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Orbital magnetic moments in pure and doped carbon nanotubes
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The unusual band structure of carbon nanotubes (CNs) results in their remarkable magnetic properties. The
application of magnetic field B parallel to the tube axis can change the conducting properties of the CN from
metallic to semiconducting and vice versa. Apart from that, B induces (via the Bohm-Aharonov effect) orbital
magnetic moments f,y, in the nanotube. These moments are studied both in pure and hole- or electron-doped
CNs, isolated or in a circuit. Remarkably, u.y, in pure CNs depend uniquely on their original conducting
properties, length, and temperature but do not depend on the nanotube radius or the particular chirality. In
doped nanotubes the magnetic moments can be strongly altered and depend on the radius and chirality.
Temperature can even change their character from diamagnetic at low 7' to paramagnetic at high 7. A general
electron-hole asymmetry increasing with the doping is found.
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I. INTRODUCTION

The electronic fate of a carbon nanotube (CN) is, in gen-
eral, determined once it has been grown. Depending on the
radius and the chiral angle it can be semiconducting or me-
tallic. The electronic properties of CN can, however, be
modulated by coaxial magnetic field via the Bohm-Aharonov
(BA) effect, which can turn a metallic CN into a semicon-
ducting one and vice versa. This has been predicted by Ajiki
and Ando,' followed by Lu? and observed recently in three
independent measurements.> CN have an ideal structure for
studying the effect of the BA flux on the energy spectrum. A
magnetic field B introduces a phase factor in the electron
wave function in the circumferential direction and leads to a
shift in the energy bands. The value of the energy shift de-
pends on the strength of the applied field and on the orbital
magnetic moment. This can be observed, e.g., as a change in
the band gap structure by measuring the conductance of a
single nanotube suspended between two electrodes.’* The
magnetic field influences the motion of electrons around the
circumference of CN, giving rise to persistent currents®’
which at low temperatures do not decay. Persistent current
multiplied by the CN cross section gives the orbital magnetic
moment w4, directed along the axis.

In the present paper we investigate the dependence of
Mo(@,T) on temperature, nanotube parameters [radius (R),
chirality, length], and the value of the chemical potential,
which changes with doping. This is an extension of the work
of Ajiki and Ando,! who calculated the magnetic moment
Mo Tor an undoped tube at 7=0.

We calculate w, in single-wall CNs in the extended tight
binding approximation (TBA with the correction resulting
from the overlap between neighboring 7 orbitals) for various
chiralities, lengths, and radii (provided that R>10 A), for a
range of electron- or hole-doping values. We study both iso-
lated nanotubes, where the number of electrons N,=const
and nanotubes connected to a particle reservoir (e.g., as a
part of a circuit), where the chemical potential g pe,=const.

We find that in undoped nanotubes the character of the
magnetic moment depends only on the CN’s conducting
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properties (i.e., whether the tube is metallic or semiconduct-
ing), its length, and the temperature of the system. On the
other hand, in hole- or electron-doped nanotubes the behav-
ior of uq() depends strongly on the chirality of the nano-
tube, on its size, and on the degree of hole or electron dop-
ing.

In our model calculations we study nanotubes in the bal-
listic regime and we work in the noninteracting electrons
approximation, which has yielded good agreement with ex-
perimental results in mesoscopic rings® and in carbon
nanotubes.*%:1

II. THE MODEL

Carbon nanotubes are commonly considered and analyzed
as rolled-up graphene planes. We follow here the same ap-
proach, working in the basis in which the lattice generators
are Ty=v3e,, T,=V3/2e,+3/2¢,, and the length unit is the
length of the C—C bond, 1.42 A.'"12 A nanotube is
uniquely defined by four parameters (m;,m,) X (p;,pa),
which define its circumference and length vectors,

L, =mT,+m,T, for the circumference,

L,=p,T,+p,T, for the length. (1)

In most theoretical works on carbon nanotubes the tube un-
der examination is considered to be infinitely long, resulting
in a continuous spectrum of momenta along the CN. Since
the real CNs are very long but finite, we consider L;<<ce.
Therefore, the momentum is quantized in both directions. We
chose the longitudinal boundary conditions to be cyclic,

k- L” = 27TlH, lH (S Z, (2)

where || stands for the direction parallel to the length of the
nanotube. We found no significant differences between cur-
rents in cyclic and open longitudinal boundary conditions
(see also Ref. 13).

