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Acoustic surface plasmons in the noble metals Cu, Ag, and Au
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We have performed self-consistent calculations of the dynamical response of the (111) surface of the noble
metals Cu, Ag, and Au. Our results indicate that the partially occupied surface-state band in these materials
yields the existence of acoustic surface plasmons with linear dispersion at small wave vectors. Here we
demonstrate that the sound velocity of these low-energy collective excitations, which had already been pre-
dicted to exist in the case of Be(0001), is dictated not only by the Fermi velocity of the two-dimensional
surface-state band but also by the nature of the decay and penetration of the surface-state orbitals into the solid.
Our linewidth calculations indicate that acoustic surface plasmons should be well defined in the energy range

from zero to ~400 meV.
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I. INTRODUCTION

During the last decades a variety of metal surfaces, such
as Be(0001) and the (111) surfaces of the noble metals Cu,
Ag, and Au, have become a testing ground for many experi-
mental and theoretical investigations.! These surfaces are
known to support a partially occupied band of Shockley sur-
face states with energies near the Fermi level. Since these
states are strongly localized near the surface and disperse
with momentum parallel to the surface, they can be consid-
ered to form a quasi-two-dimensional (2D) surface-state
band with a 2D Fermi energy S%D equal to the surface-state

binding energy at the I' point.

In the absence of the three-dimensional (3D) substrate,
partially occupied Shockley surface states would support a
2D collective oscillation, the energy of this plasmon being
given by (unless stated otherwise, atomic units are used, i.e.,
e?=h=m,=1)>°

wop = \5’27Tn2Dq/m2D, (1)

where n,p represents the density of occupied surface states
n2D=m2D812;D/77, q represents the magnitude of a 2D wave
vector, and m,p is a 2D effective mass. Equation (1) shows
that at very long wavelengths plasmons in a 2D electron gas
have low energies; however, they do not affect electron-hole
(e-h) and phonon dynamics near the Fermi level, due to their
square-root dependence on the wave vector. Much more ef-
fective than ordinary 2D plasmons in mediating, e.g., super-
conductivity would be the so-called acoustic plasmons with
soundlike long-wavelength dispersion.’

Recently, it has been demonstrated that in the presence of
the 3D substrate the dynamical screening at the surface pro-
vides a mechanism for the existence of a new acoustic col-
lective mode, whose energy exhibits a linear dependence on
the 2D wave vector.>® We refer to this mode as acoustic
surface plasmon (ASP), to distinguish it from the conven-
tional surface plasmon predicted by Ritchie.!” The energy of
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this latter plasmon is known to be w5=wp/ \2, where w, is
the plasmon energy of a homogeneous electron gas of den-
sity ng: w,=(4mnp)"2.

In a simplified model in which surface-state electrons
comprise a 2D electron gas at z=z, (see Fig. 1), while all
other states of the semi-infinite metal comprise a 3D sub-
strate at z=<0, one finds that both e-/4 and collective excita-
tions occurring within the 2D gas can be described with the
use of an effective 2D dielectric function, which in the
random-phase approximation (RPA) takes the form’

(@, ) = 1 = W(z0.24:0, 0) Xop(. @), )

W(z,z';q,w) being the 2D Fourier transform of the so-called
screened interaction in the presence of the 3D substrate
alone,"" and x),(¢,®) being the noninteracting density-
response function of a 2D electron gas.’

In the absence of the 3D substrate, W(z,z';q,w) yields
the 2D Fourier transform of the bare Coulomb interaction
and €4{(q,w) coincides, therefore, with the RPA dielectric

3D substrate A 2D

layer

24

A 4

-
<

>

z<0 z=0 z>0

FIG. 1. Simplified model in which surface-state electrons com-
prise a 2D sheet of interacting free electrons at z=z, All other
states of the semi-infinite metal are assumed to comprise a plane-
bounded 3D electron gas at z<0. The metal surface is located at
z=0.
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function of a 2D electron gas, which in the long-wavelength
(g—0) limit has one single zero corresponding to collective
oscillations at w=w,p.

