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A Keldysh nonequilibrium Green’s function approach is used in an analytic treatment of transport in oligo-
meric molecular wire junctions in the presence of dephasing effects. Both the dephasing and molecule-
electrode interactions are treated using the self-energy formalism, and limiting analytic forms are obtained for
the current as a function of dephasing strength, length, injection energy, molecular hopping integral, and
temperature. Dephasing due to the interaction between electrons and thermal phonons is investigated in detail,
and we relate the phenomenological dephasing parameter to the inner-sphere reorganization energy. In the
single-site limit, we observe transitions in the spectral function from Lorentzian to semicircular as the dephas-
ing strength increases, while for the extended chain we observe both tunneling and hopping behavior. In the
limit of strong dephasing, the overall resistance can be expressed as the sum of the contact resistance and a
chain-length-dependent hopping term.
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I. INTRODUCTION

Current extensive activity in the general area of molecular
electronics is focused on the behavior of molecular transport
junctions, consisting of a few �ideally one� molecules as-
sembled between metallic electrodes. For recent reviews, see
Refs. 1–7. The conductance spectroscopy �current-voltage
characteristics� of such structures has now been reported for
a number of organic, organometallic, and oligomeric struc-
tures. Various limits of the transport have been observed,
ranging from coherent tunneling transport in short-chain al-
kanes and few-ring structures8–11 to the hopping limit in ex-
tended oligophenylenevinylenes.12

Theoretical analysis has largely been devoted to the co-
herent tunneling regime, where a series of electronic struc-
ture methods ranging from simple tight-binding models13–17

to elaborate density functional techniques18–23 have been
used to characterize the transport. Extensive formal analysis
has also been presented by several authors, analyzing the
distance, temperature, and coupling dependences of the
transport mechanism.24–32 In particular, the transition from
coherent to hopping transport has been demonstrated in sev-
eral different ways. In the limit of strong vibronic coupling,
the transport is expected to be of hopping type, and with
sufficiently strong coupling and appropriate current densities,
one can observe both a Franck-Condon set of vibrational
levels33 and actual bond fracture due to transporting
electrons.34–36 Most recently, inelastic tunneling spectros-
copy �IETS� experiments have been completed, demonstrat-
ing vibronic coupling between vibrations of the extended
molecule and electronic transport.37–39 Theoretical analysis
of such coupling has been presented, based both on simple
perturbative analysis40–43 and on a more complex self-
consistent treatment of the vibronic and electrode
couplings.44,45

Because tunneling spectroscopy measurements are inher-
ently nonequilibrium �different chemical potentials of the
two electrodes� and always occur in the presence of an ex-
ternal bath �the electrode energy levels themselves, as well as
the vibrational levels of the molecular bridge and whatever

environment may be present�, full theoretical treatment of
the transport must involve both a nonequilibrium method and
a system-bath analysis. The preferred language for such a
theoretical analysis is the Keldysh nonequilibrium Green’s
function method, which has been widely applied in the
area.2,7,20,21,46–49 In the current contribution, we utilize the
Keldysh approach coupled with a very simple tight-binding
model for transport through the molecular bridge itself. The
aim is not a quantitative analysis of any given system, but
rather a more general treatment of transport behavior and
how limiting cases occur.

The Hamiltonian system itself is taken as the molecular
bridge, treated in a Huckel model. Self-energies arise from
the molecule-electrode couplings and from the vibronic cou-
pling. We treat the latter as a thermal bath and investigate the
consequences of electron-phonon coupling in a local energy
representation. This permits a general expression for current
in terms of coherent and incoherent contributions, which is
expressed in terms of scattering superoperators. Various lim-
iting cases can then be analyzed: in the single-site case, we
find that the spectral function evolves from the Lorentzian
form in the limit of weak dephasing to a semicircular struc-
ture for strong dephasing. With longer bridges and consider-
ing dephasing that is local both in space and in energy, we
find a resistance structure that can be expressed in terms of
the sum of the contact resistance term and the molecular
contribution. The former is dependent on the contact cou-
plings and proportional to the square root of the coupling
strength, while the latter is proportional both to the coupling
strength and to the length of the bridge and inversely propor-
tional to a squared tunneling term.

The treatment is fully analytic and demonstrates both the
utility of the Keldysh form in understanding the limits of
molecular junction behavior and the mechanistic variations
expected in simple oligomeric structures. The paper is orga-
nized as follows. In the next section we present a brief re-
view of the Keldysh formalism and outline the model we
used to represent the molecular junction. We derive the phe-
nomenological dephasing self-energy term in Sec. III. Gen-
eral results are presented in Sec. IV, and we study the one-
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site model in Sec. V. In Sec. VI we show how the present
formulation leads to the noncoherent hopping behavior in the
limit of strong dephasing, and in Sec. VII conclusions are
given.

II. FORMALISM AND MODEL

We use the nonequilibrium Green function �NEGF� for-
malism. Although there are many excellent reviews available
in the literature on this topic,2,7,20,21,46–49 we briefly outline
the methodology for the sake of clarity and to establish our
notations. We are restricting ourselves to the study of station-
ary transport and work in the energy representation. We as-
sume the existence of a well-defined self-energy. The aim is
to solve the Dyson and Keldysh equations for the electronic
Green functions:

Gr�E� = �E − H − �r�E��−1, �1�

Ga�E� = �E − H − �a�E��−1 = �Gr�E��+, �2�

G��E� = Gr�E����E�Ga�E� , �3�

G��E� = Gr�E����E�Ga�E� . �4�

H is the Hamiltonian, Gr�E�, Ga�E�, G��E�, and G��E� are
the retarded, advanced, lesser, and greater Green functions,
and �r�E�, �a�E�, ���E�, and ���E� are the corresponding
self-energies. We use the Huckel �tight-binding� model to
describe the molecular system. The basis for electronic states
is a set of spatially localized orbitals that may be considered
atomic orbitals, or orbitals associated with different group of
atoms, “sites” within the molecule.

