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A quantum Hall line junction system consists of a one-dimensional Luttinger liquid �LL� and two chiral
channels that allow density waves incident upon and reflected by the LL to be measured separately. We
demonstrate that interactions in a quantum Hall line junction system can be probed by studying edge magne-
toplasmon absorption spectra and their polarization dependences. Strong interactions in the junction lead to
collective modes that are isolated in either Luttinger liquid or contact subsystems.
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A quantum Hall line junction1–3 �QHLJ� enables the real-
ization of one-dimensional electron systems with widely tun-
able properties. A line junction is generated by creating a
narrow barrier that divides a two-dimensional electron sys-
tem on a quantum Hall plateau into separate subsystems as
illustrated in Fig. 1. Chiral quantum Hall edge channels4–6

flow in opposite directions on opposite sides of the barrier
and constitute a nonchiral one-dimensional electron gas. An
attractive feature of QHLJ systems is the physical separation
of incident and reflected states at the ends of the nonchiral
barrier region, a benefit provided by the chiral quantum Hall
edge states. This feature plays a role, for example, in pro-
posed electron teleportation effects7 on quantum Hall edges.

The narrow barriers that define QHLJs can be realized by
cleaved edge overgrowth,8 corner overgrowth,9 or by the
deposition of narrow metallic gates.10–12 Experimental stud-
ies of various QHLJ systems, and some of the theoretical
analyses13–16 that they have motivated, have made it clear
that interactions between electrons on opposite sides of the
barrier can play an essential role in their physics. An impor-
tant difficulty that arises in interpreting the transport proper-
ties of QHLJ systems is uncertainty about the strength and
sometimes even the sign of these interactions, which can be
difficult to estimate because of subtleties17 in understanding
their relationships to underlying Coulombic interactions,
and, in some systems, because of edge reconstructions18 or
the role played by nearby metallic gates.19 In this paper we
propose that measurement of edge magnetoplasmon20 prop-
erties in QHLJ systems can provide the required information
experimentally. To illustrate the potential of this approach,
we derive analytic expressions for the edge magnetoplasmon
spectrum of a simple QHLJ model and present numerical
results of power absorption spectrum. The relevance of the
simple model to a more realistic model is also discussed. We
find that as interactions across the barrier strengthen, the in-
dependent magnetoplasmon excitations of the separated
quantum Hall regions evolve into two quite distinct modes, a
plasmon excitation localized along the barrier and a chiral
magnetoplasmon mode that extends along the entire bound-
ary of the compound system. This change in character of the
excitation spectrum, and accompanying changes in the
strength of resonant absorption of electromagnetic �EM� ra-
diation polarized either along or perpendicular to the barrier,
can be used to reliably estimate the strength and sign of
interactions across the barrier.

Edge Magnetoplasmon Excitations of the QHLJ Model.
We concentrate in this paper on the case of �=1 quantum
Hall states for which the low-energy edge physics can, in the
absence of reconstructions18 be entirely4 described in terms
of the edge charge densities �L�x� and �R�x�, of the left and
right quantum Hall edges. The QHLJ model that we use to
obtain a qualitative understanding of the magnetoplasmon
spectrum includes interactions between left and right sub-
systems only in the barrier region,

H = H0 + Hi,

H0 = ��v f�
0

P

dx��L�x��L�x� + �R�x��R�x�� ,

Hi = 2��v fg�
0

P

dxF�x��L�x��R�x� , �1�

where H0 neglects interactions between separate edges, v f is
the chiral edge mode velocity of an isolated subsystem, and
Hi describes interactions across the barrier. The parameter g
is the ratio of interactions across the barrier to self-
interactions on an isolated edge and P is the total perimeter
of the individual quantum Hall regions. We measure dis-
tances along the edges using the coordinate system explained
in Fig. 1 so that F�x����x�−��x−W� where W is the width

FIG. 1. �Color online� Cartoon of a QH line junction. The
circles and arrows illustrate, for the case of repulsive interactions of
moderate strength, the evolution of a unit charge incident on the top
of the Lutinger liquid discussed in the text. The total perimeter of
each QH region is P=2W+2L and, in the coordinate system we use,
the barrier region is the interval �0,W�.
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of the Hall bar. For �=1 this model can be quantized by
imposing the commutation relations,4

��L�x�,�L�x��� = � i

2�
��x��x − x�� ,

��R�x�,�R�x��� = − � i

2�
��x��x − x�� ,

��L�x�,�R�x��� = 0. �2�

It follows that the equations of motion for �L and �R are

− �t�L�x,t� = − v f�x��L�x,t� + gF�x��R�x,t�� ,

− �t�R�x,t� = v f�x��R�x,t� + gF�x��L�x,t�� . �3�

The right-hand sides of Eqs. �3� provide expressions for
the current densities on left and right edges, jL�x�=
−v f��L�x , t�+gF�x��R�x , t�� and jR�x�=v f��R�x , t�
+gF�x��L�x , t��. Equations �3� are readily solved for fixed g,
and solutions in the g=0 and g�0 regions can be matched
by requiring that the current densities be continuous.21,22 The
general solution is most conveniently expressed in terms of
fields �L,R�x�, related to the charge densities by �L,R�x , t�
= ±�x�L,R�x , t� / �2��. The matching condition that jL,R

should be continuous is equivalent to the condition that nor-
mal mode �L,R solutions at each frequency � should be con-
tinuous. The general form of a normal mode with frequency
� in the barrier region is