In the presence of a 3D substrate, the long-wavelength
limit of €.;(g,®) has two zeros.'> One zero corresponds to a
high-frequency oscillation of energy wzzw§+w§D in which
2D and 3D electrons oscillate in phase with one another. The
other zero corresponds to a low-frequency acoustic oscilla-
tion in which 2D and 3D electrons oscillate out of phase. The
energy of this low-frequency mode is found to be of the
form’

w=ai’q, 3)

where U%;D represents the 2D Fermi velocity

UIZVD = \r28%D/m2D (4)
and
2
a=J1+ W[Ef—fl](zd)] 5)
with
I(zg) = ‘lll_rj(l) Wiz 2439, @7 q). (6)

The coefficient a (whose value depends on the electron den-
sity of the 3D substrate and increases with z,;) ranges from a
constant value (on the order of 1.3—1.6 for metallic densities)
for a 2D sheet far inside the 3D susbtrate to the asymptotic
value 12z, (see Ref. 13) for a 2D sheet far outside the metal
surface.

In this paper, we extend the self-consistent calculations of
the dynamical response of Be(0001) reported in Ref. 8 to the
case of the (111) surface of the noble metals Cu, Ag, and Au.
Our results indicate that the partially occupied surface-state
band in these materials yields the existence of acoustic sur-
face plasmons whose energy is of the form of Eq. (3), but
with an « coefficient that is much closer to unity than ex-
pected from the simplified model described above. Further-
more, we demonstrate that the sound velocity (vS=av%D) of
this low-energy collective excitation is dictated not only by
the Fermi velocity of the 2D surface-state band but also by
the nature of the decay and penetration of the surface-state
orbitals into the solid. We also investigate the width of the
corresponding plasmon peak, which dictates the lifetime of
this collective excitation.

II. THEORY

In order to achieve a full description of the dynamical
response of real metal surfaces, we first consider the one-
dimensional potential of Ref. 14. This allows us to assume
translational invariance in the plane of the surface, which
yields, within linear-response theory, the following expres-
sion for the electron density induced by an external pertur-
bation ¢**(z;q,w):
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on(z;q,w) = f dz' x(z,2' 3¢, 0) (2" 39, @), (7)

x(z,7';q,w) representing the 2D Fourier transform of the
density-response function of our interacting many-electron
system. The collective oscillations created by an external po-
tential of the form!>

™ (z;q,w) =— 27/q)e® (8)

can be traced to the peaks of the imaginary part of the so-
called surface response function g(gq,w):'®!’

27T ’
g(q,w):‘7fdzfdzleq(m X(z7'q.0), (9

which at g=0 exhibits a pole at the conventional surface
plasmon w,.'8

A. Single-particle states

The starting point of our calculations is a set of single-
particle states ¢4 ,(r) and energies Ey , of the form

1 .
lpk,n(r) = /__elk'rud)n(z) (10)
VA
and
k2
Ek n= + €y, (1 1)
© 2m,

where r=(r,z), A is a normalization area, and ¢,(z) and ¢,
are the eigenfunctions and eigenvalues of a one-dimensional
Schrodinger equation of the form

14
|:— Ed_zz + VMP(Z):| ¢n(Z) = 8n¢n(z)’ (12)

Vmp being the model potential described in Ref. 14. This
potential reproduces the key features of the surface band
structure, which in the case of the (111) surface of the noble
metals are the presence of a band gap at the center of the 2D
Brillouin zone (2DBZ) and the existence of Shockley and
image states in it.

Alternatively, for a description of the screened interaction
W(z,z';q,w) entering Egs. (2) and (6) (which accounts for
the presence of 3D bulk states alone), the wave functions
¢,(z) and €, can be taken to be the eigenfunctions and ei-
genvalues of a jellium Kohn-Sham Hamiltonian of density-
functional theory (DFT),'” which we evaluate in the local-
density approximation (LDA) with the parametrization of
Perdew and Zunger.?’