The Hamiltonian in second quantized notation is

H = �
i,j

tijâi
†âj , �5�

where âi
†�âi� describes the creation �annihilation� of an elec-

tron at site i in the molecule. In this paper we will investigate
homogeneous, one-dimensional, single-band models defined
by the Hamiltonian

H1D = ��
i=1

n

âi
†âi − t�

i=1

n−1

�âi
†âi+1 + âi+1

† âi� . �6�

Here, n is the number of sites, � is the energy of the sites,
and t is the hopping parameter. The conventional negative
sign is used in the Hamiltonian to energetically favor long-
wave-length molecular states. The Hamiltonian, the Green
functions, and the self-energies can all be represented by
matrices, using the atomic basis �this corresponds to real-
space representation�. The self-energies contain terms due to
the leads �contacts� and also due to internal interactions, such
as coupling to thermal phonons:

�r,a,�,� = �lead
r,a,�,� + �ph

r,a,�,� = �1
r,a,�,� + �2

r,a,�,� + �ph
r,a,�,�.

�7�

�1 and �2 refer to the two leads �source and drain�. We take
the contacts into account with self-energy terms in the wide-
band limit:

�1�2�
r = −

i

2
�1�2�, �8�

�1�2�
a = +

i

2
�1�2�, �9�

�1�2�
� = + i�1�2�f1�2��E� , �10�

�1�2�
� = − i�1�2��1 − f1�2��E�� , �11�

where �1�2� is the escape rate matrix and f1�2��E� is the
Fermi-Dirac distribution characterized by the chemical po-
tential in the corresponding leads. For the specific models in
this paper, we will assume the rate matrices couple only to
the ends of the molecular chain:

��1�ij = �1�1i�ij , �12�

��2�ij = �2�ni�ij; �13�

now, �1�2� is simply the rate constant characterizing the cou-
pling strength to the source �drain� contact.

We also want to take internal interactions into account, so
we develop phenomenological self-energy terms due to high-
temperature phonons in Sec. III. These internal self-energy
terms in principle may depend on the Green functions, there-
fore Eqs. �1�–�4� need to be solved self-consistently. Once
the Green functions have been obtained, together with the
self-energies, they allow calculation of many important
quantities. In particular, the spectral function is given as

A�E� = i�Gr�E� − Ga�E�� = i�G��E� − G��E�� . �14�

The spectral function yields the density of states �DOS�

N�E� =
1

2�
Tr�A�E�� . �15�

The current transmitted through the junction is given as an
integral of the flux of electrons at the source �or, equiva-
lently, at the drain� over different energies:49

i�E� =
e

h
Tr��1

��E�G��E� − �1
��E�G��E�� , �16�

I =� dEi�E� . �17�

Considering expressions �3� and �4� and breaking up the self-
energies into their contact and phonon contributions, the
Green functions can also be subdivided:

G�,� = Gr�lead
�,�Ga + Gr�ph

�,�Ga. �18�

The first term on the right-hand side �RHS� yields the elastic
�coherent� part of the current, while the second gives rise to
the noncoherent current when inserted into Eq. �16� Ref. 49:

icoh =
e

h
Tr��1

�Gr�lead
� Ga − �1

�Gr�lead
� Ga� , �19�
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inoncoh =
e

h
Tr��1

�Gr�ph
� Ga − �1

�Gr�ph
� Ga� . �20�

When internal interactions are neglected, the current is
purely coherent and the formalism yields expressions that are
consistent with the Landauer formula. Setting �ph

�,�=0, using
Eqs. �10� and �11�, the electron flux can be written as

i = icoh =
e

h
�f1 − f2�Tr��1Gr�2Ga� =

e

h
�f1 − f2�T , �21�

where T=Tr��1Gr�2Ga� is the transmission
function.13,17,49–55 When the leads are assumed to couple lo-
cally, at the ends of the molecular chain �such as defined by
Eqs. �12� and �13��, the transmission function is related to
the 1−n matrix element of Gr:

T = �1�2��Gr�1n�2. �22�

III. PHENOMENOLOGICAL MODEL FOR THE SELF-
ENERGY DUE TO PHONONS IN THE HIGH-

TEMPERATURE LIMIT

In this section we derive simple phenomenological forms
for the self-energy terms induced by electron-phonon inter-
actions. Most of the previous work in this respect has been
devoted to the limit when the temperature is much lower
than the phonon frequencies.26 In this case, the transmitting
electrons can only lose energy by phonon emission and the
corresponding inelastic process yields resolved side peaks
�phonon-peaks� in the transmission spectrum.37,38,41,56 In this
paper we are concerned with the opposite limit, when the
temperature is larger than phonon frequencies and phonon
absorption is as important as phonon emission. Our treatment
is formally equivalent with that used for bulk materials,57 but
the final results of the section are developed for molecular
systems.

We model the phonon bath as a collection of harmonic
oscillators, with zeroth-order Hamiltonian ��=1�

Hph = �
k

	kb̂k
†b̂k, �23�

where b̂k
†�b̂k� are creation �annihilation� operators for inde-

pendent phonons in the bath. The electron-phonon interac-
tion is represented by the Hamiltonian of the Holstein model:

Hel-ph = �
i,k

Mikâi
†âiB̂k, �24�

where B̂k= b̂k
†+ b̂k. Polarization indices are incorporated in k.

Within the self-consistent Born approximation, the self-
energies then read44,49,58–60

��ph
r �E��i,j = i�

k

MikMjk� d	

2�
�Dk

��	�Gij
r �E − 	�

+ Dk
r�	�Gij

��E − 	� + Dk
r�	�Gij

r �E − 	��

+ �ij�
k,i�

MikMi�kni�
elDk

r�	 = 0� , �25�

��ph
� �E��i,j = i�

k

MikMjk� d	

2�
Dk

��	�Gij
��E − 	� , �26�

��ph
� �E��i,j = i�

k

MikMjk� d	

2�
Dk

��	�Gij
��E − 	� , �27�

where Dk
r�	�, Dk

��	�, and Dk
��	� are the retarded, lesser, and

greater free-phonon Green functions, respectively, given as61

Dk
r�	� =

1

	 − 	k + i�
−

1

	 + 	k + i�
, �28�

Dk

�	� = − 2�i��Nk + 1���	 ± 	k� + Nk��	 � 	k�� .

