. �6�

However, at intermediate times P�E , t� oscillates widely with
typical times of �1 ps for these parameters �chosen to model
a realistic structure�.

Note the degree of symmetry exhibited by the polarization
map of Fig. 2 with respect to the middle point between the
resonances. To clarify this symmetry and to explain the ori-
gin of the filtering mechanism, we shall obtain analytic ex-
pressions for the square modulus of the spinor components
��±�2 and hence for the dynamic polarization P�E , t�. Taking
into account that the incident energies considered in this
study are near the first resonances E1

±, and the fact that the
poles with different �n� are far apart in Fig. 1, we can use the
approximation in which the terms with �n�
2 are ignored in
the solution �keeping only the terms corresponding to the
four poles in the inset of this figure�. If we now use the
analytic properties of the Moshinsky functions and follow an
algebraic procedure similar to the derivation of Eq. �11� of
Ref. 11, a simple analytic expression for the polarization can
be derived, namely

Pa�E,t� =
T n

+�E,t� − T n
−�E,t�

T n
+�E,t� + T n

−�E,t�
, �7�

T n
±�E,t� � T ±�E��n

±�E,t� , �8�

where the time dependence is contained in the factor

�n
±�E,t� = 1 − 2e−t/2�n

±
cos �n

±t + e−t/�n
±
, �9�

where �n
±= �E−En

±� /�, and �n
±=� /n

± are the lifetimes of the
resonant states. This is a simple formula for P�E , t� since it
only requires the value and width of the resonances, as well
as the transmission coefficient at each incident energy. Using
�7� instead of �5� circumvents the evaluation of the more
complicated Moshinsky functions. It is straightforward to see
that in the limit t→�, we have �n

±→1,T n
±�E , t�→T±�E� and

hence Pa�E , t�→P�E�; that is, the stationary value of the
polarization is naturally recovered for long times.

In order to illustrate the accuracy at finite times of Eq. �7�,
we plot Pa�E , t� vs t for Ef =2.2 meV �blue dashed line� in
Fig. 3�a�. We can see that Pa successfully reproduces the
values predicted by the formal solution �5� �red solid line�.
Notice that �n

±�E , t� are symmetric functions of E with re-
spect to each of the resonances En

±; this explains the high
degree of symmetry observed in the two-dimensional map of
the polarization. Equation �7� can also explain other features
observed in Fig. 2. Consider, for example, the particular
cases of incidence on resonance E=En

±, in which we have
T±�En

���T±�En
±�=1, and hence P�En

± , t� ±1; this is consis-
tent with the two large blue and yellow regions in Fig. 2.
Note that, strictly speaking, P�En

± , t� does not fully reach the
values ±1 due to the fact that the “tails” T±�En

��, although
small, are not zero. Another particular case is when the inci-
dence energy matches exactly the middle point between reso-

nances, E= Ẽ. In this case, we have �n
+�Ẽ , t��n

−�Ẽ , t� and

Tn
+�Ẽ , t�Tn

−�Ẽ , t�, which implies that P�Ẽ , t�0 �in corre-

FIG. 3. �Color online� �a� Section of the previous figure at fixed
incident energy Ef =2.2 meV. The solid �red� line corresponds to
the values of the polarization calculated with the formal solution,
Eq. �4�. The predicted values by Eq. �7� are included for compari-
son �dashed lines �blue��. Both curves coincide almost perfectly and
oscillate around the value of the stationary polarization �dotted lines
�green��. �b� Plots of ��±�L ,Ef ; t��2 vs t for the two spin states. The
arrows indicate the intervals where ��+�2 dominates, and the posi-
tive polarization in �a�.
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spondence with the green stripe in the contour map of
P�E , t��. Note again that P�Ẽ , t� is not exactly zero because
the width of the resonances, n

±, even when similar, are not
the same.

The filtering process in the time domain observed in Figs.
2 and 3�a� can be understood in terms of the time delay
between the spinor components arising from the tunneling
for a given incident energy. According to Eqs. �8� and �9�,
T n

±�E , t� are oscillatory functions of time whose frequencies
depend on the incident energy E. The only possibility for
them to be in phase �i.e., no time delay� is in the particular
case E= Ẽ. For any other incident energy the “frequencies”
�n

± will be different and both oscillatory patterns will be
dephased in time. This is the situation for the energy used in
Fig. 3�a� �Ef =2.2 meV�, and the mentioned dephasing is il-
lustrated in Fig. 3�b�, where the values of T n

±�E , t� are plotted
separately. In this case, the resonance closer to E is En

−, so
that we have T−�E��T+�E�, and hence T n

−�E , t� dominates
over T n

+�E , t� along the time interval considered, and the pre-
dominant polarization is negative. However, the dephasing
also produces regions in which the polarization is reversed,
corresponding to the intervals in which the T n

±�E , t� curves
cross. We can see two of such regions in Fig. 3�b� indicated
by arrows, which directly produce the positive peaks of
Fig. 3�a�.

In summary, we have analyzed spin-dependent tunneling
along the transient regime in a resonant structure, finding
analytic solutions of the time-dependent Schrödinger equa-
tion for the spinor components of the problem. We show that
quantum tunneling produces a natural filtering mechanism
that occurs in the time domain and is characterized by dra-
matic variations of the spin polarization of tunneling elec-
trons with time. These strong variations depend critically on
the interplay between the energy of the splitting resonances
and the energy at which the electrons are injected into the
system, which gives rise to different time delays for the tun-
neling of different spin species. For incident wave packets on
resonance, charge accumulation may lead to feedback
oscillations12 that could affect the filtering dynamics; this is
not our case, as the incidence is off-resonance and the charge
buildup times are much longer than the relevant spin filtering
times. Our results indicate that full optical experiments could
directly measure the oscillations in polarization and then de-
termine the SO Dresselhaus parameters of the structure.
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