In order to solve either Eq. (12) or the jellium Kohn-Sham
equation of DFT, we consider a thick slab with a given num-
ber of atomic layers and assume that the electron density
vanishes at a distance 7, from either crystal edge.?! The one-
dimensional wave functions ¢,(z) are then expanded in a
Fourier series of the form??
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FIG. 2. Surface electronic structure of Cu(111). The thick solid
line is the energy Ek,,,zs%D+k2/ 2m,p of the Shockley surface state
versus the 2D momentum k, as obtained with the measured value of
the effective mass m,p. The gray area (with the upper limit at E
=go+k>/2my) represents the projected bulk band structure. The val-
ues of s,zpD, mop, €9, and my are reported in Table 1. Solid lines
correspond to the bulk states that we have obtained by employing a
slab with 81 atomic layers to simulate the semi-infinite solid. We
have used the following parameters in the description of the model
potential Vyp entering Eq. (12): A;p=-11.805, A;=5.14, A,
=4.4204, and B=2.8508 (for a description of the model potential
see Ref. 14). Due to the presence of the band gap, for optical (g
=0) transitions to occur from an occupied 3D bulk state to an un-
occupied 2D surface state the minimum energy wi";i;‘r is required,
which decreases as the momentum transfer g increases. For ¢ larger
than g™, transitions from occupied (unoccupied) 3D bulk states to
unoccupied (occupied) surface states can occur at arbitrary values
of the energy transfer w.

< 27l 2@l

X > {c,ﬁ,cos(lz) +c, sin(—wzﬂ, (13)
=1L d ’ d

where the distance d is given by the equation

d=Nd0+2Z0, (14)

N and d, being the number of atomic layers and the inter-
layer spacing, respectively; in the case of the (111) surfaces
of the noble metals, we take N=81, zo=10d,, and [, cor-
responding to an energy of 150 eV. Due to the symmetry of
the model potential entering Eq. (12), the eigenfunctions
¢,(z) are easily found to be either even (c,,=0) or odd
(cp,=0).

Figure 2 shows the energies Ey, that we have obtained
from Eq. (11) for Cu(111) by solving Eq. (12) as described
above and using the experimental values of the effective
masses m,, of all bulk and surface states. Electronic structures
for Ag(111) and Au(111) are similar. The corresponding pa-
rameters are reported in Table 1.
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TABLE 1. 2D Fermi energy (a%D), effective mass (m,p), and
Fermi velocity (v%D) of the Shockley surface-state band in the (111)
surface of the noble metals Cu, Ag, and Au. g represents the energy

of the bottom of the gap at the T point. m, represents the effective
mass of the upper bulk states at the bottom of the gap. The mini-
mum energy transfer wﬁigr and momentum transfer ¢™" are those
defined in Fig. 2. Also represented in this table are the values of the
parameter « that we have obtained from our full self-consistent
calculations of the surface-response function of Eq. (9) and from

Eq. (5) with z;,<<0.

a
P €0 o [Eq.

inter i
(meV) myp vi” (V) my (meV) g™ a (5]

Cu 440 042 0277 -0.89 031 217 0.026 1.053 1.38
Ag 67 044 0.106 -04 025 160 0.039 1.042 1.41
Au 475 028 0353 -1.0 021 275 0.025 1.032 1.41

B. Noninteracting density-response function

Once we have an accurate description of the single-
particle orbitals ¢,(z) and energies g,, we evaluate the 2D
Fourier transform x°(z,z’':;¢,®) of noninteracting electrons
moving in either the model potential Vyp(z) or the jellium
effective Kohn-Sham potential of DFT:

2
(2.7 5q,0) = ZE Gu(2) b (2) (2" i ()

’
n,n

> 2 fk,n _fk+q,n’

k Exn— Exiqn + @ +i7

(15)

Here, the sum over n and n' includes both occupied and
unoccupied states, 7 is a positive infinitesimal, and f , are
Fermi factors, which at zero temperature are simply given by
the Heaviside step function

fk,n = ®(8F - Ek,n)’ (16)

er being the Fermi energy of the solid. In particular, the
noninteracting density-response function of the quasi-2D
band of occupied Shockley states in the absence of the 3D
substrate can be obtained from Eq. (15) by omitting all bulk
states in the sum over n and n'.