�29�

Here, Nk is the occupation number for phonon mode k. In the
proposed model we assume that the phonon spectrum and the
phonon density of states are not changed due to the electron-
phonon interaction and the phonon occupation numbers are
calculated using the equilibrium distribution function at non-
zero temperature. The Green functions �28� and �29� describe
phonons with infinite lifetime, but this is not a crucial as-
sumption; it only makes the algebra more transparent. The
above expressions reveal that the lesser and greater functions
are proportional to the occupation number, while the retarded
function and the difference between the lesser and greater
functions are not. In the limit of high occupation number
�high-temperature limit compared to phonon frequencies� we
assume the following inequalities: Dk

r �Dk
��Dk

�. In this
limit we can neglect terms in Eqs. �25�–�27� that involve
Dk

r�	� and we can substitute Dk
��	� with Dk

��	�. We then
obtain

��ph
r,�,��E��i,j = i�

k

MikMjk� d	

2�
Dk

��	�Gij
r,�,��E − 	� .

�30�

This result shows that in this limit each self-energy is
related only to its corresponding Green function and through
the same linear functional. This leads to conceptual and nu-
merical simplification when Eqs. �1�–�4� are solved: The el-
ements set of the four self-consistent matrix equations are
decoupled. First we need to solve Eq. �1� for the retarded
Green function, using the phenomenological formula �30�,
which relates the retarded self-energy only to the retarded
Green function. The advanced function is simply given by
the complex conjugate of the retarded function. Once the
retarded and advanced Green functions have been deter-
mined, Eqs. �3� and �4� can be solved independently, using
formula �30� again, this time for the lesser and greater self-
energies. The general solution procedure therefore is broken
up into first solving the Dyson equation, which governs the
dynamics of the electron, and then solving the Keldysh ki-
netic equation. This simplification is similar to the case when
internal interactions are totally neglected, but now both in-
dependent calculations need to be performed self-
consistently. How high the temperature compared to phonon
frequiencies needs to be in terms of reducing Eqs. �25�–�27�
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to Eq. �30� is an interesting and important question that we
cannot address here, but is worth further consideration.

To proceed, we make physically motivated assumptions
about the way electrons are coupled to the phonon bath. Let
us assume that each phonon mode is localized in the vicinity
of a site, within a characteristic length 
, but there is still a
sufficient number of modes at each site to constitute a “local
bath.” The summation over the modes in Eq. �30� thus can be
broken up into a summation over sites �k� and over modes at
each site ���. In a homogeneous model we may also assume
that the local baths are the same at each site; i.e., the phonon
Green function does not depend on k. We can now write Eq.
�30� as

��ph
r,�,��E��i,j = i�

k
�

�

Mik�Mjk�� d	

2�
D�

��	�Gij
r,�,��E − 	� .

�31�

Only terms with simultaneous nonzero couplings Mik� and
Mjk� contribute to the sum, so the summation over k is ef-
fectively an overlap integral between sites i and j, which we
assume drops to zero if the sites are farther apart than 
.
Following the usual procedure, we rewrite the summation
over � as an integral over phonon frequencies �assuming the
coupling constants depend only on phonon frequency�. We
obtain

��ph
r,�,��E��i,j = iR��ri − rj�� � d	�M�	��2

���	�� � d	

2�
D�

��	�Gij
r,�,��E − 	� ,

�32�

where the distance-dependent function R drops to zero
within the characteristic length 
 and ��	�� is the �local�
density of phonon states. Substituting the expression for the
high-temperature phonon Green function �using Nk
=kBT /�	k� we get

��ph
r,�,��E��i,j = kBTR��ri − rj���

0

�

d	�M�	��2

���	��/�	��
−�

�

d	 ��	 + 	�� + �„	

− 	�…Gij
r,�,��E − 	�

= kBTR��ri − rj���
−�

�

d	M�	�2��	�Gij
r,�,�

�E − 	�/�	 . �33�

We rewrite Eq. �33� for clarity as

��ph
r,�,��E��i,j = DR��ri − rj�� � d	g�	�Gij

r,�,��E − 	� ,

�34�

where

g�	� =
M�	�2��	�/�	

� d	M�	�2��	�/�	

,

D = kBT� d	M�	�2��	�/�	 . �35�

Equation �34� is our phenomenological result for the
phonon-induced self-energies in the high-temperature �high-
phonon-occupation� limit. In Eq. �34�,R��ri−rj�� is a �dimen-
sionless, normalized� distance-dependent prefactor and g�	�
is the �normalized� spectral function for the electron-phonon
coupling. In the present high-temperature limit, where pho-
non emission and phonon absorption are equally important,
g�	� is an even function and its range is restricted to the
available phonon frequencies. The effective strength of the
electron-phonon interaction is characterized by D, the
dephasing strength. It is proportional to temperature and to
the square of electron-phonon coupling �M�. The magnitude
of D can be estimated as

D 	 kBT
nM̄2

�	D
, �36�

where M̄ is the typical value of the electron-phonon coupling
in the system, n is the number of coupled phonons, and 	D is
the characteristic �Debye� frequency of the phonons. In the
Marcus theory context, the fraction in Eq. �36� is related to
the inner-sphere reorganization energy �, as we will show:
Consider first a single oscillator coupled to the electron. The
force associated with the electron-phonon coupling energy
�Eq. �24�� when an electron is added is F=M /x0, where x0 is
the zero-point amplitude. The corresponding displacement is
�x=F / f =M / �fx0�, where f is the force constant. Using the
standard form for the reorganization energy in the case of a
single coupled oscillator �= f /2��x�2,62 we obtain �
=M2 / �2fx0

2�=M2 / ��	�. The fraction in Eq. �36� is a gener-
alization for the multiphonon case. The dephasing parameter
can thus also be written as D	kBT�, making it clear that D
has units of energy squared. This important result allows us
to estimate the value of D. Typical values for the reorgani-
zation energy in simple molecules are 0.1–0.6 eV,63,64 while
the thermal energy at room temperature is 0.025 eV, putting
D in the 0.01-eV2 regime.