The magnetic field is applied parallel to the axis of the
CN. The Bohm Aharonov phase factor modifies the trans-
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verse boundary condition (in the direction perpendicular to
the magnetic field):

k'LL=2’7T(lL+£>, [, €7, (3)
%o
where | stands for the direction parallel to the circumfer-
ence of the nanotube, ¢ is the magnetic flux, and ¢y=h/e is
the quantum flux unit. The wave vector k can be defined
either in the (k,,k,) or (k, ,k;) basis. We use the second one
throughout our calculations, the first only in the dispersion
relation. At fields accessible in labs, only a part of the Bohm-
Aharonov period ¢, could be observed in nanotubes of a
small diameter. However, due to the symmetry of the system,
the ¢ dependence of u,y in the full ¢, period can be ex-
trapolated from its behavior in the range (0, ¢y/2). More-
over, it is now possible to obtain a single-wall nanotube of a
larger radius by burning off the external shells of a multi-
walled nanotube (MWNT).!4 For a CN with R=60 A, the
¢o/2 flux can be obtained at B=18 T, a comercially avail-
able field.

Currents running along the circumference of the CN in-
duce in the nanotube a magnetic moment parallel to its axis.
The magnetic moment of an electron close to the Fermi level
can also be calculated by the following reasoning.

The energy gap between conduction and valence states
close to the Fermi surface (FS) is

Eg=twplk, -K), i=1.2, )

where K; are the Fermi points where the valence and con-
duction bands of graphene meet. The Bohm-Aharonov effect
shifts the allowed k, by 6k, (o),

¢
ki(p)=k, +k (¢), ok (d)=—1, (5)
Ry
resulting also in the energy shift AE3,
oF hUF ¢ ~F
AE: P 5k (QS): i__:_IL’L()r 'B’ (6)
23 P R ¢ ’

where gl is the orbital magnetic moment of an electron at
(or the closest to) the Fermi surface

Re

Fiony = %eu ()
(e, is the unit vector along the CN axis). This shift of the
energy states results in the change of the band gap and can
convert a metallic CN into a semiconducting one and vice
versa. Therefore, from now on by ‘metallic’ and ‘semicon-
ducting’ we understand CNs which display this behavior at
¢=0.

The change of the band gap with the magnetic field has
been investigated in three independent measurements®~ and
in Ref. 3 helped to determine the magnitude of the orbital
magnetic moment of an electron at the FS, ul,. A good
agreement between the experimental and the theoretical val-
ues has been found.? Nevertheless, the magnetic response of
a CN is determined by its full magnetic moment, given by
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LOF($,T)

Py (8)

luorb( ¢’ T) =-mR

where F(¢,T) is the free energy of the CN. In other words,
Moy €an be written in terms of the total current I(¢,T),
which runs at the cylindrical surface in the presence of the
magnetic field (for detailed derivation, see Ref. 15),

/*Lorb( ¢7 T) = 7TR2]( ¢7 T)

1
— 2
- E«H L+ expllE(d) — e DIATE P

)

The sum runs over the whole Brillouin zone (BZ). When ¢
#0, the currents carried by states with k and -k do not
cancel out, and a net current appears. This current is persis-
tent at low 7.

The relation between w1/, calculated and measured in Ref.
3 and (@, T) discussed in this paper is the following.
uk ., being the magnetic moment of an electron at (or close
to) the Fermi point, is calculated in the energy range where
its dispersion relation is a linear function of k; therefore, u/
is independent of the flux. The total magnetic moment
Hon(P,T) is calculated as a sum over all k states, thus con-
taining terms with nonlinear dispersion relation which cause
the flux dependence of the magnetic moment. Moreover, the
Mon( P, T) calculated from Eq. (9) takes into account the tem-
perature dependence of the energy level occupation. This ef-
fect has been neglected in the calculation of u,.

Whereas the measurements of the band gap as a function
of B give the information about u’, (which is actually the
orbital moment unit, ,u,frb=7TR210, where Iy=ev/27R is the
unit of the persistent current), the full wuqy,(p,T) could be
measured in other experiments which will be sensitive to it.