Introducing the one-dimensional wave functions of Eq.
(13) into Eq. (15), one finds the following Fourier represen-
tation of the noninteracting density-response function (see
the Appendix):>

oo [

27n 27’
(g0 =22 XSZ}(%“’)COS<TZ)COS< d ZI)

n=0 "=

S _ 27 27n’
+> > ngn,(q,w)Sin(7z)sin< z’).

n=1 /-1 d
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FIG. 3. Energy-loss function Im g(q, )/ w of the (111) surfaces
of the noble metals Cu, Ag, and Au, shown by solid, dashed, and
dashed dotted lines, respectively, versus the excitation energy w, as
obtained from Eq. (9) for ¢=0.01 and =1 meV. The vertical solid
lines are located at the energies w:v%D q, which would correspond
to Eq. (3) with a=1.

C. Interacting density-response function

In the framework of the RPA,2* the 2D Fourier transform
x(z,7';q,w) of the density-response function of an interact-
ing many-electron system is obtained by solving the follow-
ing integral equation:

X(z,z’;q,w)=)(°(z,z’;q,w)+Jdzljdzzxo(z,zl;q,w)

X v(z1,22;9) X(22,2" 39, @), (18)

the ingredients of this equation being the 2D Fourier trans-
forms x°(z,z’;¢q,®) and v(z,z’';q) of the noninteracting
density-response function and the bare Coulomb interaction,
respectively. All quantities entering Eq. (18) can be repre-
sented in the form of Eq. (17), which yields the following
matrix equation for the coefficients x;, (¢, ):

+ 0,+ 0,+
X (@, ©) = X, (g, ) + > X (4> ®)

no_n
n'n

X Unrr’nm(q)ij,nr(q, (l)), (19)

v m(q) being the corresponding coefficients of the bare
Coulomb interaction v(z,z’;q).

III. RESULTS AND DISCUSSION
A. ASP dispersion

Figure 3 shows the energy-loss function Im g(q, ) of the
(111) surfaces of the noble metals Cu, Ag, and Au, as ob-
tained from Eq. (9) for ¢=0.01. This figure shows the pres-
ence of a low-energy collective excitation, whose energy is
of the form of Eq. (3) but with an « coefficient that is close
to unity. Furthermore, we have carried out calculations of
Im g(g,w) for several low values of ¢ and we have found
that this low-energy collective excitation is indeed an acous-
tic surface plasmon with linear dispersion, as shown in Fig. 4
for the case of Cu(111).
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FIG. 4. The solid line shows the energy of a well-defined acous-
tic surface plasmon of Cu(111), as obtained from the maxima of our
calculated surface-loss function Im g(¢, ®). The dashed line repre-
sents the energy of an acoustic surface plasmon whose linewidth
starts to be considerable due to the presence of interband transi-
tions. The dashed dotted line is the plasmon dispersion of a 2D
electron gas in the absence of the 3D system. The gray area indi-
cates the region of the (¢,w) plane (with the upper limit at wy
=U§Dq+q2/ 2m,p) where e-h pairs can be created within the 2D
Shockley band of Cu(111). The area below the thick solid line cor-
responds to the region of momentum space where transitions be-
tween 3D and 2D states cannot occur. The quantities w{ne, and g™
are determined from the surface band structure of Fig. 2.

In Fig. 4, we show the energy of the acoustic surface
plasmon of Cu(111) versus g (solid line), as derived from the
maxima of our calculated Im g(g, w), together with the well-
defined plasmon energies that we obtain when only the
surface-state band is considered in the evaluation of the non-
interacting density-response function of Eq. (15) (dashed
dotted line). While the plasmon energies of electrons in the
isolated surface-state band nicely reproduce in the long-
wavelength (¢—0) limit the conventional 2D plasmon dis-
persion w,p, of Eq. (1), the combination of this surface-state
band with the underlying 3D system yields a new distinct
mode whose energy lies just above the upper edge wjh
=U§-D q+q*/2m,p of the 2D e-h pair continuum, as occurs in
the case of Be.® Furthermore, Fig. 4 shows that in the long-
wavelength (¢—0) limit the energy of the acoustic surface
plasmon in Cu(111) is of the form of Eq. (3) but with an «
coefficient that is considerably closer to unity than expected
from Eq. (5) (see Table I). This discrepancy can be origi-
nated in (i) the absence in the simplified model leading to
Eqgs. (3) and (5) of transitions between 2D and 3D states and
(ii) the nature of the decay and penetration of the surface-
state orbitals into the solid.