The convolution over the phonon-frequencies in Eq. �34�
reflects the possibility of energy exchange between the trans-
mitted electron and the phonon bath. Let us investigate this
mechanism in more detail with the help of Fig. 1�a�. Elec-
trons can transfer through the wire with different energies
�the energy axis is shown vertical�. Electrons both at higher
and at lower energies �top and bottom lines� can scatter and
contribute to the self-energy at the energy shown as the
middle line. Assume that the Green function is a linearly
changing �decreasing� function of the energy, as shown in
Fig. 1�a�. Because the self-energy contributions are propor-
tional to the Green function, the contribution from the high-
energy electron will in this case be smaller than that from the
low-energy electron. However, as phonon emission and ab-
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sorption are equally important �g�	� is symmetric� and we
assumed a linear Green function, the sum of the contribu-
tions is simply determined by the value of the Green function
at the average �middle� energy. In this case, Eq. �34� reduces
to

��ph
r,�,��E��i,j = DR��ri − rj��Gij

r,�,��E� . �37�

Far from the molecular resonances, the Green function is a
smoothly varying function; therefore, Eq. �37� is a reason-
able simplification. In regions where the Green function has
substantial curvature, the approximation is questionable. The
error can be estimated by Taylor expanding the Green func-
tions �or, more conveniently, the spectral function� around E.
At resonance with a Lorentzian peak with width parameter
�, we get a relative error �	D /��2. It shows that Eq. �37� is a
reasonable approximation even in the case of resonance tun-
neling when the characteristic phonon frequency is much
smaller than the escape rate associated with the resonance-
peak.

Equation �37� is an important simplification: The relation
between the Green functions and self-energies is now local
in energy. The self-consistent Eqs. �1�–�4� can then be solved
for each energy value independently; integration over the
energy domain only occurs when calculating the terminal
current. The form of Eq. �37� suggests that within this ap-
proximation, vertical transitions are disregarded; therefore,
we refer to this phenomenology as the dephasing model. As
our previous discussion shows, vertical transitions may still
occur, but their effect is balanced in a sense that validates the
energy local relation �37�. On the other hand, even in this
case, the internal interactions reshuffle electrons between dif-
ferent energies compared to the interaction-free situation.
Figure 1�b� illustrates this point, showing the dephasing-free
Green function in a small energy interval. Now consider a
weak but nonzero interaction with the phonon bath. Elec-
trons will scatter from the high-energy state to the low-
energy state with a smaller rate than in the opposite direc-
tion, as the Green function in this example is smaller at
higher energies. It is clear that the electron-phonon interac-
tion rearranges, “spectrally diffuses” the transmitting elec-
trons, from high-DOS regions to low-DOS regions. We shall
see concrete examples for the consequences of this mecha-
nism in later sections.

Considering the spatial dependence of the dephasing
model, two opposite simple limits may be suggested: If the

localization of phonons is strong, we may assume that over-
lap between them is restricted within each site—i.e., R��ri

−rj��=�ij. The self-energies are then diagonal matrices:

��ph
r,�,��E��i,j = D�ijGij

r,�,��E� . �38�

On the other hand, if the correlation length of the phonons is
greater than the entire chain, we may assume R��ri−rj��
=1/n �n being the number of sites� and the self-energies now
become

��ph
r,�,��E��i,j =

D

n
Gij

r,�,��E� . �39�

We refer to this latter �Eq. �39�� phenomenology as the de-
localized and to the former �Eq. �38�� as the local dephasing
model. In the rest of the paper we will mainly focus our
attention to the local dephasing model.

Finally, let us put our results in a more general context.
The phenomenological self-energy formulas �Eqs. �34� and
�37�–�39�� we obtained in this section were derived assuming
an electron-phonon interaction as the main dephasing mecha-
nism. However, Eq. �34� is also the most general phenom-
enological form for the self-energy under the reasonable sim-
plifying assumptions that �a� the self-energy is a linear
functional of the Green function, �b� each self-energy is re-
lated only to its corresponding Green function and through
the same functional, and �c� the relation only depends on the
distance between the sites. Equation �37� follows if we also
assume that the relation is local in energy.

Due to its simplicity, the phenomenology discussed above
can be used for other dephasing mechanisms. Indeed, self-
energies with this functional form have been used to describe
the effects of not only acoustic phonons, but also those of
alloy fluctuations, interface roughness, and ionized dopants
in layered semiconductor devices.57 As a further example,
one may consider a disordered chain, where the site energies
are randomly detuned from their average value �e.g., as in a
liquid or glassy environment�. This �static� modulation cor-
responds to interactions with uncorrelated phonons in the
limit of zero phonon frequencies; therefore, formula �38�
should be a reasonable model in this case. For disordered
chains, the dephasing parameter is temperature independent
and is determined by the mean square of the detuning en-
ergy: D	
��2�.

IV. GENERAL RESULTS

As we saw in the previous section, it is reasonable to
model the electronic self-energies due to a number of impor-
tant dissipation mechanisms as a functional that relates the
different self-energies only to their corresponding Green
functions in a linear fashion:

�ph
r,�,��E� = D̃Gr,�,��E� . �40�

The superoperator D̃ maps matrices to matrices and, in prin-
ciple, may also involve energy convolution �see Eq. �34��.
Within the dephasing model, when vertical transitions are

neglected �or their overall effect is balanced�, D̃ is local in

FIG. 1. Illustration of inelastic processes in the molecular wire.
�a� The sum of self-energy contributions from phonon absorption
and emission at a given energy is determined by the local value of
the Green function. �b� More electrons scatter from large Green
function �large DOS� energy channels to small DOS channels than
vice versa. Electrons spectrally diffuse during transmission. See text
for details.
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energy �see Eq. �37��. With the further assumption that the
scattering centers are uncorrelated for different sites, the
dephasing functional becomes local spatially as well as in
energy; i.e., the self-energies become diagonal in the site
representation �see Eq. �38��. In this section we derive a
number of general results starting from the formal relation
�40�.

A. Causality and charge conservation

Any phenomenological model for self-energies must obey
the principle of causality, which means that in the time do-
main, the retarded �advanced� self-energy must be zero at
negative �positive� times. The relation in Eq. �34� is a con-
volution in the frequency domain. Fourier transformation
converts the relation into a simple product in the time do-
main: ��ph

r ����i,j =DR��ri−rj��g���Gij
r ���. Because Gij

r ��� does
vanish at negative times, so does �ph

r ���, thus proving cau-
sality for the self-energy. A similar analysis shows that the
relation �ph

r −�ph
a =�ph

� −�ph
� holds.

