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transport and spin accumulation of the various regimes give rise to different TMR behavior.
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I. INTRODUCTION

The study of spin-polarized electron transport through
nanostructures with strong Coulomb interaction is a rela-
tively new field of theoretical and experimental research, re-
siding in the intersection of the fields of spintronics1–4 and
transport through nanostructures,5–7 respectively. The inter-
play of finite spin polarization and Coulomb blockade gives
rise to a complex transport behavior in which both the elec-
trons’ charge and spin degree of freedom play a role.8 A
convenient minimal model system to study this interplay
consists of a single-level quantum dot coupled through tun-
nel barriers to ferromagnetic electrodes. Experimentally such
systems may be realized in various ways, including self-
assembled dots in ferromagnetic semiconductors,9 ultrasmall
aluminum nanoparticles,10 carbon nanotubes,11–13 or single
molecules.14

The properties of spin-polarized transport through single
magnetic tunnel junctions have already proven technological
relevance in information-storage devices based on the tunnel
magnetoresistance �TMR� effect, i.e., the observation that the
current flowing through the junction depends on the relative
orientation of the leads’ magnetizations. It is maximal for the
parallel and minimal for the antiparallel configuration. Quan-
titatively, it can be characterized by

TMR =
IP − IAP

IAP
, �1�

where IP and IAP are the currents for the parallel and antipar-
allel configuration, respectively. Julliere found15 that the
TMR for a single tunnel junction is related to the degree p of
spin polarization of the leads’ density of states, p= ��+

−�−� / ��++�−�, by TMRJull=2p2 / �1− p2�, where �+ and �−

are the spin-majority and spin-minority densities of states in
the electrodes, respectively. Julliere’s formula immediately
follows from the fact that the transmission probability of an
electron with spin � through the barrier is proportional to the
product of the �spin-dependent� densities of states for spin �
in source and drain.

Once a nanoscopic island is placed in between the ferro-
magnetic leads the situation becomes much more complex
for two reasons. First, there are different types of transport
processes that depend on the leads’ spin polarization in a
different manner, such as sequential tunneling, non-spin-flip,
and spin-flip cotunneling �for non-spin-flip cotunneling an
electron of given spin is transferred through the system,
while for spin-flip cotunneling both the spin of the trans-
ferred electron as well as the dot spin changes during the
process�. Second, a nonequilibrium spin accumulation can
partially polarize the island, which, in turn, affects the total
transmission through the device. Therefore, the TMR will, in
general, deviate from Julliere’s value. It will, furthermore, be
different for different transport regimes. The measurement of
the TMR as a function of temperature, bias and gate volt-
ages, will, thus, reveal information about the underlying
transport processes as well as the spin accumulation on the
island.

Spin-dependent transport through a single-level quantum
dot in the sequential-tunneling regime with collinearly mag-
netized leads has been analyzed in Refs. 16–18. This has
been extended19–22 to noncollinear configurations with arbi-
trary relative angle, for which a precession of the dot spin
about an intrinsic exchange field gives rise to nontrivial de-
pendence of the angle-dependent conductance. In the present
paper, we analyze the TMR for collinear magnetization be-
yond sequential tunneling. This covers the Coulomb-
blockade regime, in which sequential tunneling is exponen-
tially suppressed, and transport is dominated by co-
tunneling.23–29 But even when sequential tunneling is pos-
sible, second-order corrections to the current become impor-
tant for increasing tunnel-coupling strengths. This includes
the above-mentioned cotunneling processes but also terms
associated with renormalization of level position and tunnel-
coupling strength.30 Recently, we studied spin-dependent
transport for a specific transport regime, namely, cotunneling
deep inside the Coulomb-blockade valley.31

Our objective for the present paper is to analyze the TMR
in the full parameter space defined by the gate and bias volt-
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ages. This includes the linear- and nonlinear-response regime
as well as the cases of even and odd dot occupation. We find
that the TMR reaches Julliere’s value only when the trans-
port is fully carried by non-spin-flip cotunneling. This hap-
pens in the Coulomb-blockade valleys in which the dot is
either empty or doubly occupied, where the dot remains un-
polarized, as well as for large bias voltage in the Coulomb-
blockade valley with an odd dot-electron number. For all
other regimes, though, the TMR is reduced below Julliere’s
value.

II. MODEL

We consider transport through a single-level quantum dot.
The dot is coupled to two ferromagnetic electrodes with col-
linear, i.e., either parallel or antiparallel, magnetizations, see
Fig. 1. The dot level � can be tuned by a gate voltage, but is
independent of the symmetrically applied transport voltage.