In order to investigate the origin of the small differences
between the plasmon energies obtained here and those ex-
pected from Egs. (3) and (5), we have carried out calcula-
tions of Im g(g,w) along the lines of the simplified model
leading to Egs. (3) and (5) (see Fig. 1) but with the 2D
electron gas of Fig. 1 replaced by a more realistic quasi-2D
gas of electrons described by a wave function that decays
exponentially away from the z=z, plane with a decay con-
stant y. We have found that an acoustic surface plasmon is
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FIG. 5. In a simplified model in which the wave function of
surface-state electrons decays exponentially away from the z=z,
plane (see Fig. 1) with a decay constant v, acoustic surface plas-
mons are found to exist whose energy is of the form of Eq. (3) with
the coefficient a of Eq. (5) replaced by the y-dependent a coeffi-
cient that we have presented in this figure in the case of Cu(111) for
various values of z,. The horizontal solid line corresponds to the
coefficient « of Eq. (5) with z;<<0. The horizontal dotted line rep-
resents the coefficient a derived from our full self-consistent calcu-
lation that treats bulk and surface states on the same footing. As z,
is shifted from the interior of the solid towards the vacuum, the
coefficient « increases, in agreement with Ref. 9.

present whose energy is indeed of the form of Eq. (3) but
with an «a coefficient that strongly depends on the decay
constant 7y, as shown in Fig. 5. This figure demonstrates that
while in the limit as y— o (where the quasi-2D electron gas
is indeed an ideal 2D sheet) the coefficient a approaches the
value expected from Eq. (5) (horizontal solid line), as 7y de-
creases the dispersion of the acoustic surface plasmon ap-
proaches (for all negative values of z;) the more realistic
situation where « is close to unity (horizontal dotted line). A
comparison between the model wave functions that we have
used in this calculation and the actual surface-state wave
functions that are involved in the full calculation of Figs. 3
and 4 is presented in Fig. 6. Although the model wave func-
tions do not reproduce the actual shape of the surface-state
wave function, a finite penetration of the model surface-state
wave functions into the solid allows the formation of an
acoustic surface plasmon whose sound velocity is very close
to the Fermi velocity of the 2D surface-state band (a~ 1), as
predicted by our more realistic calculation. Indeed, the finite
penetration of the surface-state wave function into the solid
provides a more complete screening of the quasi-2D collec-
tive excitations by the surrounding 3D substrate, which
brings the acoustic surface plasmon closer to the upper edge
of the 2D e-h pair continuum (a— 1).%

B. ASP linewidth

Finally, we have carried out lifetime calculations of the
acoustic surface plasmon, as derived from the width of the
imaginary part of the full surface-response function of Eq.
(9). Figure 7 shows the results we have obtained for Cu(111)
with (solid symbols and lines) and without (open symbols
and dashed lines) inclusion of transitions between 2D and 3D
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FIG. 6. The solid line is the wave function ¢(z) of the occupied
Shockley surface state of Cu(111) at the T point, as obtained by
solving Eq. (12). The dashed and dotted lines show wave functions
of the form ¢(z) ~exp(—y|z—z4]) with z;,==3 a.u. and two different
values of the decay constant: y= O.Saa1 (dashed line) and vy
=0.25agl (dotted line). ay is the Bohr radius: ay=0.529 A.