As realized by Buttiker,55 interactions can be viewed as
processes involving the exchange of electrons with a concep-
tual reservoir. Next we demonstrate that our model, as it
should, yields zero current associated with such processes.
The flux of particles into the conceptual reservoir is49

iph�E� =
e

h
Tr�G��E��ph

� �E� − G��E��ph
� �E��

=
e

h
Tr�G��E�D̃G��E� − G��E�D̃G��E�� , �41�

while the current to the reservoir is �iph�E�dE. It vanishes

due to the Hermitian property of D̃ in the sense that for any
energy-dependent �matrix� functions X�E� and Y�E�,

� Tr�X�E�D̃Y�E��dE =� Tr�Y�E�D̃X�E��dE . �42�

D̃ possesses this property for all the specific models de-
scribed in the previous section, and we may postulate it in
the general case. Within the local dephasing model, it is easy
to show that the electron flux to the reservoir is zero at each
energy and at each site:

�G�D̃G� − G�D̃G��ii = �G��iiD�G��ii − �G��iiD�G��ii = 0.

�43�

This conclusion again shows the underlying assumption in
the dephasing model that the overall vertical flow of elec-
trons is zero.

B. Terminal current, electron flux, and transmission function

Now we proceed to obtain the formal solution for the
terminal current in the presence of internal processes. We
will restrict the discussion to the dephasing model; i.e., the

superoperator D̃ is assumed local in energy. As described in
the previous section, first we need to solve the self-consistent
matrix equation for the retarded Green function. Substituting

expression �40� for �ph
r �E� into the Dyson equation �1� we

obtain

GD
r �E� = �E − Hel − �lead

r − D̃GD
r �E��−1. �44�

The subscript D in the Green function reminds us of the
presence of the dephasing processes. This nonlinear matrix
equation has to be solved self-consistently. Within the

dephasing model, D̃ does not mix Green functions at differ-
ent energies, so equations for GD

r �E� at different values of E
can be solved independently. The advanced Green function
GD

a �E� is simply obtained as the Hermitian conjugate of
GD

r �E�. Next, we solve for the lesser and greater Green func-
tions using Eqs. �3� and �4� and for the flux of electrons
given by Eq. �16�. Within the dephasing model, every quan-
tity is local in energy; therefore, the terminal current is still
given as the energy integral of the flux �see Eq. �17��, and the
transmission function can still be defined as before. The co-
herent part of the flux is given in Eq. �19�. Using Eqs. �10�
and �11� we derive

icoh =
e

h
�f1 − f2�Tr��1GD

r �2GD
a � . �45�

We define the coherent transmission as in Eq. �21�, and from
Eq. �45� we conclude

Tcoh = Tr��1GD
r �2GD

a � . �46�

The coherent transmission has exactly the same form as
without dephasing �see Eq. �21��; the effect of the dephasing
processes enters only in the form for the retarded �and ad-
vanced� Green functions. For further development, let us de-

fine the propagator ŨD, as a superoperator that acts on any

matrix X as ŨDX=GD
r XGD

a . Also, let us identify the trace of
the matrix product, Tr�XY�, as the scalar product of the two
matrices: 
XY�. Now we can write the coherent transmission
as

Tcoh = 
�1ŨD�2� . �47�

The physical meaning of the above expression is clear: The
coherent contribution to electron transmission is determined
by the correlation between the contact operators �1 ,�2

through the propagator ŨD.
In order to obtain the noncoherent flux �and transmission�,

we have to express the self-energies due to phonons. Using
our phenomenological model, we can write

�ph
� = D̃G�

= D̃�GD
r ��GD

a �

= D̃„GD
r ��lead

� + �ph
� �GD

a
…

= D̃ŨD��lead
� + �ph

� � , �48�

whose formal solution is
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�ph
� = D̃ŨD�1 − D̃ŨD�−1�lead

� . �49�

�ph
� is given by a similar expression. Using the definition

�Eq. �20�� and the contact limits of Eqs. �10� and �11� and
substituting Eq. �49�, we arrive at the result

inoncoh =
e

h
�f1 − f2�
�1ŨDD̃ŨD�1 − D̃ŨD�−1�2� , �50�

from which the noncoherent transmission can be defined as

Tnoncoh = 
�1ŨDD̃ŨD�1 − D̃ŨD�−1�2� . �51�

combining Eqs. �47� and �51� yields the total electron trans-
mission:

T = Tcoh + Tnoncoh = 
�1ŨD�1 − D̃ŨD�−1�2� . �52�

We can see now that the total transmission is in a form that is
very similar to the standard expression �47� obtained for the
coherent part. The only difference is that now the superop-
erator describing the electron propagation �transmission� be-
tween the contacts is renormalized:

T = 
�1ŨD
ren�2� , �53�

where

Ũren = ŨD�1 − D̃ŨD�−1 = �1 − ŨDD̃�−1ŨD. �54�

To gain additional insight, let us expand the formal expres-
sion �52�:

T = 
�1�ŨD + ŨDD̃ŨD + ŨDD̃ŨDD̃ŨD + ¯ ��2� . �55�

The physical meaning of this expansion is clear: The total
transmission is determined by a sum of terms representing a
growing number of scattering processes. The first term de-
scribes the propagation of the electron injected with �1, cor-
relating with the �2 emitter. This gives the coherent part of
the transmission. All the other terms contribute to the non-
coherent part, describing a growing number of consecutive
dephasing �scattering� events, connected with electron propa-

gations. The subscript in ŨD is a reminder that the propagator
is also affected by dephasing—the transmission is not simply

an expansion in powers of D̃ as it may look at first glance.
Our result is a slight generalization of the expansion obtained
in Ref. 57 for semiconductor devices.