We model the system by an Anderson-type Hamiltonian
of the form

H = HL + HR + HD + HT. �2�

The first and second terms represent the left and right reser-
voirs of noninteracting electrons, Hr=�q��rq�crq�

† crq�, for
r=L ,R, where crq�

† �crq�� is the creation �annihilation� opera-
tor of an electron with wave number q and spin � in the lead
r, whereas �rq� denotes the corresponding single-particle en-
ergy. The dot is represented by

HD = �
�=↑,↓

�d�
†d� + Ud↑

†d↑d↓
†d↓, �3�

with d�
†�d�� creating �annihilating� an electron on the dot

with spin � and energy �, and U is the charging energy for
double occupancy. There are four possible states for the
quantum dot, empty dot ��=0�, singly occupied dot with a
spin-up ��= ↑ � or spin-down ��= ↓ � electron, and doubly
occupied dot ��=d�. Tunneling between dot and leads is de-
scribed by

HT = �
r=L,R

�
q�

�trq�crq�
† d� + trq�

* d�
†crq�� , �4�

where trq� are the tunnel matrix elements. Tunneling gives
rise to an intrinsic broadening �� of the dot levels, given
by the Fermi-golden-rule expression ��=�r=L,R�r

�, with
�r

�=2��q�trq��2��	−�rq��. Assuming the matrix elements

trq� to be independent of the wave number and spin orienta-
tion, we get �r

�=2��tr�2�r
�, with �r

� denoting the spin-
dependent density of states in lead r. In the following we
assume the latter to be independent of energy within the
electron band. Furthermore, we introduce the degree of spin
polarization pr= ��r

+−�r
−� / ��r

++�r
−� of lead r, and express the

four respective couplings in terms of spin polarization as
�r

+�−�=�r�1± pr�, where �r= ��r
++�r

−� /2. In general, the leads
may have different spin polarizations and/or coupling
strengths to the dot. In the following, however, we assume
pL= pR� p and �L=�R�� /2. In the weak coupling regime,
typical values of the dot-lead coupling strength � are of the
order of tens of 
eV.27

III. METHOD AND TRANSPORT EQUATIONS

We calculate the transport properties of the system by
making use of a real-time diagrammatic technique.30,32,33 Its
main idea is to integrate out the electronic degrees of free-
dom in the leads in order to arrive at an effective description
of the dot subsystem. The dynamics of the subsystem is then
described by a reduced, four-dimensional, density matrix
with density matrix elements P�2

�1�t�. The time evolution of
the reduced system can be represented graphically as a se-
quence of irreducible diagrams on the Keldysh contour. An
example of such time evolution is shown in Fig. 2, where the
upper and lower branches of the Keldysh contour represent
the forward and backward propagators. Tunneling is repre-
sented by vertices, that are connected in pairs by tunnel lines.
Each grey region in Fig. 2 defines an irreducible diagram that
corresponds to a transition of the dot state. First- and second-
order transport in the tunnel-coupling strength � is described
by diagrams containing one or two tunnel lines, respectively.
Since we consider only collinear magnetic configurations of
the leads and tunneling is spin conserving, the natural choice
of the spin-quantization axis results in vanishing of all non-
diagonal density matrix elements, and only the diagonal
ones, P�

�� P�, need to be considered. They are nothing but
the probability to find the dot in state �.

The time evolution of the reduced density matrix is gov-
erned by a generalized master equation30 that in the station-
ary limit reduces to

0 = �
�

����P�, �5�

where ���� describes the irreducible diagram parts with tran-
sitions from state � to ��. The electric current is given by

FIG. 1. Single-level quantum dot coupled to ferromagnetic
leads. The magnetic moments of the electrodes are either parallel or
antiparallel to each other.

FIG. 2. An example for the time evolution of the reduced den-
sity matrix. The grey regions define irreducible diagrams of first and
second order in tunneling, respectively. The direction of each tun-
neling line indicates whether an electron of respective spin leaves or
enters the dot, thus, leading to a change of the dot state, as indicated
on the forward and backward Keldysh propagators.
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I = −
ie

2�
�
���

����
I P�, �6�

where the self-energy ����
I is modified as compared to ����

to account for the number of electrons transferred through
the barriers. The rules to calculate ���� and ����

I are given in
the appendix.

Our goal is to calculate the current up to second order in
the tunnel-coupling strength �. For this, we first expand the
self-energies ���� and ����

I order by order,

���� = ����
�1� + ����

�2� + ¯ , �7�

where the order corresponds to the number of tunnel lines of
a diagram. Consequently, the entire problem is reduced to the
calculation of all the self-energies with the aid of the dia-
grammatic rules.

For an accurate perturbation expansion of the current, we
also need to expand the probabilities in orders of �,

P� = P�
�0� + P�

�1� + ¯ , �8�

with the normalization condition,

�
�

P�
�m� = �m,0. �9�

The first- and second-order contributions to the current are
then given by

I�1� = −
ie

2�
�
���

����
I�1�P�

�0�, �10�

I�2� = −
ie

2�
�
���

�����
I�2�P�

�0� + ����
I�1�P�

�1�� . �11�

To determine P�
�0� and P�

�1�, we must expand the master
equation, Eq. �5�, order by order,

0 = �
�

����
�1� P�

�0�, �12�

0 = �
�

����
�2� P�

�0� + ����
�1� P�

�1�. �13�

The evaluation of P�
�0� and P�

�1� from Eqs. �12� and �13� must
be done with some care. As we will see below, we must
distinguish between the two cases in which sequential tun-
neling is either present or exponentially suppressed.

A. Perturbation expansion in the presence of sequential
tunneling

In regime where the sequential tunneling is allowed, one
can use the perturbation expansion presented in the preced-
ing section. In particular, one can determine the zeroth-order
probabilities P�

�0� from Eq. �12� and, then, plug the result into
Eq. �13� in order to evaluate the first-order corrections P�

�1�.
Having calculated the probabilities, one can use the result to
get the current from Eqs. �10� and �11� in first and second
order, respectively.