states in the evaluation of the noninteracting density-
response function of Eq. (15) and for three different values
of the parameter 7. Plasmon decay can occur by exciting
e-h pairs either through transitions between 2D and 3D
states, which would not be present in the model leading to
Egs. (3) and (5), or through transitions within the 3D con-
tinuum of bulk states.?® At small energies below the thresh-
old of w~110 meV (see Fig. 4), where acoustic surface
plasmons can only decay by exciting e-h pairs within the 3D
continuum of bulk states (the solid and dashed lines of Fig. 7
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FIG. 7. Solid and open symbols represent the width at half
maximum of acoustic surface plasmons in Cu(111) versus the plas-
mon energy, as obtained from the imaginary part of the surface-
response function g(¢q, ) of Eq. (9) with (solid symbols) and with-
out (open symbols) inclusion of transitions between 2D and 3D
states in the evaluations of the noninteracting density-response
function of Eq. (15) and for various values of the parameter 7: 0.1,
I, and 5 meV. The solid and dashed lines represent fits from the
solid and open symbols, respectively. For this surface, the threshold
for interband transitions between 2D and 3D states occurs at
~110 meV (see Fig. 4).
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coincide), the linewidth is entirely determined by the choice
of the parameter 7, showing that at these low energies the
impact of intraband transitions between 3D bulk states is
negligibly small. As the plasmon energy increases, there is a
small contribution to the plasmon linewidth from transitions
between 2D and 3D states (the difference between solid and
dashed lines)?’ and an increasing contribution from intraband
3D transitions yielding a finite linewidth which for 7%
< 0.1 eV is not sensitive to the precise value of 7 employed,
but which still allows the formation of a well-defined
acoustic-surface collective excitation for plasmon energies at
least up to ~400 meV. A similar behavior is observed in the
case of Ag and Au.

IV. SUMMARY AND CONCLUSIONS

We have carried out self-consistent calculations of the
surface-loss function of the (111) surfaces of the noble met-
als Cu, Ag, and Au, by considering a one-dimensional poten-
tial that describes the main features of the surface band struc-
ture. We have found that the partially occupied surface-state
band in these materials yields the existence of acoustic sur-
face plasmons, as it had already been demonstrated to occur
in the case of Be(0001).8 The energy of these collective ex-
citations has been shown to exhibit linear dispersion at small
wave vectors, with the sound velocity being very close to the
Fermi velocity of the 2D surface-state band and considerably
smaller than expected from a simplified model in which
surface-state electrons comprise a 2D electron gas while all
other states of the semi-infinite metal comprise a 3D sub-
strate.

The origin of the differences between the plasmon ener-
gies obtained here and those expected from simplified mod-
els has been investigated by performing simplified calcula-
tions with the ideal 2D sheet of Shockley electrons replaced
by a more realistic quasi-2D gas of electrons whose wave
functions decay exponentially away from the surface. These
calculations have been found to yield an acoustic surface
plasmon whose energy is linear in the magnitude of the wave
vector, the sound velocity being dictated not only by the
Fermi velocity of the 2D surface-state band but also by the
nature of the decay and penetration of the surface-state or-
bitals into the solid. With an appropriate choice of the expo-
nential decay of surface-state wave functions these simplified
calculations (which do not account for transitions between
2D and 3D states) accurately account for the energy disper-
sion of acoustic surface plasmons, which indicates that the
impact of interband transitions between 2D and 3D states on
the ASP’s energy dispersion is negligible.

We have also carried out self-consistent calculations of
the linewidth of acoustic surface plasmons in the (111) sur-
faces of the noble metals. We have found that while the
impact of interband transitions between 2D and 3D states is
small, intraband transitions between 3D bulk states contrib-
ute considerably to the finite linewidth of acoustic surface
plasmons, which are found to represent a well-defined acous-
tic collective excitation for plasmon energies at least up to
~400 meV. Finally, we note that as in the case of conven-
tional surface plasmons, acoustic surface plasmons should
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also be expected to be excited by light, as discussed
recently.”®
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APPENDIX

Here we give explicit expressions for the coefficients
0,+ . . . .
Xn,n’(q’w) entering the expansion of the noninteracting
density-response function of Eq. (17), as obtained by intro-
ducing the one-dimensional wave functions of Eq. (13) into
Eq. (15). Replacing the sum over k in Eq. (15) by an inte-

gral, we find

[

5’15”’ occe
XS::;!(q’ (’)) = dz E E Fl’l,(q’w)G:;,Z’G;tl,l’
Ieven !
+ 2 2 F(q.0)G,, .G (A1)
lodd 1},
and
0.~ _ _
Xn,n!(q’(l))= ; E EFls],(q’w)G:l’;l,Z’G;’;l,l’
[even lédd
+ 2 X Flq0)Gyl Gl s (A2)
l{)dd I;U(:‘Yl
where
1 forn=0,
0= (A3)
2 forn=1
and
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