C. Transmission function with local dephasing and local
couplings to the leads

We now derive general formulas for the coherent and total
transmission functions assuming the local dephasing model
�Eq. �38�� and local contacts �Eqs. �12� and �13��. Within this
model, the coherent transmission is given as usual by the
simple formula

Tcoh = 
�1Ũ�2� = �1�2��Gr�1n�2. �56�

We now calculate the total transmission. The second term in
Eq. �55� can be written as


�1ŨD̃Ũ�2� = �1�2D�
k

��Gr�1k�2��Gr�kn�2. �57�

Let us define the n�n matrix Q as

�Q�ij = ��Gr�ij�2. �58�

We can now rewrite Eqs. �56� and �57� as


�1Ũ�2� = �1�2�Q�1n, �59�


�1ŨD̃Ũ�2� = �1�2D�Q2�1n, �60�

where �Q2�1n is the 1−n element of the matrix Q2=QQ. It is
not hard to prove the generalization of these formulas:


�1�ŨD̃�kŨ�2� = �1�2Dk�Qk+1�1n, �61�

from which it follows that the total transmission can be writ-
ten as

T = 
�1Ũ�1 − D̃Ũ�−1�2�

= �
k=0

�

�1�2�Q�DQ�k�1n

= �1�2�Q�1 − DQ�−1�1n. �62�

When both the contacts and dephasing mechanism are local,
the formal results obtained in the previous subsection are
greatly simplified. The general formulas, involving superop-
erators, reduce to the 1−n element of an ordinary matrix.
This result is the generalization of the well-known formula,
Eq. �22� �which in the present context can be written as T
=�1�2�Q�1n�, and is essentially equivalent to formulas ob-
tained for semiconductor devices.57

V. ONE-SITE MODEL

The simplest model involves a single site with one elec-
tronic level between the contacts. All the operators and su-
peroperators can be represented in this case by 1�1
matrices—i.e., by complex numbers. Choosing the energy
reference at the energy of the single atomic orbital ��=0�,
the Hamiltonian is zero. The self-consistent equation for the
retarded Green function becomes

Gr = �E + i�/2 − DGr�−1, �63�

where �= ��1+�2�, the sum of the rate constants. In the one-
site model both terminals couple to the same site. Expression
�63� can be solved explicitly. The root with the smaller mag-
nitude is the physically relevant solution, as it corresponds to
a stable fixed point of the self-consistent map �63�. For fur-
ther development, we write the solution in two equivalent,
alternative forms

Gr =
E + i�/2 − 
�E + i�/2�2 − 4D

2D

=
2

E + i�/2 + 
�E + i�/2�2 − 4D
. �64�

We can now compute the spectral function A= i�Gr−Ga�
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=−2 Im�Gr�. In one dimension, the DOS is simply propor-
tional to the spectral function N�E�=A /2�. Using the second
line in Eq. �64�, it is easy to consider the limit when dephas-
ing effects may be neglected �D→0�. The Green function
then simplifies to Gr=1/ �E+ i� /2�, and we recover the well-
known Lorentzian form for the spectral function:

A =
�

E2 + ��/2�2 . �65�

In the opposite limit, when dephasing effects are strong com-
pared to the coupling to the leads ��→0�, the spectral func-
tion takes a semicircular form

A =

4D − E2

D
�66�

for values of E where the above expression is real �i.e., for
�E � �2
D� and zero otherwise. The width of the “peak” is
now determined by the dephasing parameter. This semicircu-
lar form is reminiscent of the spectral function obtained with
random matrix techniques for homogeneous chains with di-
agonal random disorder.65–67 As we discussed in Sec. III, the
present dephasing model is indeed applicable to such ran-
domly disordered chains. The only energy scale for the one-
site model is set by �, and the relative significance of
dephasing is characterized by the dimensionless fraction
D /�2. We plot the spectral function for various values of
D /�2 in Fig. 2. We can see that the peak value of the distri-
bution decreases while its width grows with growing D and
its shape changes from the Lorentzian to the semicircular
form. While the molecule-electrode coupling depends very
strongly on the geometry and chemical composition of the
junction, �=0.1 eV can be considered a reasonable value. In
the previous section we estimated D in the 0.01-eV2 regime
for a simple molecule at room temperatures. These values
yield D /�2=1, showing the physical relevance of our discus-
sion in realistic experimental systems.

The Q matrix defined in Eq. �58� is now simply the real
number Q= �Gr�2. The general relationship A= iGr��r

−�a�Ga translates in our case to the equation A= �Gr�2��
+DA�. It allows us to express the coherent and noncoherent
transmission functions with the spectral function:

Tcoh =
�1�2A

� + DA
, �67�

Tnoncoh =
�1�2DA2

��� + DA�
. �68�

Their relative ratio is

Tnoncoh

Tcoh
=

DA

�
. �69�

This result is very intuitive: the noncoherent contribution
becomes comparable to the coherent one when the dephasing
rate in the sample, given by the product of the dephasing
constant and the spectral function, becomes appreciable
compared to the escape rates to the leads. The total transmis-
sion function T=Tcoh+Tnoncoh can be written in a particularly
simple form

T =
�1�2

�
A , �70�

in accordance with the general result for systems with pro-
portionate couplings. Because of this proportionality, the
plots in Fig. 2 can be viewed also as transmission functions
at different dephasing strengths �see the scale on the right
vertical axis�. On these plots, we assumed the junction is
symmetric: �1=�2=� /2.

Figure 3 shows the total transmission �solid lines� and
their coherent parts �dotted lines� as functions of the �dimen-
sionless� dephasing parameter D /�2 at different �dimension-
less� energies. The rate constants were again assumed equal.
The transmission axis is logarithmic. When the energy of the
transmitting electrons is at the resonance peak �E=0�, at D
=0, transmission for this symmetric model assumes its maxi-

FIG. 2. Spectral function for the one-site model at different
values of the �reduced� dephasing parameter D /�2. The spectral
function evolves from a Lorentzian to a semicircular form as D /�2

is increased. For the one-site model, the transmission function is
simply proportional to the spectral function; therefore, the curves
also show the latter �for scale, see the vertical axis on the right�.

