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We present results for the dynamics of an impurity spin coupled to a magnetic field and to two ohmic baths

that are out of equilibrium due to the application of a bias voltage. Both the nonequilibrium steady state and the
rate constants describing the approach to the steady state are found to depend sensitively on the relative
strengths of a magnetic field and a voltage dependent decoherence rate. Computation of physical quantities,
including the frequency dependent ratio of the response to the correlation functions and the probabilities of the
two spin states, allows the extraction of voltage dependent effective temperatures. The temperatures extracted

from different quantities differ from one another in magnitude and in their dependence on parameters, and, in

general, are nonmonotonic.
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A fundamental question in quantum condensed matter
physics is understanding properties of nonequilibrium many-
body systems, some examples being the Kondo effect in
quantum dots,! ultracold gases with rapidly tunable
interactions,” and strongly driven optical lattices.> While
there are a variety of nonperturbative techniques in place to
study equilibrium systems, these methods cannot be ex-
tended to nonequilibrium systems in a straightforward way.*
The experimental accessability!=> of the nonequilibrium re-
gime of strongly correlated quantum many-body systems
gives rise to the need for the further development of the
formalism.

Many-body systems driven out of equilibrium are
known™> to acquire a steady state that may be quite different
in character from their ground-state properties, with the de-
tails of the steady state depending on the nature of the cor-
relations, as well as on the way in which the system is driven
out of equilibrium. One may characterize a system in a
steady state by the response function x(¢r—t') describing
changes induced by weak external probes, and by the corre-
lation function S(#—¢") describing the probabilities of observ-
ing various configurations of the system. An important and
still incompletely understood issue is the manner in which y
and S characterizing a nonequilibrium system differ from
those describing an equilibrium one. In particular, there has
been considerable interest’® in the possibility of establishing
a generalized fluctuation dissipation theorem relating y(w) to
S(w) and thereby characterizing the departures from equilib-
rium in terms of an effective temperature. Several systems
have been identified® where such a generalized fluctuation
dissipation theorem is found to hold, with the extracted tem-
perature often sensitive to the observables being studied.

In this paper we study the dynamics of the out-of-
equilibrium ohmic spin-boson model. This model describes a
two-state system (which we represent in spin notation) with
level splitting B and tunneling rate A, coupled via a coupling
J. to a spinless resonant level (creation operator d'), which is
itself connected to two leads (L and R) that may be at differ-
ent chemical potentials. The Hamiltonian is

H=S.B+AS,+J.S.dd+Hy,, (1)
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PACS number(s): 73.23.—b, 05.30.—d, 71.10.—w, 71.38.—k

Hbath = E EkC]‘:aCka + E (tkaczad + HC) . (2)
k,a=L,R k,a=L,R

We assume the leads are infinite reservoirs characterized by
the correlators (czacq 8=y 5a5(eﬁ(€k‘“a)+ 1)~'. A nonequilib-
rium state occurs when u; — ur=V# 0. Crucial parameters of
the model are the left and right channel phase shifts &, z
defined® by tan 8, =a,J./[1-isgn(V)agJ.], tan Sp=agJ,/[1
+isgn(V)ayJ,] with a g=T; g/ (T +Tg)%, with T g=mpt7
and p=dk/de,. We will study the properties of H at 7=0 but
out of equilibrium (V# 0) working to leading nontrivial or-
der in A but to all order in J,. The conditions under which the
perturbation theory is justified will be discussed below. We
will find the time scales characterizing the approach to the
steady state, the response and correlation functions, and the
generalized fluctuation dissipation ratio.

In order to study the spin dynamics, the appropriate start-
ing point is the density matrix for the full Hamiltonian

dp(t) .