The currents carried by individual momentum states at
T=0 are

9B __ OBk, OB 2w
dp ok dp Ik, oL,

I(¢) =~ . (10)

where the form of E(k) depends on the approximation used.
As many experiments show the electron-hole asymmetry, we
use the dispersion relation based on the tight-binding ap-
proach, but which takes into account the overlap between
orbitals on adjacent carbon atoms in the lattice.'?

€2p T YWk(9)
15 SWi(4) ’

where
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_
\"3
W) = \/1 +4 cos{\?kx(zi))

€, is the on-site energy, s is the overlap between the 7
orbitals on adjacent sites, and vy is the hopping integral for
graphene. Henceforth we shall refer to this model as ex-
tended tight-binding (TBA). Various authors assume differ-
ent values for 7y, ranging from 2.5 to 3 eV.*!® Following Ref.
12 we set €,=0 and s=0.129, which is the experimentally
fitted value for graphite. Magnetic flux enters the dispersion
relation (11) as it modifies the wave vector k according
to Eq. (3). The states k and —k change into k+ ¢/ ¢, and
—(k— ¢/ ¢), which are not equivalent. Thus the currents car-
ried by +k(¢) do not cancel out and a net current appears.

The dispersion relation in the neighborhood of the Fermi
points is very similar to the simple tight-binding model with
s=0. Hence, if the physical phenomena under consideration
involve only states close to E=0, the tight binding model is
adequate. However, the persistent current comes from the
contributions of all states under the Fermi level.

Additional modification in dispersion relation for nano-
tubes can arise from the hybridization of ¢ and 7 orbitals
due to the curvature of the tube. This correction decreases
with increasing radius of the CN.!'>!7 For nanotubes with
radius R=7 A a good agreement was found between experi-
ment and 7-only calculations.'?!® As we consider CNs with
relatively large radii (R>10 A), we neglect it in our model
calculations.

The individual currents I (¢) in Eq. (10) depend on the
position of the k states in the Brillouin zone. The level of
Mehem defines the Fermi surface and determines the range of
states whose contributions dominate the sum (9). The distri-
bution of allowed momentum states in the BZ depends on
the chirality of the CN. Therefore, at shifted tqpen, different
states fall into the dominating range depending on the chiral-
ity of the nanotube. Consequently the total magnetic moment
depends on the doping level and on the chirality of the CN.
At the half-filling, corresponding to undoped nanotube, the
chemical potential is 0 (gepen=0). Doped systems (either
doped with electrons or with holes) can be studied under two
different physical conditions.

If the system is connected with a particle reservoir, its
chemical potential at a given doping is constant (tepem
=const). The distribution of allowed momentum states in the
BZ shifts with the magnetic flux, which induces a shift of the
Fermi level. But the chemical potential is determined exter-
nally and the CN can absorb the number of electrons or holes
necessary to keep it stable. The number of electrons then
varies with the magnetic flux, N,=N,(¢). When the nanotube
is isolated, there is no exchange of electrons with a reservoir,
their number is constant (N,=const), and the chemical po-
tential is a function of the magnetic flux [ epem= Mehem(P)]-
The magnetic moments have different shapes in isolated than
in connected nanotubes. We performed the calculations in
both cases.

J+4cos{\;kx(@Jcos[%ky((ﬁ)], (12)

We have calculated numerically the magnetic moment ac-
cording to Eq. (9). In the case of a constant number of elec-
trons, the chemical potential has been found at each value of
¢ from the condition E(krku)fFD[E(krkH)(d))]=Ne, where
SfeplEx()] is the Fermi-Dirac distribution function.

III. ORBITAL MAGNETIC MOMENTS—UNDOPED
NANOTUBES

Several effects concerning the persistent currents and in-
duced magnetic moments in a parallel magnetic field can be
deduced from an analysis of the structure of the energy spec-
trum and the Brillouin zone. In this section we discuss un-
doped nanotubes, i.e., pem=0 and the number of electrons
is equal to the number of nanotube lattice sites, i.e., N,
=mp,—pM,. In this case there is no difference between the
Menem=const and N,=const conditions. The number of states
below the Fermi level is the same as in the Brillouin zone,
consequently, N,=const regardless of the value of the exter-
nal magnetic flux. The energy gap opens or closes with
changing ¢, but the chemical potential is fixed at 0.