FIG. 3. Transmission functions versus �reduced� dephasing pa-
rameter for the one-site model at different �reduced� energies. Solid
lines show total transmission; dashed lines show the coherent part
of the transmission functions. The transmission axis is logarithmic.
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mum possible value of unity. With dephasing effects intro-
duced �at higher values of D�, transmission decreases. The
coherent part of the transmission also decreases, even faster
than the total transmission. At high values of D, transmission
is dominated by its noncoherent contribution. Inspection of
Fig. 2 helps to rationalize this drop in transmission. The DOS
at the peak of the resonance at D=0 is quite high, resulting in
strong transmission. As the dephasing parameter is increas-
ing, electrons redistribute along the different energy chan-
nels. The DOS curve broadens, its value at E=0 eV dimin-
ishes, and therefore transmission decreases. As the DOS at
resonance is at maximum value, the efficiency of phonon
scattering �being proportional to N�E�� is high. The transmit-
ted current becomes dominated by noncoherent channels
even at moderate dephasing strengths. This behavior of the
conductance shows signatures characteristic of metals. Far
from the resonant peak �at E /�=4 in Fig. 3�, transmission is
much lower. With increasing values of D, transmission
weakly rises, but remains dominated by the coherent chan-
nel. This behavior is reminiscent of insulators. The most in-
teresting transmission curves appear at near-resonant ener-
gies �at E /�=1.8 in Fig. 3�. At D=0 transmission is
moderate; its value is in between those of the resonant and
off-resonant cases. When the dephasing parameter is in-
creased, both the total transmission and its coherent part at
first increase, but, after reaching a maximum, decrease. This
behavior is a mixture of the two cases discussed for the reso-
nant and off-resonant cases, and a switch-over between the
two conducting mechanisms is clearly exhibited. At low val-
ues of D, the rise of the transmission functions is moderate
and they do not deviate much; current is dominated by the
coherent channel. At a characteristic intermediate region of
the dephasing parameter, the total transmission starts rising
sharply, departing from the coherent contribution that
reaches its maximum. Current becomes more and more non-
coherent. Increasing D further, the transmission curves con-
verge to the ones obtained for the resonant energy. This be-
havior can be associated with semiconductors.

We can see that the introduction of dephasing does not
have a unique effect on the conductance of the system. If the
charge carriers are in a resonant �high-DOS� region, trans-
mission decreases. On the other hand, transmission can ac-
tually rise with dephasing at off-resonant �low-DOS� regions,
as the outscattering of charge-carriers is outweighed by in-
scattering from higher DOS regions. The dominant mecha-
nism of transmission is also affected by the resonant condi-
tion; current is more susceptible to become dominated by
noncoherent channels at or near a resonance peak �or in a
high-DOS region�.

VI. EMERGENCE OF THE NONCOHERENT HOPPING
MECHANISM

The significance of the noncoherent processes is deter-

mined by the dimensionless superoperator D̃Ũ. Let us now
consider �as suggested by the expansion in Eq. �55�� the

action of D̃Ũ on an electron injected at one terminal, within
the local dephasing model �Eq. �38��. The matrix describing
such an electron is essentially determined by the escape rate

matrix, it is diagonal and local at the terminal site, and it
does not involve coherences between different sites. The

evolution operator Ũ delocalizes the electron, and coher-

ences also develop; D̃, however, projects the electron state

into its diagonal elements again. Subsequent action of D̃Ũ on
the electron now localized at internal site�s� also projects

onto diagonal electron states. D̃Ũ thus describes the propa-
gation of the electron in the system, but it maps electronic
populations to populations; coherences are suppressed. What
we see is the emergence of the classical hopping mechanism,
where only populations at different sites are taken into ac-
count with a probability distribution and quantum coherences
need not be considered. In what follows, we will demonstrate
how, in the limit of strong dephasing, our general results
yield the noncoherent site-hopping behavior. We shall con-
sider a homogeneous n-site chain with local dephasing and
local terminal conducts. Strictly speaking, the limit we are
taking in this section is justified when t2 ,�2�D �as will be
apparent in our derivation�. As we saw in the previous sec-
tion, D can indeed be greater than �2 for realistic junctions.
For t2 to be smaller than D, t should also be in the 0.1-eV
regime or smaller. This value, although probably too low for
a direct Huckel hopping parameter within a simple molecule,
may actually be realistic when describing an effective hop-
ping parameter between moities in an oligomeric molecular
wire. In addition, we believe some of the conclusions of this
section remain valid even if the t2�D condition does not
hold, but the chain is sufficiently long. This question will be
addressed in a future publication with numerical investiga-
tion of arbitrarily long molecular wires.

First we have to solve the Dyson equation �44�. Let us
introduce the zeroth-order Green function G0 as

G0
r = �E − D̃G0

r�−1. �71�

The superoperator D̃ projects onto a diagonal matrix in site
representation; therefore, G0

r is also diagonal, and in fact it is
simply a multiple of the identity matrix G0

r =g0I, where the
complex number g0 is determined by the equation

g0 = 1/�E − Dg0� . �72�

In the limit of strong dephasing, the other terms �H and
�lead� in Eq. �44� can be treated as perturbations. Writing
Gr=G0

r +G1
r =g0I+G1

r where G1
r is the perturbation in the

Green function, we obtain the equation

g0I + G1
r = g0�I − g0�D̃G1

r + H + �lead��−1. �73�

Expanding the inverse, keeping terms up to the first order in
G1

r and �, we arrive at the matrix equation for G1
r :

G1
r = g0

2�D̃G1
r + �lead� + g0

2H + g0
3H2 + ¯ . �74�

The matrices D̃G1
r and �lead are diagonal, and H is tridiago-

nal �with zero diagonal elements, as we take the site energies
to be zero�. The 1−n element of the Green function in lowest
order thus comes from the term Hn−1 : �Gr�1n=g0

ntn−1. Using
Eq. �56� and noting that Eq. �72� implies �g0�2=1/D, inde-
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pendent of E, we obtain the coherent transmission in the
strong dephasing limit:

Tcoh =
�1�2

D
� t2

D
�n−1

. �75�

This drops exponentially with chain length, and the decay
length is inversely proportional to the dephasing parameter
�to temperature when dephasing is induced by thermal
phonons�. It should be emphasized that the exponential
length dependence obtained here for the coherent transmis-
sion is not related to the well-known exponential length de-
pendence for the total transmission in the off-resonant, elas-
tic case. The latter is a direct consequence of the tunneling
mechanism. In the strong dephasing limit, the explanation is
different: The coherent part of the transmission is due to
electrons that never scatter in the chain. At each site, how-
ever, there is a probability of a scattering event. The flux of
electrons that manage to avoid all such scattering events
must therefore drop exponentially along the chain. Coherent
transmission is not directly observable in conductance ex-
periments, where the total current is measured. However, in-
teractions mediated by the superexchange mechanism �such
as Heisenberg coupling of electron spins at displaced radicals
of a molecular chain� depend directly on the virtual transmis-
sion of coherent electrons. Such experiments have been
performed,68 and results agree with the exponential length
dependence in Eq. �75�.