B. Perturbation expansion in the Coulomb-blockade regime

In the Coulomb-blockade regime, several of the first-order
self-energies are exponentially small as they are associated
with energetically forbidden sequential-tunneling rates. As a
consequence, all addends in the first-order master equation,
Eq. �12�, are exponentially small, either the state � is classi-
cally forbidden, i.e., P�

�0� is exponentially suppressed, or the
state � is classically allowed but then the corresponding self-
energies �

���

�1� are exponentially small.
This is not a problem for the Coulomb-blockade valleys

with an even number of electrons, kBT , �eV�
� ,�+U and
kBT , �eV�
−� ,−�−U, since for this case, the first-order mas-
ter equation, Eq. �12�, yields P�

�0�=��,0 and P�
�0�=��,d, respec-

tively, i.e., there is only one classically allowed dot state. The
situation is different for the Coulomb-blockade valley with
an odd number of electrons, kBT , �eV�
−� ,�+U, where
both �=↑ and �=↓ are classically occupied. In this case, Eq.
�12� simplifies to

�
�00

�1� 0 0 0

�↑0
�1� 0 0 �↑d

�1�

�↓0
�1� 0 0 �↓d

�1�

0 0 0 �dd
�1�
��

P0
�0�

P↑
�0�

P↓
�0�

Pd
�0�
� = 0, �14�

i.e., we obtain P0
�0�= Pd

�0�=0 while the individual occupa-
tions P↑

�0� and P↓
�0� remain undetermined. Furthermore, we

find that P↑
�1� and P↓

�1� drop out of the second-order master
equation, Eq. �13�, and the expression for the second-order
current, Eq. �11�, since they are multiplied with exponen-
tially small transition rates �

���

�1� . As a consequence, all the

needed probabilities P0
�1�, P↑

�0�, P↓
�0�, and Pd

�1� are determined
from Eq. �13� alone, which simplifies to

�
�00

�1� �0↑
�2� �0↓

�2� 0

�↑0
�1� �↑↑

�2� �↑↓
�2� �↑d

�1�

�↓0
�1� �↓↑

�2� �↓↓
�2� �↓d

�1�

0 �d↑
�2� �d↓

�2� �dd
�1�
��

P0
�1�

P↑
�0�

P↓
�0�

Pd
�1�
� = 0, �15�

plus P↑
�0�+ P↓

�0�=1 from the normalization condition.
If one were ignorant about the described subtlety one

might naively use the first-order master equation, Eq. �12�,
with all its exponentially small �but finite� addends to obtain
a well-defined �but, in general, wrong� result for P↑

�0� and
P↓

�0�. There are situations, though, in which this procedure,
although unjustified by construction, leads to the correct re-
sult, namely when the total system is symmetric under spin
reversal �nonmagnetic leads, p=0�, or for vanishing bias
voltage, V=0. In both cases, the correct result P↑

�0�= P↓
�0�

=1/2 is ensured either by symmetry or as a consequence of
detailed balance relations. It is only for broken spin symme-
try combined with finite bias voltage V�0 that the naive
procedure leads to wrong results.

We remark that the current in the Coulomb-blockade re-
gime far from resonance can alternatively be calculated with-
out the use of the diagrammatic language. Instead one can
employ a rate-equation approach with cotunneling rates ob-
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tained in second-order perturbation theory.23–25 The rate

�r�r
��⇐� for a cotunneling process, in which one electron

leaves the dot to reservoir r� and one electron enters from r
with the initial and final dot state being � and ��, respec-
tively, is

�r�r
�⇐� =

1

2�
Re � d		1 − f�	 − 
r�
f�	 − 
r��

� � �r
��r�

�

�	 − � + i0+�2 +
�r

�̄�r�
�̄

�	 − � − U + i0+�2� �16�

when the dot spin is not changed ��=���—non-spin-flip co-
tunneling, while we get

�r�r
�̄⇐� =

�r
��r�

�̄

2�
Re � d		1 − f�	 − 
r�
f�	 − 
r��

� � 1

	 − � + i0+ +
1

� + U − 	 + i0+�2

, �17�

for cotunneling process in which the dot spin is flipped ��̄
is the opposite spin of ��—spin-flip cotunneling. Here,
f�	−
r� is the Fermi function of reservoir r with electro-
chemical potential 
r. The regularization +i0+ is put here by
hand, while it naturally comes out within the diagrammatic
formulation. There are two types of spin-flip cotunneling
processes. Each of them involves two tunneling events,
either through the same or through the two opposite tunnel
barriers. Accordingly, we refer to them as single-barrier �r
=r�� and double-barrier cotunneling �r�r��. Double-barrier
cotunneling contributes directly to the current, while single-
barrier cotunneling preserves the total charge in the leads.
Nevertheless, spin-flip single-barrier cotunneling can influ-
ence the total current indirectly, by changing of the magnetic
state of the dot. The probabilities P� are obtained from the
stationary rate equation 0=�rr���r�r

↓⇐↑P↑−�r�r
↑⇐↓P↓� together

with the normalization condition P↑+ P↓=1. The current I is,
then, given by

I =
e

�
�
���

��RL
��⇐� − �LR

��⇐��P�. �18�

This result is identical to the one obtained within the dia-
grammatic technique. Close to resonance, however, it is not
sufficient to include the sequential and cotunneling pro-
cesses, but also contributions associated with renormaliza-
tion of level position, level splitting, and tunnel-coupling
strengths become important. The diagrammatic language
systematically takes everything into account properly.