A. porp(&,T) in metallic and semiconducting CNs

There are two types of behavior of gy, (¢,T). In metallic
nanotubes it is paramagnetic at ¢=0, whereas in semicon-
ducting ones it is diamagnetic. It is shown in Fig. 1 for T
=0 and T=300 K. The characteristic shape of the curves for
metallic (M) and semiconducting (S) nanotubes has been ob-
tained by Ajiki and Ando' in k+p approximation and for
zigzag nanotubes in the tight binding approximation at T’
=0. Our calculations have been performed in extended TBA
and T#0 for armchair, zigzag, and chiral nanotubes, and
show that this effect does not depend on the particular chiral-
ity of the metallic or semiconducting nanotube.

It is so because the main component of the magnetic mo-
ment (9) comes from the k states close to the Fermi points
K;. The dispersion relation in the neighborhood of these
points has a form of two cones and therefore rotational
symmetry.!” Because of that, JE/dk, is independent of the
particular angle (determined by m; and m,) at which k
=const lines (see Fig. 2) lie with respect to the edges of the
Brillouin zone. In the case of metallic CNs, these momentum
lines cross the Fermi points and the magnetic moment has
the M shape from Fig. 1. Due to the peculiar band structure
of the CNs, the magnetic moment in a semiconducting CN
(s) has an unusual shape, with a plateau around ¢,/2. Close
inspection of the structure of momentum lines in the BZ
shows that it is a superposition of two metallic moments,
shifted by +¢,/3 (as shown in Fig. 3). They are generated by
the two momentum (k , =const) lines which reach the Fermi
point, one at ¢p=—¢y/3 and the other at +¢,/3, indepen-
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FIG. 1. Orbital magnetic moment per A in a single-wall nano-
tube of radius 25 A, for different chiralities. All metallic nanotubes
have the same (up to 1%) wom(¢). The same is true for the semi-
conducting nanotubes. The change of the magnetic moments be-
tween 7=0 K and 7=300 K is very small.

dently of chirality. The amplitude of this sum is then smaller
than in the metallic CN, where both momentum lines reach
the Fermi points at the same ¢. The slope of ., Vs ¢ (see
Fig. 1) is steeper for these values of ¢ where the CN is
metallic, since the paramagnetic behavior of the .4 is

FIG. 2. The reciprocal lattice of graphene, with momentum
states and first Brillouin zones of Zigzag (5,0), Armchair (3,3), and
Chiral (4,1) nanotubes doped to —0.6y. The Fermi contours are the
thick triangular loops and the thick straight lines correspond to k |
=const lines. In undoped nanotubes all momentum states in the
Brillouin zone enter into the sum from Eq. (9) and p(@) is chiral-
ity independent. In doped nanotubes only those states which lie
below the Fermi level (outside the loops) contribute to the sum.
Note that the number of missing states (the missing fragments of
k| =const lines) is different in A, Z, and Ch cases, which results in
the chirality dependence of pq,(h).
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FIG. 3. The magnetic moment per A in a semiconducting nano-
tube as a superposition of two metallic moments shifted by +¢g/3.

caused by momentum states crossing the Fermi surface,
whose contributions to the magnetic moment are the most
significant. On the contrary, the gentle slope of .y in the
semiconducting regime is caused by the diamagnetism of the
states below the FS. Thus the inspection of the slope of
Morn( ) can help to observe an extraordinary feature of CNs,
namely that they can be converted from metallic to semicon-
ducting and vice versa by the application of a magnetic field.