5 = LH.p(0)], 3)
from which the density matrix pg for the local spin is ob-
tained from taking a trace over the electronic degrees of free-
dom,

ps=Tryp. (4)

We adopt a spin language, writing
N .
ps= 5(1 +5.6.) (5)

and study S.. When A=0, the Hamiltonian is exactly solv-
able both in and out of equilibrium. For nonzero A one may
expand Eq. (3) perturbatively in A. The key object in the
analysis is the time-evolution operator separating two spin-
flip processes,” K,(f)=Tr,[e iHA=0S=%1121,iH(A=0.5.=(F1)/2)1]
=e*B1e=C:0  where C,(1)=C(1)=[C_(-1)]" computed from
the linked cluster theorem has the following form at zero
temperature:®

Clty=C'(t) +iC"(1),
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2
C'(r>=(%) In(&) + &' (Vi) 6)
(%)
C'=—| sgn(t) + ¢"(Vr). (7)
2\

Here £ is a short time cutoff, &,,= &+ dg=arctan[J,/(I';
+I'g)] is the equilibrium phase shift, and ¢(V?) is a function
describing the crossover from the short-time (Vi<1) equi-
librium behavior characterized by'® C(t)=(8,,/m)*[In(&r)
+i(7/2)sgn(z)], to the long-time (V#> 1) nonequilibrium be-
havior  characterized by'?  C()=[(8} + &)/ m*][In(ér)
+i(m/2)sgn(t) |+, t  with T, =V|& —8|/2m. Correct
treatment for the intermediate and short-time behavior of ¢
is essential for obtaining correct results for y(w),S(w). A
general analytic expression for ¢ does not exist, here we use
perturbation theory to the third order in J, to obtain,’

8- & {(g)( 1-cos(w)>]
¢(Vt)_—277 vil{ Sz(w)——w

2 Re ;0
2

2ilm 8,8, 2 (!
_ %{; fo du sin(uVi)

X[(l—u)lnu—u)mmu]}

[y, — Ci(Vi) + In(Vr)]

E (8)

Now let us return to the evaluation of various spin observ-
ables. In terms of the symmetric and antisymmetric time-
evolution operators K, ,(r)=Re[K, (1) =K_(1)], the equation of
motion for the variable S, defined in Eq. (5) to leading non-
trivial order in A is given by

dt
The Laplace transform of the two scattering rates K, de-

fined by K, ,(\)=[§dtK,,(t)e™ have the form,

s, __ f d'[K(1,')S,(1") + K (1.1")]. 9)
0

©

K,(\) = Azf dte™e €' cos Bt cos C'(1), (10)
0

[’

K,(\) =A2 f dte™e €' gin Bt sin C"(r).  (11)
0

The above equations capture the effect of two sources of
decoherence on spin dynamics; one is a Korringa-type deco-
herence existing even in equilibrium, while the second aris-
ing mathematically from C’(¢) is due to a nonzero voltage
and is intrinsically nonequilibrium.

The solution to Eq. (9) can be written as'3

L[ dn NS0 - K,\\) .

S.()=— ~ (12)
N+ K (N)

2mi) olje N

Equation (12) allows straightforward analysis of the long-
time behavior. As — o, the integral is dominated by the pole
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at A=0 and the residue gives S?:SAtHOO):—I?a(O)/I?S(O).
Consideration of S,(r)—-S then yields the rate at which the
system approaches the steady state. In the small A limit, and
if at least one of B,T’,,, is not too small, the result is expo-
nential relaxation with rate I',,;=K(0). The value of I',,; de-
pends crucially on whether the dominant time scales in Eq.
(10) are large or small relative to V' If both B and I',,,, are
less than V, one finds (for compactness we write for the
symmetric case t; =tg)

r
) sin[ﬂ + (1 — @)arctan —4
(0 :

rel = 2 ¢ET(a) . T
sin —
2

[o2 L2 \a-l

/B-+T
X(%‘i) , (13)

where the nonequilibrium exponent a=(8;/m)*+(5x/m)>.
The most interesting situation is the relatively small phase
shift limit, in which I',,, <V and Eq. (13) holds even when
B=T,,,, provided B<V. For B>V, one should set I',,,=0
in Eq. (13) and replace the nonequilibrium exponent « by the
equilibrium exponent a,,=(4,,/)? yielding the familiar 7
=0 Korringa relaxation.

The above results of an exponential relaxation to a steady
state are obtained from neglecting the N dependence of
K,(\), which is justified when

T, AZ( VB2 + T2 )“‘2 -

R _2 neq (14)
Vg + B> & 3

and therefore holds in the perturbative in A regime, provided
the voltage or the magnetic field is not too small. An analysis
similar to the equilibrium case shows that Eq. (14) is also the
condition for validity of perturbation theory in A.