�L�x� = A exp�iqx� + B exp�− iqx� ,

�R�x� = A
	1 − g2 − 1

g
exp�iqx� − B

	1 − g2 + 1

g
exp�− iqx� ,

�4�

where q=� / �v f
	1−g2�.

The evolution of a unit impulse charge traveling along a
chiral edge can be understood on the basis of Eq. �4�, charge
conservation along both edges, the chirality of the outer
edges, and the reduced wave velocity along the barrier. A
unit impulse charge approaching the barrier from the left
along the top of the Hall bar must launch an impulse that
travels down along the barrier in order to conserve charge
along the left edge. Since this density wave travels at a
slower velocity vI, it must have left-edge charge density that
is larger by the factor of v f /vI=1/	1−g2. The equations of
motion in the barrier region imply that the ratio of right-side
charge to left-side charge for a downward traveling barrier
wave is �	1−g2−1� /g so that a downward traveling charge
is also induced on the right-hand side of the barrier. To con-
serve right-edge charge, a chiral edge wave traveling at the
higher velocity with charge �1−	1−g2� /g must also be
launched on the upper right. This part of the edge density
wave may be regarded as the chiral lead component that has
been reflected by the barrier. A QHLJ system, however, is
spatially separated from the incoming wave. The total cur-
rent traveling down the barrier approaches 0 for g→1 and
2v f for g→−1. These conclusions argued for here on the

basis of charge conservation and equations of motion also
follow from the matching conditions discussed previously.
Each of the waves launched by the original impulse will
bifurcate when it intersects with an edge-barrier boundary.

To determine the normal mode frequencies we integrate
�L and �R around their respective edges and apply the
single-valuedness condition:

��L�P�
�R�P�

� = �ULL ULR

URL URR
���L�0�

�R�0�
� = ��L�0�

�R�0�
� . �5�

Normal modes occur when the determinant of UI,J−�I,J van-
ishes. In Eq. �5�, URR

* =ULL, ULR
* =URL,

ULL = eiq0P��cos�qIW� + i
	1−g2 sin�qIW�� ,

ULR = i g
	1−g2 e

iq0P� sin�qIW� , �6�

q0=� /v f and qI=q0 /	1−g2 are the local wave vectors in
chiral and barrier regions, P�=2L+W is the part of the pe-
rimeter of a quantum Hall region that is not along the barrier
and P�+W= P is the total perimeter. We have, for illustrative
purposes, assumed that the two quantum Hall regions are
identical. The collective mode frequencies solve

cos�q0P�� cos�qIW� −
sin�q0P�� sin�qIW�

	1 − g2
= 1. �7�

Weak Interaction Limit. In the absence of interactions
across the barrier �qI=q0 ,g=0�, Eq. �7� implies that the mag-
netoplasmon reference frequencies are given by fn=�n /2�
=nv f / P. The period of the fundamental edge magnetoplas-
mon mode is just the transit time for an edge wave to move
entirely around an individual incompressible region, imply-
ing that two independent modes occur at each frequency.
Since typical edge magnetoplasmon velocities20 are

106 m/s, frequencies are in the gigahertz range for
samples with perimeters in the millimeter range. Weak inter-
actions shift and split the independent incompressible region
eigenmodes. From Eq. �7� we find that for small g

fn = v f/P�n ± g sin�2�nL/P�/2� + ¯ � . �8�

If the sample geometry is known, g can be extracted from a
measurement of the mode splitting.

Strong Interaction Limit. For �g� that can be close to 1, the
instability limit, the collective modes are determined by the
conditions sin�q0P��=0 and sin�qIW�=0, leading to two sets
of equally spaced modes with distinct fundamental frequen-
cies at f0=v f /2P� and f I=vI /2W. Apparently the edge mag-
netoplasmon modes in the strong interaction limit consist of
independent modes localized along the barrier and along the
chiral leads. The periods 2P� /v f and 2W /vI, respectively,
correspond to the transit times for a wave traveling around
the combined outer chiral edge at velocity v f and a wave
traveling back and forth along the barrier at velocity vI. An-
other interesting feature of the mode spectrum, illustrated in
Fig. 2, is the set of level crossings that occur at large values
of �g�. The degeneracies occur when the ratio of 2P� /v f to
2W /vI is a rational number n /m with n and m being both odd
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or both even integers, and occur at frequencies �l
= �n�v f / P��l, l=1, 2,….