B. Temperature dependence

The magnitude of the orbital magnetic moment, contrary
to the spin magnetic moment, decreases with temperature
although this decrease is not very dramatic for the ranges of
magnetic field accessible in labs. It is more important for CN
with larger R, since the energy gap scales like 1/R?. In con-
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FIG. 4. The dependence of the magnetic moment per unit length
on the nanotube radius in zigzag nanotubes ranging from (6, 0) to
(120, 0), at half-filling and at two values of doping. The magnetic
moment at Ep=—7_ is divided by 4 so as to fit in the plot.
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FIG. 5. The Brillouin zone and momentum states of an arbitrary armchair (white dots) and zigzag (black dots) nanotube of similar radius,
at ¢=0. The background is the contour plot of Ey from Eq. (11). The Fermi contour is marked by thick solid lines. (a) Full Brillouin zone,
undoped nanotube (uepem=0). The Fermi surface reduces to two points at the vertices of the hexagon. (b) The neighborhood of the Fermi
point (27/(3 \B) ,27/3), penem=—0.167. The contour is circular and both nanotubes respond with almost the same magnetic moments (see
Fig. 7), momentum lines cross the Fermi contour at identical angles. (c) The neighborhood of the Fermi point (277/(3 \3),27/3), Mehem
=-0.67. The Fermi contour loses the rotational symmetry and magnetic moments in zigzag and armchair nanotubes differ (see Fig. 10). (d)
Full Brillouin zone, pehem=—7. The Fermi contour is a closed hexagon, with two sides parallel to the momentum lines in the zigzag
nanotube. Currents in this tube are very strongly enhanced (cf. Fig. 9), in others suppressed (cf. Fig. 8).

sequence, for example, in multiwall CN, the measurements
should be performed at lower 7. Since the main effect of
temperature on w,4(¢,7T) in undoped nanotubes is a small
suppression of its amplitude (cf. Fig. 1), we shall in this
section assume 7=0 and analyze only uq,(¢,0), which we
shall denote by wuq(h).

When the distance between momentum lines Ak, be-
comes small enough (i.e., when R>10 A), I,(¢,T) is linear
in Ak, and two effects appear.

C. Length scaling of the magnetic orbital moments

The sum of I(k) grows linearly with the number of states
on one momentum (k ; =const) line, which is proportional to
the length of the nanotube. This is also true for doped nano-
tubes.

D. Independence of ,.,(¢b) of the nanotube radius

The radius of the nanotube affects pq,() in two ways:
(i) The cross section of a nanotube ~R?, and (ii) From Eq.
(10) we conclude that the current of an individual Kk state
~1/R because JEy/dk, is constant for a given k. The sum-
mation over the whole Brillouin zone in Eq. (9) yields an-
other 1/R factor and as a result the whole sum is propor-
tional to 1/R?. These two effects lead to () nearly
independent of R (see black circles in Fig. 4), in agreement
with Ref. 1. This result in undoped CNs does not depend on
the chirality of the nanotube. Note that u’,(¢) calculated
and measured in Ref. 3 increases linearly with R because it is
due only to electrons closest to the Fermi level.

Thus for any undoped metallic or semiconducting nano-
tube the total magnetic moment depends only on its length
and on temperature, and has either the M (in metallic CNs)
or the S (in semiconducting CNs) form from Fig. 1.
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armchair
0.3+, (ftchem = const)
- 0.08 / 0.05
-
Hors/ L
Hehem
lns/A]
. . FIG. 6. The comparison between (top) tichem
_03 =const and (bottom) N,=const conditions on the
=7 -0.08 / 0.05 conical part of the dispersion relation, i.e., for
| 4chem| = 0.37y,. The left column shows the orbital
Ne(0-374 (Ne = const) magnetic moment per A (color scale) in armchair
15,15); the right column shows chiral semicon-
0.08 / 0.05 (15,15);
Ne ’ ducting (15,14) nanotubes.
Hors/ L
‘ lns/ Al
Ne(—0.37+
-0.08 / -0.05

0 ¢ $o

IV. ORBITAL MAGNETIC MOMENTS—DOPED
NANOTUBES

The peculiar band structure of graphene is reflected in the
variety of behaviors of CNs with different chiralities upon
doping. We performed the calculations of the full magnetic
moment wo(@,T) for zigzag, armchair, and chiral nano-
tubes. We found that it depends significantly on doping; be-
ing the sum of the terms below the FS, it depends strongly on
the shape of the FS which changes with the number of holes
or electrons introduced in the system.