At steady state and in the small A limit, the density matrix
for the full system is an incoherent superposition of spin up
times the electronic state appropriate to spin up, and spin
down times the electronic state appropriate to spin down,
which may be expressed follows:

pipil 0 )

(15)
0 PLPiIl

P=P5®Pe1=(

where py is the density matrix corresponding to Hamiltonian
H with §,=1/2 and A=0, pill is the density matrix for §.=
—1/2 and A=0, and pm=%(liSz). We now calculate the
response and correlation functions appropriate to this state
and determine the relation between them.

The correlation function we study is,

Sulti 1) = il{S(11).8:(12)},) = Tr p{S,(11). S (1)}, ],
(16)

and the corresponding spin response function is
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FIG. 1. (Color online) Main panel. Solid line: fluctuation-
dissipation ratio (Eq. (21)) at B=0.5V. Dashed line: “pseudoequi-
librium” result tanh(w/ ZTz'ff) (Eq. (22)). Inset: Plot of T,r{w,V)
=w/2tanh™' h, which shows rapid crossover from non-
equilibrium behavior (T,;~V) at @<V to equilibrium behavior
(T,;=0) at w>V.

Xurl(t1:12) = = i6(t = ){[S.(1)), (1) )
== ie(tl - IZ)Tr{p[Sx(tl)7Sx(t2)]}7 (17)

where the density matrix p is evaluated to leading order in
the spin-flip term A and hence given by Eq. (15). The Fourier
transform of the imaginary part of the response and correla-
tion functions are

Xo@) = pi[1(B + ) ~ I(B - w)]
~pll-B-w) -I-B+w)].  (8)

—iS(w) = pi[I(B + w) +1(B - w)]
+p[I(-B-w)+I(-B+w)],  (19)

where

0

I(B) = Rel f ’ dteiB’e_C(’)} , (20)

and p,/p =1(-B)/I(B). We define the fluctuation dissipation
ratio (also mentioned in Ref. 14),

X' ()
iS(w)

In equilibrium and at 7>0 (when ¢(0)=1 and C(z)
=(8,4/ m)In[(&/ mT)sinh 7tT]), h(w)=tanh w/2T.

Out of equilibrium (and at 7=0), h(w) has the form
shown in Fig. 1, which differs from the equilibrium solution
sgn(w). The calculated h(w) is not a tanh function (compare
the dashed line), and therefore a generalized fluctuation dis-
sipation theorem encompassing all frequencies does not ex-
ist. However, we may define a frequency-dependent effective
temperature via T,p{w)=w/2 tanh™!' 4. This function is plot-
ted in the inset of Fig. 1 and is seen to have a strong w
dependence and indeed not to be monotonic. For o <V/2,
T,y is of the order of V and depends weakly on w. For w
>V/I2, T, drops sharply and at high w approaches the equi-
librium value (here, T=0). The results presented in Fig. 1
show that no unique definition of “nonequilibrium effective

h(w) = (21)
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FIG. 2. (Color online) Main panel: Low-frequency effective
temperature defined from 2(w—0) (solid line) and population ra-
tios (dashed line). Note: Nonmontonic behavior with the magnetic
field. Inset: The effective temperature [from Eq. (22)] as a function
of the coupling constant. Note: T" increases weakly with 8,4 for
B— 0, but decreases strongly with &,, for large B.

temperature” exists; the value obtained depends on the quan-
tity examined. Two obvious definitions are (i) from the w
—0 limit of 2(w),"" (ii) from the population ratio p;/p,. The
effective temperature from definition (i) is obtained by ex-
panding Egs. (18) and (19) for small w,

1 oh dln I
o el s IRIWE g
Tgff Jw w=0 o=x ox x=0B

while definition (ii) for the effective temperature leads to the
expression

1 1
e E In p—L (23)
oy P

e
Figure 2 shows the dependence of these two measures of

effective temperature on the magnetic field. We see that the
two curves differ in magnitude and in dependence on param-
eters; the variation in general is nonmonotonic. The inset
shows that the magnitude and field variation of the effective
temperature Tzﬁ- also depends on the coupling constant.