C. Crossover scheme

For both the case when sequential tunneling is allowed or
suppressed, we have formulated a proper perturbation expan-
sion of the current up to second order in the tunnel-coupling
strength. When evaluating the TMR as a function of various
parameters, such as the gate or transport voltage, one must
switch from one scheme to the other around the threshold of
sequential tunneling. At the crossover, there is no well-

defined second-order perturbation expansion since terms of
different order in � are comparable in magnitude, and their
ratio changes continuously as a function of gate or transport
voltage. Alternatively, we may use a crossover scheme that
smoothly crosses over from one scheme to the other. This
scheme consists of solving the master equation with first-
and second-order self-energies, without expanding the prob-
abilities,

0 = �
�

�����
�1� + ����

�2� �P�, �19�

and plugging this into the expression for the current,

I = −
ie

2�
�
���

�����
I�1� + ����

I�2��P�. �20�

Up to second order in �, this result for the current is identical
to the above-introduced accurate perturbation schemes. De-
viations are of third and higher order, which are, although
unsystematic, always small for the chosen parameters, as
otherwise, the perturbation expansion would break down
anyway.

IV. RESULTS

A. Nonmagnetic leads

Before presenting the results on the TMR for quantum
dots attached to ferromagnetic leads, we illustrate the pertur-
bation scheme introduced above for nonmagnetic leads. In
Fig. 3 we show the linear conductance as a function of the
level position �that can be tuned by a gate voltage�, calcu-
lated to first �dashed line� and second �dotted line� order as
well as the sum of both contributions �solid line�. Resonance
peaks appear when either � or �+U crosses the Fermi energy
of the leads. Away from resonance sequential tunneling is
exponentially suppressed, and cotunneling processes domi-
nate transport. But also at resonance, second-order contribu-
tions are important, as can be seen in the figure. In particular,
they yield a shift of the peak position and introduce an ad-
ditional broadening.

FIG. 3. Linear conductance for nonmagnetic leads �p=0� as a
function of the level position. The dashed line corresponds to the
first-order contribution G�1�, the dotted line represents the second-
order conductance G�2� and the solid line presents the sum G�1�

+G�2�. The parameters are kBT=� and U=20�. The figure was gen-
erated using the scheme for the perturbation expansion in the pres-
ence of sequential tunneling.
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B. Ferromagnetic leads

We now switch to the case of ferromagnetic leads. As a
consequence of spin-dependent densities of states in the
leads, the dot-lead coupling strength becomes spin dependent
as well. The coupling of the dot level to the leads acquire a
factor �1+ p� or �1− p� for coupling to majority or minority
spins, respectively. We assume that spin-up �spin-down�
electrons in the parallel configuration correspond to the ma-
jority �minority� electrons of the leads. In the antiparallel
configuration, on the other hand, the magnetic moment of the
right electrode is reversed, and spin-up �spin-down� corre-
sponds to minority �majority� electrons in the right lead.

One of the main results of this paper is that the TMR
strongly depends on the transport regime. The various trans-
port regimes are sketched in Fig. 4.

In the three diamonds around V=0 the number of dot
electrons is fixed �to 0 in regime A, 1 in regime B, and 2 in
regime A��, and sequential tunneling is suppressed. Sequen-
tial tunneling sets in once the bias voltage is increased above
the threshold voltage, allowing for finite occupation of two
adjacent charge states �0 and 1 for regime C, and 1 and 2 for
regime C��. In regime D all charge states 0, 1, and 2 are
possible. By performing a particle-hole transformation, the
behavior in regimes A� and C� can be mapped to that in
regimes A and C, respectively.

C. Sequential tunneling

For reference, we list the TMR values obtained in first-
order perturbation theory �see also Fig. 5�. In regimes A �and
A��, B, and D, the TMR value is

TMRseq
A,B,D =

p2

1 − p2 =
1

2
TMRJull, �21�

while for regime C �and C�� it is

TMRseq
C =

4p2

3�1 − p2�
=

2

3
TMRJull. �22�

Within sequential tunneling the TMR through a quantum-dot
spin valve is always smaller than Julliere’s value for a single
magnetic tunnel junction. In the latter case, electrons are di-
rectly tunneling from one lead to the other. The transmission
is, therefore, proportional to the product of the �spin-
dependent� densities of states of both leads, i.e., proportional
to �1+ p�2 in case the spin of the transferred electron belongs
to the majority spins in both leads, �1− p�2 in case it belongs
to the minority spins, and �1+ p��1− p� in case it is majority
spin in one and minority spin in the other lead. The total
current for the parallel and antiparallel configurations is,
thus, proportional to 1+ p2 and 1− p2, respectively, which
yields Julliere’s value for the TMR.