To determine the total transmission, we need to calculate
the Q matrix, introduced in Eq. �58�. Starting from Eq. �74�,
we can express elements of the Green function and, from
that, those of Q. In zeroth order, Q is determined by �the
trivial� G0

r , and itself is a multiple of the identity Q= �g0�2I
= �1/D�I. Up to second order in t, Q is tridiagonal. We obtain
its diagonal and subdiagonal elements after substituting g0
from Eq. �72�:

�Q� j j =
1

D
−

t2� j

D2 −
� j

D
4D − E2
, �76�

�Q� j+1,j = �Q� j,j+1 =
t2

D2 . �77�

The parameters here are � j =1 for j=1 and n and � j =2 for
all other j. � j =�1 for j=1, � j =�2 for j=n, and � j =0 for all
other j, �1 and �2 are again the escape rates to the leads.
Total transmission is essentially the power expansion of the
matrix DQ �see Eq. �62�� Let us introduce the dimensionless
parameters p= t2 /D, q1=�1 / �
4D−E2�, and q2

=�2 / �
4D−E2� and write down the matrix DQ for, say, n
=4:

DQ =�
1 − p − q1 p 0 0

p 1 − 2p p 0

0 p 1 − 2p p

0 0 p 1 − p − q2

� . �78�

We can see that this matrix describes the transfer of popula-
tions �probabilities� between sites in the chain. p is the hop-
ping probability between neighboring sites, and q1 and q2 are

hopping probabilities from the two terminal sites to the cor-
responding leads. Inversion of the matrix 1−DQ is tractable,
and using Eq. �62� we obtain the total transmission in the
strong dephasing limit:

T =
�1�2

D

p

�n − 1�q1q2 + p�q1 + q2�
. �79�

T is proportional to the conductance of the system. Substi-
tuting the expressions for p, q1, and q2, we express the re-
ciprocal of the transmission which is proportional to resis-
tance:

T−1 =
1


1 − E2/4D


D

2
� 1

�1
+

1

�2
� +

1

1 − E2/4D

�n − 1�D
4t2 .

�80�

We can see that the resistance is the sum of two terms.
The first term is the contact resistance,69 which depends on
the molecule-contact couplings �1 and �2. Not surprisingly,
this term is the reciprocal of the transmission we got for the
single-site model in the strong dephasing limit �see Eqs. �70�
and �66��. Further assuming the molecular band is approxi-
mately half-filled �i.e., the Fermi energy lies close to the
middle of the molecular band where E=0�, the dimensionless
prefactor goes to unity and we find that the contact resistance
is proportional to the square root of D �to the square root of
temperature in the case of dephasing assisted by thermal
phonons�. The second term in Eq. �80� does not depend on
the molecule-contact couplings but rather on the intersite
coupling t. Again, assuming E=0, we see that it is propor-
tional to the chain length n and to the dephasing strength D
�to the temperature�. Of course, this is exactly what is ex-
pected for the Ohmic resistance of a classical wire.

VII. CONCLUSIONS

We have applied the nonequilibrium Green function for-
malism to study dephasing effects in molecular conduction.
We investigated homogeneous, single-banded linear chains
with tight-binding �Huckel� Hamiltonian. Starting from the
self-consistent Born approximation, we derived phenomeno-
logical relationships determining the self-energies due to
electron-phonon interactions in the limit of high phonon oc-
cupation numbers. The phenomenological self-energies are
given as linear functionals of only their respective Green
functions. Within this limit, the Dyson and Keldysh equa-
tions decouple, although both need to be solved in a self-
consistent manner. As the self-energy is proportional to the
electronic Green function, the dephasing efficiency due to
phonons scales linearly with the local density of states. Scat-
tering effects become more important at energy regions with
higher DOS values. We derived the transmission function
and its coherent part in the presence of dephasing effects.
Our results are generalizations of the formula T
=Tr��1Gr�2Ga�. We also generalized the formula T
=�1�2��Gr�1n�2 for locally coupled contacts.

We studied a one-site model with a single electronic level
in detail. When dephasing effects are neglected, we recover
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the usual Lorentzian line shape for the DOS whose width is
determined by the coupling strength to the leads. In the other
limit, when dephasing effects are very strong, we obtain a
semicircular DOS curve, in accordance with DOS distribu-
tions for randomly disordered tight-binding chains. In this
case the width is determined by the dephasing parameter.
The transmission function obtained for the one-level model
follows the general relationship derived for systems with
proportionate couplings; it is proportional to the DOS. The
noncoherent �inelastic� contribution to the transmission is
weak in low-DOS regions, but dominates in high-DOS re-
gions. Transmission �conductance� is affected by dephasing
in a nontrivial manner. Stronger dephasing efficiency inhibits
transmission �especially coherent transmission� at resonant
energies, but it enhances both the total transmission and its
coherent part in the off-resonant case. At near resonance, the
transmission function is nonmonotonous, showing a maxi-
mum at a characteristic value of the dephasing parameter.

Finally, we investigated long molecular chains in the limit
of strong local dephasing. In this case, quantum coherences
between different sites were found to be destroyed. The de-
scription collapses into what can be identified as the transfer
matrix describing hopping probabilities between electronic
populations at neighboring sites and those between terminal
sites and the corresponding contacts. We find that the coher-

ent part of the transmission in this limit decays exponentially
along the chain. The reciprocal of the total transmission,
which is proportional to the resistance of the wire, is the sum
of two terms: The contact resistance does not depend on the
length of the chain, only on the molecule-contact coupling.
We find that it is proportional to the square root of the tem-
perature. The other term that depends on molecular param-
eters shows signatures of the Ohmic resistance of an ordinary
wire; it is proportional to the chain length and to the tem-
perature.

We have demonstrated that the nonequilibrium Green
function technique can be used as a powerful first-principles
analytic tool to study nonelastic effects in molecular conduc-
tion. In the limits of Coulomb blockade and other strong
correlation phenomena, local dephasings may provide a to-
tally different mechanistic modification. Analysis of this situ-
ation will be reported subsequently.
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