Crossover Interaction Strength. g2=gc
2=1− �W / P��2, the

interaction strength for which q0P�=qIW marks the cross-
over between weak and strong interaction limits. At g=gc the
time required to travel at velocity vI along the barrier is equal
to the time required to travel a distance P� at velocity v f
along one of the chiral edge loops. In this case f0= f I and the
two strong interaction modes become degenerate. For g
	gc, the lowest-energy mode propagates primarily inside the
interacting region, since the mode with lowest eigenfre-
quency is the mode with longest period T.

Quantum Edge Theory. The Hamiltonian in Eq. �1� can be
solved quantum mechanically by bosonization. We define
two sets of bosonic fields,

aL,k �	2�

kP
�L�− k�, aL,k

† �	2�

kP
�L�k� ,

aR,k �	2�

kP
�R�k�, aR,k

† �	2�

kP
�R�− k� . �9�

The Hamiltonian is readily expressed as a quadratic function
of these bosonic fields. The normal mode solutions to the
semiclassical equation of motion map to the independent os-
cillators of the quantum model in the usual way. The quan-
tum version of the theory can be used to consider EM radia-
tion absorption.

Power Absorption. Edge states couple to the EM fields via
the Hamiltonian,23

Hext =
i

�
�

0

P

dx�j�L + j�R� · E� , �10�

where j�L, j�R are current operators for left and right QH
samples, respectively, and the em waves of interest will typi-
cally have wavelengths much larger than the sample size. For

simplicity we choose W=L so that the geometry of the QH
samples is square. The power absorption spectrum can be
evaluated by Fermi’s golden rule,

P��� = 2��

,�

�
�Hext����2�E
 − E����E
 − E� − ��� .

�11�

Peaks in the power absorption spectrum correspond to reso-
nantly excited edge magnetoplasmons �EMPs�.

Numerical results for the absorption spectrum are shown
in Fig. 3. In general only the lowest few modes tend to have
substantial absorption strength, because higher energy modes
correspond to current oscillations with larger spatial varation
leading to smaller matrix elements after integration along the
edges. Although the energy spectrum does not depend on the
sign of g, the mode absorption strengths at g and −g does.
For weak interactions the sharpest peak is for the lowest
energy mode for repulsive interaction and at the second low-
est energy mode for attractive interaction. This feature can be
understood from the properties of the normal modes. For
repulsive interactions the lowest-energy EMP has opposite
charge densities on the left and right edges. Because currents
flow in opposite directions in left and right edges, the net
current is nonzero and coupling to the EM field does not
vanish. For attractive interaction the energetic ordering of the
two levels switches. The strongest absorption then occurs for
the second lowest energy EMP.

The polarization of EM fields also influences the strength
of peaks. It can be seen in Fig. 3 that for repulsive �attrac-
tive� interactions, the peak with EM fields orienated along
the barrier line is weaker �stronger� than for polarization per-
pendicular to the barrier line. This occurs because the current

FIG. 2. The energy spectra calculated numerically are plotted
from g=0 to 1. The spectrum is independent of the sign of g. For
this illustration we choose W=L=4, v f =1, which implies that gc

�0.943. For �g��gc, mode splittings for each n are clearly seen,
while for �g�	gc, the spectrum bends toward low energy and
evolves into two sets of equally spaced modes with distinct funda-
mental frequencies f0 and f I. The crosses mark the commensurabil-
ity positions where f0 / f I=m /n with n, m both odd or both even. FIG. 3. �Color online� Resonant mode oscillator strength for g

=0, g= ±0.2, g= ±0.4, g= ±0.6, g= ±0.8, and g= ±0.995, with EM
fields polarized �a� perpendicular to �b� along the narrow barrier.
The strength of the each resonant absorption peak is indicated by
the darkness of the circle.
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along the barrier is enhanced for attractive interactions and
suppressed for repulsive interactions.

In the strong interaction limit, the localized EMPs modes
propagate mainly in the barrier region and are not probed by
EM fields polarized perpendicular to the barrier. As argued in
previous sections, the current of those localized EMPs is
small for repulsive interactions but not for attractive interac-
tions. This property explains why EM fields applied along
the barrier produce strong absorption at the lowest energy
modes for g=−0.995 but not for g=0.995 in Fig. 3�b�.

Comparison of Coulomb Model and Toy Model. A more
realistic model can be obtained by replacing Hi in Eqs. �1�
with both intra- and interedge Coulomb interactions. Since
interactions on single isolated incompressible system edge to

a good approximation influence only the mode velocity17 and
the interedge Coulomb interaction is much stronger in the
barrier region than on other portions of the edge, we can
expect the simple model properties to be similar to the real-
istic case. We have solved the more realistic Coulomb model
numerically with the relative strength of interedge Coulomb
interactions that can be tuned by changing the separation
distance between left and right edges to verify this expecta-
tion. We conclude that the simple QHLJ model should be
very useful for the interpretation of experimental results.
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