The sequential tunneling rates in a quantum-dot spin
valve involve the �spin-dependent� density of states of one
lead only and are independent of the orientation of the other
lead. To get a finite TMR, one needs to take into account
nonequilibrium spin accumulation on the quantum dot,
which is induced by the spin dependence of the tunneling
rates. In the antiparallel configuration, the dot hosts a non-
equilibrium spin accumulation m= �P↑− P↓� /2 due to a dif-
ferent occupation of up- and down-spin levels in the dot,
P↑� P↓. It is, thus, the spin accumulation on the dot that
mediates the information about the relative magnetic orien-
tation of the leads. This indirect mechanism is, however, al-
ways less effective than a direct coupling of the two leads,
which is why the sequential-tunneling TMR is always
smaller than Julliere’s value.

The result TMR= 1
2TMRJull is characteristic of

ferromagnet/normal-metal/ferromagnet double tunnel junc-
tions without Coulomb interaction,34 i.e., in the absence of
any electron correlations, as well as for quantum dots with
vanishing interaction U→0. For the regime D all three
charge states play a role as for the noninteracting case so the
value of TMR also corresponds to this situation. The same

FIG. 4. A sketch presenting different transport regimes. The
respective regimes are separated by solid lines.

FIG. 5. The first-order tunnel magnetoresistance as a function of
the bias and gate voltages. The parameters are: kBT=1.5�, U
=40�, and p=0.5.
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value is reached in the Coulomb-blockade regimes A �A��
and B, because all transport processes in this regime are
possible only due to hot electrons, which effectively do not
feel the Coulomb barrier, interaction, and correlations. In re-
gime C �C�� Coulomb interaction is important and gives rise
to the result TMR= 2

3TMRJull. This increased TMR is related
with the presence of a nonequilibrium spin accumulation and
induced by it an additional charge accumulation for the an-
tiparallel alignment. To illustrate this let us consider regime
C for large bias voltages such that electrons are always en-
tering the dot from the left and are leaving to the right lead.
For the parallel alignment the dot occupancy is given by
P↑= P↓= P0= 1

3 and Pd=0, while the current I does not de-
pend on the spin polarization p. For the antiparallel align-
ment, the spin-current conservation condition IL

�= IR
�, with Ir

�

being the current flowing through the barrier r in the spin
channel �, yields �1+ p�P0= �1− p�P↑ and �1− p�P0= �1
+ p�P↓, i.e., the probability P0= �1− p2� / �3+ p2� to find the
dot empty is reduced. Due to the fact that the current
I
 P0 �coming from the left lead� for both alignments, the
tunnel magnetoresistance acquires the value 2

3TMRJull.
As in regimes A and B sequential tunneling is exponen-

tially suppressed, the TMR value obtained in first-order per-
turbation theory is unreliable. The TMR due to cotunneling
will be significantly different, as shown below. In regimes C
and D, on the other hand, sequential tunneling is present, and
second-order corrections lead to smaller deviations only.

D. Sequential tunneling plus cotunneling

The TMR of first- plus second-order transport is shown in
Fig. 6, where the second-order result is obtained by the
crossover scheme. It is clear that second-order transport has
the strongest impact on the TMR in the Coulomb-blockade
regime �regimes A and B�. In regime B we even find a dis-
tinctively different behavior for the linear- and the nonlinear-
response regimes. For regimes C and D, corrections due to
second-order transport are smaller. With our theory we are

able to cover all the transport regimes including the cross-
over region. In the following we analyze the various trans-
port regimes in detail.

1. Regime A

In the Coulomb-blockade regime A the dot is empty, and
the TMR is just due to spin-dependent non-spin-flip cotun-
neling through the dot. There is no spin accumulation on the
dot. The cotunneling rates are proportional to the product of
the density of states of the left and right leads. In this regime
electrons directly tunnel from one lead to the other similar as
for a single magnetic tunnel junction case. Thus, the current
flowing in the parallel configuration is proportional to 1
+ p2, whereas that flowing in the antiparallel configuration is
proportional to 1− p2. As a consequence, the TMR is that of
a single magnetic tunnel junction,

TMRA =
2p2

1 − p2 = TMRJull, �23�

i.e., twice as large as obtained within the sequential-
tunneling approximation.

In the regime A� the dot is occupied by two electrons and
transport has holelike character with only non-spin-flip co-
tunneling as for the regime A, consequently the tunnel mag-
netoresistance has the same value.

2. Regime B

The TMR in regime B displays several nontrivial features.
In particular, it is not constant but depends on both the gate
and bias voltage. Furthermore, we find that for nonlinear
response the TMR is significantly enhanced as compared to
linear response. In contrast, the TMR in the adjacent Cou-
lomb blockade valley with even number of electrons, regime
A, is rather trivial. This parity effect is related to the fact that
the singly occupied dot in regime B can be �partially� spin
polarized, while the empty or doubly occupied dot in regime
A and A�, respectively, is nonmagnetic.

The TMR in regime B is substantially smaller than that in
regime A. This can be understood by the fact that for a singly
occupied dot both spin-flip and non-spin-flip cotunneling
processes are possible, in contrast to regime A and A� where
only non-spin-flip cotunneling occurs. There is a perfect
symmetry in transmission magnitude between spin-flip �non-
spin-flip� processes in the parallel and non-spin-flip �spin-
flip� in the antiparallel configuration, so in the absence of
spin accumulation �P↑= P↓� the resulting TMR would be re-
duced to zero. Only due to the presence of spin accumulation
�P↑� P↓� for the antiparallel alignment transport is reduced
and TMR�0. Therefore, the actual value of the TMR in
regime B depends in a sensitive way on the processes deter-
mining the spin accumulation, which is a function of both the
gate and bias voltage. In particular, the different role of spin-
relaxation channels for the linear- and nonlinear-response re-
gime give rise to qualitatively different behavior for the two
cases.