A. Isolated or connected: pipe,,=const versus N,=const
approach

Different results were obtained for g, =const (nanotube
in a circuit) and N,=const (isolated nanotube). Both condi-
tions can be realized experimentally. The calculations were
performed for both electron and hole doping, changing the
Fermi level from Ep=0 (no doping) to Ep=%7vy,. 7.
=vy/(1=+s) denotes the value of energy in, correspondingly,
the conduction (+) and valence (=) band, at the centers of the

(nearly) armchair chiral

edges of the Brillouin zone. In the case of nanotubes doped
to Ep=+v, we found that again there is no difference be-
tween N,=const and pg,.,=const, because the Fermi con-
tour has then the hexagonal symmetry of the Brillouin zone
[cf. Fig. 5(d)] and the number of momentum states within it
is constant with ¢. At intermediate doping the two ap-
proaches give distinctly different results, which are shown in
Fig. 6. Note, for instance, that in an isolated nanotube (N,
=const) the magnetic moment at half-filling (the central area
of the bottom row plots in Fig. 6) changes completely when
even a few electrons are added or removed from the system.
At constant chemical potential the dependence of w(d,T)
on doping is more smooth.

All results discussed in the following sections are valid in
both cases, without qualitative differences. Therefore we
present in detail only the results for w..,,=const.

B. Dependence of u,.,(¢») on the nanotube radius

The independence of u(¢,T) on the radius of the nano-
tube shown in Fig. 4 is characteristic for undoped nanotubes

zigzag

0.3y

- 0.08 FIG. 7. The orbital magnetic
Hehem pors/ L moment per unit length (gray-
g s/ A scale) for |gepem| <0.37, for me-
—~ tallic (top row) armchair (15,15),
A chiral (19,10), and zigzag (24.,0)
-0.08 nanotubes, and for semiconduct-
ing (bottom row) nanotubes with
0.3y similar chiralities: (15,14), (19,9),
0.05 and (25,0). R=10.2 A, T=0. The
Fermi contour around a Fermi

Hehem, Horb/ L . . . . . .

. point in this regime is almost cir-
= lun/ Al cular, which accounts for the simi-
e larities between the three cases.

—0.3vy -0.05
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-0.04

—x— +03v,
-0.05 T |—o—- +7,

FIG. 8. The magnetic moment per unit length in a nearly arm-
chair (38,36) X (-4028,4101)(R=25 A) nanotube. Ep=0, +0.37,,
+v,, for gepem=const, at 7=0 K.

only. The sum in Eq. (9) is in that case over the whole Bril-
louin zone and the dominating currents come from the mo-
mentum states in the neighborhood of the Fermi points K;,
where the dispersion relation is conical. On the other hand, if
the doping reaches the value Ep==*1v,, the amplitude of
Morn(P,T) grows linearly with the radius of the nanotube (for
an illustration of a hole-doped zigzag case, see Fig. 4). The
currents dominating the sum are those from the states near
the Fermi contour, which in this case is the inner hexagon in
Fig. 5(d); the dispersion relation below —7y_ is nearly para-
bolic. As we lower the chemical potential of the nanotube,
we cross from the regime of the magnetic moment indepen-
dent of R (conical dispersion relation near Ep=0) to the re-
gime where it depends linearly on R (quasiparabolic near
Ep=-7v_). The Brillouin zone in the intermediate regime is
shown in Figs. 2, 5(b), and 5(c). The magnetic moment de-
pends then on the nanotube radius in a more complicated
way (an example is shown in Fig. 4 as gray diamonds). Note
that the linear dependence of the magnetic moments on the
radius in the case of Ep=—7_ resembles that of persistent

currents in metallic cylinders.?*?!
015
?”m —-
l' %“m% X 10 —+— 037
I o N 0
— 0.10 %, —x—+03v,
oL —o—=+7,
\Cﬂ
=
. 005
5l
M
0.00 : '
0 . . 0.5
-0.05 —

FIG. 9. The magnetic moment per unit length in a zigzag
(64,0) X (-2347,4694)(R=25 A) nanotube, at Er=0, £0.3v,, +7,,
both for weem=const, at 7=0 K. The magnetic moment at f.pem
==+, is divided by 10 so as to fit into the plot.
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(12,0)

0.07 0.26

fors /L
lus/A]

Horb/L
(us/A]

-0.07 -0.26

0 o

FIG. 10. The magnetic moment per unit length (grayscale) in
(7,7) armchair (left) and (12,0) metallic zigzag (right) hole-doped
nanotubes (R=5.2 A). The range of chemical potential is from —v,
to y,. The part corresponding to an electron-doped nanotube is not
symmetrical to the hole doped. At a chemical potential lower than
~-0.3y (lower part of the plots), the Fermi contour ceases to be
circular and the u.y, patterns become different for different chirali-
ties. The straight line marks p.pem=0.