The nonmonotonic behavior as a function of B/V may be
understood as follows. For B<I,,, and for (& —&)/2m
<1 so that I',,, <V, the integrand in Eq. (20) is dominated
by t~1/T,,,>1/V. In this regime, Eq. (13) applies; from
this one sees that the decoherence rate for the spin increases
with the magnetic field, causing the initial downturn in Fig.
2. This behavior may also be understood as originating from
the opening up of an additional scattering channel on appli-
cation of a magnetic field that corresponds to the relaxation
of the higher energy spin state by creating particle-hole ex-
citations in the leads. We make this more precise by studying
Eq. (20) perturbatively in tunneling amplitude (#; ) to find

2, .2
1 aj+ag+agag

(24)

Tiy  (aj+ag)|Bl+aag(Bl+V) |Bl-V’

e

For the special case of symmetric couplings a;=ap (which
corresponds to the case in Fig. 2), and for B<YV, one finds
1/ 2Ti,’ff~ 2/V(1-2B/V), which captures the initial downturn
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FIG. 3. (Color online) Main panel: x"(w) for two different val-
ues of the spin-bath coupling strength J_ and for B=V. Inset: x"(w)
on a log-log plot for the spin-bath coupling strength corresponding
to 6,,=0.98 and for two different degrees of departure from
equilibrium.

in the plot for T,s.For B>T,,,, on the other hand, the inte-
grals in Eq. (20) are dominated by r~1/B<1/V. In this
regime 7T, approaches the equilibrium value of T,;— 0 and
therefore results in an upturn in Fig. 2. The B>V behavior of
the integral I(B) was found® to be I(B> V)~ (V/B)?V, the
physical significance of which may be understood as follows.
I(B) represents the population of the high-energy spin state
where the energy for populating it is supplied by the voltage
source. The ratio n=B/V represents the optimal number of
bath electrons that can be transmitted across the voltage
source in order to excite the higher-energy spin state, while
I(B)=(V/B)" is simply the probability for doing so. Plugging
this expression for I(B) into Eq. (22), the effective tempera-
ture is found to approach zero as Ti’ff—> V/In(B/V) in the
regime B/V>1.

Let us now turn to the discussion of the spin response
function itself. The imaginary part of the response function is
plotted for different coupling strengths and ratio of B/V in
Fig. 3. The line shape (main panel, Fig. 3), in addition to
having the familiar asymmetric form of an x-ray response
function,'” now has a non-zero weight at |w| <|B|, which is
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forbidden at zero temperatures in equilibrium. The coupling
constant (main panel) and voltage (inset panel) dependence
of the broadening is illustrated in Fig 3. Y"(w) is linear in w
for small w, with a slope that is inversely related to the
long-time relaxation rate of the density matrix Fre,=TZ'f,
while at large frequencies w>B, x'(w)~1/w' /™"
These two different frequency regimes appear as a change in
slope of the plots in the inset of Fig. 3.

In conclusion, we have studied the nonequilibrium ohmic
spin-boson model including a nonvanishing level splitting
and orthogonality effects exactly. Previous work!* studied
the zero level splitting limit, treating the orthogonality ef-
fects perturbatively. Our results agree with previous results
in the appropriate limit, but also provide new information,
including the nonmonotonic effective temperature and the
line shape at nonvanishing level splitting. The calculated
spin dynamics reveal that the nonequilibrium regime can be
quite complex because of the interplay between various volt-
age and magnetic field dependent relaxation mechanisms.
While departures from equilibrium are qualitatively similar
to a nonzero temperature (e.g., permitting subthreshold ab-
sorption seen in Fig. 3), the analogy cannot be pushed too
far. The “fluctuation dissipation” ratio is not a hyperbolic
tangent and is not characterized by a unique effective tem-
perature (c.f. Fig. 1), and the low-frequency effective tem-
perature is itself a nontrivial function of the control param-
eters (c.f. Fig. 2), and is different depending on the quantity
used to evaluate it. In equilibrium, the spin-boson and Kondo
models are related by the simple mapping &,,/7— v2(1
— 8,4/ ). Our finding that nonequilibrium effects enter into
different parameters in different ways suggests that the map-
ping will not be so simple in the nonequilibrium case. A
direction for future research is to extend the analysis in this
paper to an arbitrary number of spin-flip processes, and to
perform an Anderson—Yuval-Hamann-type renormalization
group treatment for the out-of-equilibrium spin-boson and
Kondo models."
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