We first consider the linear-response TMR as a function of
level position �or gate voltage�, as displayed in Fig. 7. The
figure presents the linear conductance in the parallel and an-

FIG. 6. The first-plus-second-order tunnel magnetoresistance as
a function of bias and gate voltage. The parameters are the same as
in Fig. 5. The figure was generated using the crossover scheme.
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tiparallel configurations 	part �a�
 and the TMR 	part �b�
. We
plot the first-order TMR�1�, which is constant and equal to
one-half of the Julliere’s value. First of all, one can see that
the inclusion of second-order processes modifies the TMR
substantially. The total TMR is well below Julliere’s value as
a consequence of spin-flip cotunneling. It is minimal in the
center of the Coulomb-blockade valley, �=−U /2, where the
relative importance of spin-flip as compared to non-spin-flip
cotunneling is strongest. To estimate the gate-voltage depen-
dence of this relative importance we consider the ratio of the
spin-flip over the non-spin-flip cotunneling rate, as given in
Eqs. �17� and �16�. Since we are only interested in the gate-
voltage dependence we simply take the energy denominators
at 	=0 and find that the ratio scales with 	−1/�+1/ ��
+U�
2 / 	1/�2+1/ ��+U�2
=2/ 	1+ �1+2� /U�2
, which is
maximal for �=−U /2. As illustrated in Fig. 7�b�, the gate-
voltage dependence of the TMR around the center is para-
bolic. To obtain an approximate analytic expression for the
linear-response TMR, we specify our full result for the
Coulomb-blockade regime �kBT ,�
−� ,�+U�, and take into
account only the lowest-order corrections in the ratio x /y
with x= �eV�, kBT, y= ���, �+U. To describe the parabolic
behavior, we, furthermore, expand the TMR up to quadratic
order around �=−U /2 and obtain

TMRB =
p2

1 − p2�2

3
+

4

9
�1 +

2�

U
�2� . �24�

We find that the smallest TMR value is 1 /3 of that in regime
A. As seen in Fig. 7�b�, this analytic expression approxi-
mates the numerical data quite well.

We now switch to the nonlinear-response regime. This
case is illustrated in Fig. 8, where the currents in the parallel
and antiparallel configuration as well as the resulting TMR
are plotted as a function of the level position for eV=20�.
The dashed line in Fig. 8�b� presents the first-order TMR
plotted for reference. When changing the position of the dot
level, one crosses over from regime A� over C� to B, and
then further through C to A. It can be seen that the behavior
of TMR in regime B differs significantly from that in linear
response, Fig. 7�b�. Instead of a minimum, we find a local
maximum for �=−U /2, as displayed in Fig. 8�b�. When low-
ering the temperature, we even find a pronounced plateau of
the TMR, with the plateau height given by Julliere’s value
and the widths determined by the region where first-order
contributions are negligible. The reason for this increased
TMR is nonequilibrium spin accumulation. The presence of
double-barrier spin-flip cotunneling, on the one hand, tends
to decrease the TMR as discussed above. At the same time,
on the other hand, it gives rise to spin accumulation that
increases the TMR. As it turns out, the two effects compen-
sate each other in the nonlinear-response regime �eV�kBT�,

FIG. 7. �Color online� The total linear conductance �a� in the
parallel �solid line� and antiparallel �dashed line� configuration and
the resulting tunnel magnetoresistance 	solid line in �b�
 as a func-
tion of the level position. The dashed line in part �b� represents the
first-order tunnel magnetoresistance. The dotted-dashed curve pre-
sents the TMR calculated using the approximation Eq. �24�. The
parameters are kBT=1.5�, U=40�, and p=0.5. The figure was gen-
erated using the scheme for the perturbation expansion in the pres-
ence of sequential tunneling.

FIG. 8. The total currents �a� in the parallel �solid line� and
antiparallel �dashed line� magnetic configurations as a function of
level position for eV=20�. Part �b� shows the first-order contribu-
tion to the TMR �dashed line� and the total TMR �solid line�. The
inset in part �b� shows the total TMR at lower temperature, kBT
=0.5�. The other parameters are the same as in Fig. 7. The figure
was generated using the crossover scheme.
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such that the TMR equals Julliere’s value as if spin-flip co-
tunneling were absent. This compensation does not occur in
the linear-response regime since in that case single-barrier
spin-flip cotunneling processes become important, which do
not contribute to transport but reduce the spin accumulation.
When approaching the threshold for sequential tunneling, the
TMR drops from Julliere’s value to match the first-order
TMR�1�. At higher temperature, such that the plateau is not
yet fully developed a local maximum still survives.