C. Symmetry properties of g,.,(¢,T) under electron and hole
doping

In case of a symmetric dispersion relation with s=0, the
Mon(p,T) is identical under electron and hole doping. It is a
combined effect of the symmetry of the Fermi-Dirac function
with respect to the chemical potential, and the hole-electron
symmetry of the dispersion relation of graphene which both
enter Eq. (9). If, however, the dispersion relation is asym-
metric (s # 0), the orbital magnetic moments show only an
approximate symmetry for very small doping (see Figs. 6
and 7). At higher values of doping we find considerable
asymmetry of .4 between hole and electron doping. It is
shown in Figs. 8§—10.

In a recent experiment*~ an electron-hole symmetry was
found in differential conductance measurements for a semi-
conducting nanotube. The orbital moment in a semiconduct-
ing nanotube also shows this symmetry at small ¢ and small
doping, which are the conditions in the experiment men-
tioned above. The authors of the experiment investigated the
range of 20 excess holes or electrons. We find that for a
doping larger than to =35 electrons or holes and nanotubes
of the size used in Ref. 22, an asymmetry should appear even
in very clean tubes. An experimental study of a wider range
of doping might help to determine the actual value of s in
CNs.

t22

D. Dependence of p,,(,T) on the chirality of the nanotube

The shape of the Fermi contour in a CN changes signifi-
cantly with doping,® from two points [Fig. 5(a)], through a
set of increasingly flattened circles [Figs. 5(b) and 5(c)], to a
hexagon [Fig. 5(d)]. That is why in doped nanotubes the
form of the magnetic moment as a function of magnetic field
and temperature depends strongly on the chirality of the
nanotube and reflects the geometrical relation of their mo-
mentum lines to the actual shape of the Fermi surface (see
Figs. 5, 8, and 9). The paramagnetic contribution to the per-
sistent current and consequently to the magnetic moment is
enhanced if the number of states crossing the Fermi level
simultaneously is large; therefore, the strongest magnetic re-
sponse should be achieved in systems with momentum lines
nearly parallel to the Fermi surface.?® This is achieved in a
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TABLE 1. Magnetic orbital moment at .., =const for SWNT of radius 25 A, length 0.1 um, for various
chiralities and levels of electron or hole doping gihem. The unit is wg, values in brackets (italics) are for
electron doping, outside brackets for hole doping. The orbital moments greater than 100u are in bold font.
The values in the table are the maximum values obtainable in magnetic fields ranging from 0 to 20 7.

Hchem 0 -0.3y.(+0.3y,) -0.6y_(+0.6,) —y-(+v.)
armchair (37,37) 26 5.1 (48) 46 (122) <1 (<I)
chiral S (38,36) -9 -26 (-20) -39 (-35) -8 (9)
chiral M (48,24) 26 19 (23) —34 (-25) -3 (-4)
chiral S (49,23) -9 —46 (-21) -23(37) <1 (<I)
chiral S (63,2) -9.7 29 (59) -49 (12) 117 (151)
zigzag M (63,0) 26 67 (19) 37 (-96) -210 (-270)
zigzag S (64,0) -9.8 -29.6 (59.6) -49 (16) 1060 (1370), at B<1T

zigzag CN doped to such a value of Ef that the FS becomes
a hexagon. This doping is y_=0.89y for holes and v,
=~ 1.157 for electrons. The lines of states [marked by black
dots in Fig. 5(d)] are then parallel to two sides of the Fermi
surface (inner hexagon). The resulting magnetic moment is
huge—see Fig. 9 and Table I.

E. Temperature dependence of p,,(p,T)

The main effects of temperature on (@, T) are a sup-
pression of its amplitude and its smoothing into a sinusoidal
shape. The latter effect smoothes out all sharp features in the
Mo(®,T) dependence (absent in undoped nanotubes) and
can even turn a diamagnetic moment at 7=0 into a paramag-
netic one at T7=300 K (see Fig. 11).