The different behavior of the linear- and nonlinear-
response regime is also nicely seen in the TMR as a function
of transport voltage. The current for the parallel and antipar-
allel configuration as well as the resulting TMR is shown in
Fig. 9 for �=−U /2. Unlike the first-order TMR�1� illustrated
in Fig. 9�b� by a dashed line, the total TMR is a nonmono-
tonic function of the bias voltage, which can be understood
from the discussions presented above. For bias voltages be-
low the threshold of sequential tunneling, transport is domi-
nated by cotunneling. Double-barrier spin-flip cotunneling
processes suppress the TMR as compared to the Julliere’s
value. A finite spin accumulation, on the other hand, weakens
this suppression and, therefore, tends to increase the TMR. In
the linear-response regime, �eV�
kBT, the presence of
single-barrier spin-flip cotunneling reduces the spin accumu-
lation which results in a rather low TMR. This is no longer
the case at large bias, �eV��kBT, where only single-barrier
spin-flip cotunneling plays no role and the net effect of
double-barrier spin-flip cotunneling on the TMR is compen-
sated. As a result we find an increase of the TMR in regime

B with increasing bias voltage within the limits

1
3TMRJull � TMRB � TMRJull. �25�

The minimal value is reached at V=0 and �=−U /2, as dis-
cussed in the preceding paragraph, and the maximal value is
approached for bias voltages large as compared to tempera-
ture but still far away from the onset of sequential tunneling.
For an approximate analytic expression of the TMR around
the minimum, we consider the symmetric Anderson model,
�=−U /2, expand the TMR up to quadratic order in �eV� /kBT
and go to the limit ����kBT. The result,

TMRB =
p2

1 − p2�2

3
+

�3 − p2��eV�2

54�kBT�2 � , �26�

which compares well with the full numerical result, as can be
seen in Fig. 9�b�. When further increasing the bias voltage,
sequential tunneling sets in. Deep in the regime D the TMR
approaches one-half of Julliere’s value. As a consequence,
the TMR must decrease in the crossover regime between
regimes B and D to match the correct asymptotic behavior,
this is shown in Fig. 9.

There is one more extra feature directly at the threshold
voltage for sequential tunneling. At this point, sequential tun-
neling dominates transport but second-order corrections are
still important. As shown in Fig. 9, this correction gives rise
to a local minimum of the TMR as a function of the bias
voltage. To get an approximate analytic expression for the
TMR at this intersection point of regimes B, C, and D, we
assume ����kBT and expand the TMR up to first order in
� / �kBT� to get

TMRB�C�D =
p2

1 − p2 � �1 −
�

4�kBT
�ln� ���

�kBT
� − ��1

2
��� ,

�27�

with ��x� being the digamma function, ��1/2��−1.96.
The anomalous behavior of the TMR in the Coulomb-

blockade regime is generated by the interplay of single- and
double-barrier cotunneling for the antiparallel configuration.
This is also seen in the appearance of a pronounced zero-bias
anomaly of the differential conductance as a function of the
bias voltage in the antiparallel configuration, as we have dis-
cussed in detail in Ref. 31. For completeness we repeat here
some important facts and discuss their implications on the
TMR. Deep in the Coulomb blockade regime such that the
sequential tunneling contributions can be completely ig-
nored, we can use the perturbation scheme for the Coulomb
blockade valley. In Fig. 10�a� we show the differential con-
ductance for both the parallel and antiparallel configurations
for different values of the temperature. For the parallel align-
ment, the conductance shows the typical cotunneling behav-
ior, namely a smooth parabolic dependence on the bias volt-
age. This contrasts with the antiparallel configuration, for
which the differential conductance has a pronounced zero-
bias peak sitting at the bottom of a parabola. The width of

FIG. 9. �Color online� The total current �a� in the parallel �solid
line� and antiparallel �dashed line� magnetic configurations as a
function of the bias voltage. Part �b� shows the first-order contribu-
tion to the TMR �dashed line� and the total TMR �solid line�. The
dotted-dashed curve presents the TMR calculated using the approxi-
mation Eq. �26�. The parameters are kBT=1.5�, �=−U /2, U=40�,
and p=0.5. The figure was generated using the crossover scheme.
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the zero-bias peak is governed by temperature, indicating
different spin-accumulation behavior for �eV�
kBT and
�eV��kBT.

3. Regime C

In Fig. 11 we show the current for the parallel and anti-
parallel configuration and the resulting TMR for the situation
when the dot level lies above the Fermi energy of the leads.
The first-order TMR is also shown for comparison. In this
case, one crosses over from regime A via C to D as the bias
voltage is increased. At low voltage, regime A, current is
carried by non-spin-flip cotunneling, with the TMR given by
Julliere’s value. Once the threshold to regime C is reached,
sequential tunneling plays the dominant role. Second-order
corrections to the current give rise to a slightly reduced TMR
as compared to the sequential tunneling value. To find an
approximate analytic expression for this case, we consider
the case of zero temperature, expand the TMR up to first
order in � and assume ��� /U
1 to get

TMRC =
p2

1 − p2�4

3
−

�27 + 34p2 + 3p4��
18��1 − p2�� � . �28�

At the intersection of regimes A and C the TMR develops a
local minimum. This is a consequence of the fact that when
approaching the intersection from regime C the sequential-
tunneling-dominated TMR decreases while beyond, in re-

gime A, the TMR must rise again to reach Julliere’s value.35

In Fig. 12 we show the current as well as the first-order
and total TMR as a function of bias voltage for �=−10�. In
this case, there is a crossover from regime B via C to D.
Again, there is a local minimum of the TMR at the threshold
to sequential tunneling due to the same reason as above.