F. Dependence of p,,;,(¢) on the value of doping

This dependence shows several interesting features (see
Figs. 7 and 10).

First, as long as the doping does not exceed +0.3y, the
orbital magnetic moments fall in two distinct classes, de-

e 1K
—10K
004 |-—=-60K
—--—300 K
0.02 [~
<L
\m - "
el R
<| 000 ’—‘I | 1 | 1 | 1 | 1 |
5 0.pO™s 0.02 0.0# 0.06 0.08 0.10
= ’
N o/,
-0.02 [~ A

FIG. 11. The magnetic moment per unit length in a nearly arm-
chair (38,36) X (-4028,4101). The doping is fixed at 0.3y,. The
temperature changes the character of p.y,, from diamagnetic (small
T) to paramagnetic (high 7).

pending on whether the nanotube was originally metallic or
semiconducting. This feature is due to the fact that the Fermi
surface for small dopings is a set of nearly circular loops,
meeting at the same angle the momentum lines of any chiral-
ity [cf. Figs. 5(b) and 7].

As the Fermi surface loses the circular symmetry at larger
values of doping, differences appear between nanotubes of
the same type of conduction and different chiralities [cf.
Figs. 5(c) and 10]. The doping level at which the maximum
amplitude of the magnetic moments is reached depends on
the chirality of the CN.

The sawtooth shape of the orbital magnetic moment in a
(38,36) X (-4028,4101) nanotube doped to +v, in Fig. 8 is
a manifestation of the fractional period of the Bohm-
Aharonov effect, noticed by Sasaki et al.?* In CNs whose
length is commensurate with their circumference, the period
of the Bohm-Aharonov oscillations is a fraction of ¢,.

V. CONCLUSIONS

CNs can be one of the basic ingredients of the future
nanoelectronic devices. Therefore their behavior in the mag-
netic field is of big importance. The magnetic field has a
strong effect on the electronic structure of the CN: it can be
used to tune the energy spectrum. This raises the possibility
of controlling the energy levels through an external field,
opening the door to further studies of fundamental properties
of nanotubes as well as technological applications. When
applied parallel to the tube axis, the magnetic field creates
orbital magnetic moments, which depend strongly on the
chirality, length, and doping level of the CN.

The results of our model calculations show that the be-
havior of the orbital magnetic moment in single-wall nano-
tubes has the following features: (i) the temperature dimin-
ishes its amplitude and smoothes out sharp features in the
Morn(@,T) dependence, which in doped nanotubes can even
change the character of the response from diamagnetic at low
T to paramagnetic at high T (cf. Fig. 11); (ii) its dependence
on ¢ is very similar in electron- and hole-doped CNs, at
small values of doping, in nanotubes both isolated and form-
ing part of a circuit. At larger values of doping the asymme-
try becomes significant; (iii) is nearly independent of R in
half-filled CNs and depends on R in the doped ones; in case
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of Er=—+_ this dependence is linear; (iv) scales with length
in both pure and doped CNs; (v) is independent of chirality
for pure CNs and depends strongly on chirality in heavily
doped nanotubes. In this paper we have given a survey of the
properties of the orbital magnetic moments for single-wall
nanotubes of different chiralities with different radii and
length, and for various values of electron or hole doping, at
zero and finite temperatures. In multiwall nanotubes these
dependences are more complex, since all shells are pen-
etrated by the magnetic field and all must be taken into ac-
count. The magnetic moments are then a superposition of
moments from different shells. Some aspects of this problem
have recently been discussed in Refs. 15,25.

The magnetization and susceptibility of multiwall carbon
nanotubes and nanotori has been the subject of both theoret-
ical and experimental study.”®?” These measurements were
performed with a SQUID device.

PHYSICAL REVIEW B 72, 115406 (2005)

It seems that the measurement of the orbital magnetic
moment may also be possible, e.g., in a setup with a double-
walled CN. The outer shell can be used as a field detector.
The current running along it would be modified by the
Bohm-Aharonov effect. The precise measurement of this cur-
rent, compared with the current in identical but single-walled
CN, could reveal the magnetic moment produced by the in-
ner tube.
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