4. Regime D

In regime D all four dot states, i.e., �=0, ↑ , ↓ ,d take part
in transport. This situation is illustrated in Fig. 11 for eV
�2��+U�. In this regime, transport is dominated by the
first-order processes and the influence of second-order pro-
cesses is negligible. Consequently, the value of total TMR in
regime D is well described by Eq. �21�, as can be seen in
Figs. 9�b� and 11�b�.

E. Signature of exchange field

It has been predicted19,36 by some of us that the coupling
of the dot levels to spin-polarized leads gives rise to an ef-
fective exchange field seen by the quantum dot electrons �an
overview about the various effects of this exchange field is
given in Ref. 37�. This exchange field is a consequence of
both the Coulomb interaction on the dot and the spin polar-
ization in the leads. The contribution coming from one lead
is proportional to the degree of spin polarization p and the
tunnel-coupling strength �. Its direction is collinear with the

FIG. 10. The differential conductance �a� for parallel and anti-
parallel configurations and the tunnel magnetoresistance �b� as a
function of the bias voltage for different values of temperature. The
maximum in conductance for antiparallel configuration at zero bias
is clearly demonstrated. The other parameters are the same as in
Fig. 9. The figure was generated using the scheme for the perturba-
tion expansion in the Coulomb blockade regime.

FIG. 11. The total current �a� in the parallel �solid line� and
antiparallel �dashed line� magnetic configurations as a function of
the bias voltage. Part �b� shows the first-order contribution to TMR
�dashed line� and the total TMR �solid line�. The parameters are
kBT=1.5�, �=20�, U=40�, and p=0.5. The figure was generated
using the perturbation expansion in the presence of sequential
tunneling.
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leads’ magnetization and its magnitude and even the sign is a
function of the level position relative to the Fermi level. The
total exchange field experienced by the dot electrons is the
�vector� sum of the two leads’ contribution. This exchange
field gives rise to nontrivial transport behavior associated
with a precession of the accumulated spin in the sequential-
tunneling regime for noncollinearly magnetized leads19,20,22

and leads to a splitting of the Kondo resonance in the strong-
coupling limit,36,38 as experimentally observed recently.14 By
applying our diagrammatic technique, the exchange field is
automatically included.

As we argue in the following, the exchange field will,
under certain circumstances, also show up in the parameter
regime studied in this paper, namely as an equilibrium spin
polarization of the dot. This is distinctively different from the
nonequilibrium spin accumulation discussed in the preceding
sections. The latter is a nonequilibrium effect that changes
sign with bias reversal and, in particular, vanishes for zero
bias voltage. In contrast, a finite spin polarization at equilib-
rium can only occur when the dot level is spin split by either
an external magnetic field or by the intrinsic exchange field
that we want to address now.

In the antiparallel configuration, and for symmetric cou-
pling to equal spin polarization of the leads, the exchange-
field contributions from the two leads exactly cancel out each
other since they are of equal magnitude but pointing in op-
posite directions. This is different for the parallel configura-
tion, for which the contributions from the two leads add up
to some finite value.

To lowest �zeroth� order in the tunnel coupling strengths
�, the equilibrium probabilities for occupation with spin �
= ↑ ,↓ are determined by the Boltzmann factors P↑

�0�= P↓
�0�

=exp�−��� /Z, where Z denotes the partition function. Since
the exchange field is proportional to �, it does not affect the
zeroth-order occupation probabilities, i.e., the sequential-
tunneling approximation is not able to describe the
exchange-field induced spin polarization. This is shown in
Fig. 13, where the equilibrium probabilities calculated to ze-
roth and zeroth- plus-first order in the dot-lead coupling are
presented. A finite spin polarization for the parallel configu-
ration is only generated by the first-order corrections P↑

�1�

� P↓
�1�, that we obtain by solving the master equation given

by Eq. �13�. The � dependence of the spin polarization seen
in Fig. 13 reflects the � dependence of the exchange field.
The exchange field for a particle-hole symmetric band van-
ishes in the middle of the Coulomb blockade valley, �=
−U /2, and has different sign on either side. As a conse-
quence the dot polarization changes sign as well.

Since in regime B ���
I�1� are exponentially suppressed, the

exchange splitting and probabilities P�
�1� do not affect the

second-order transport. These probabilities affect only
higher-order transport contributions, which at low tempera-
ture T�TK lead to the Kondo effect.14,36,38

FIG. 12. The total current �a� in the parallel �solid line� and
antiparallel �dashed line� magnetic configuration as a function of
the bias voltage. Part �b� shows the first-order contribution to the
TMR �dashed line� and the total TMR �solid line�. The parameters
are kBT=1.5�, �=−10�, U=40�, and p=0.5. The figure was gen-
erated using the perturbation expansion in the presence of sequen-
tial tunneling.

FIG. 13. The occupation probabilities of the spin-up and spin-
down dot levels as a function of the level position in the parallel �a�
and antiparallel �b� configuration. The zeroth-order occupation
probabilities for the spin-up and spin-down levels are equal in both
magnetic configurations, and are represented by the dotted lines.
The total occupation probability of the spin-up �spin-down� level is
presented by the solid �dashed� line. In the antiparallel configura-
tion, the dashed and solid lines coincide. The parameters are kBT
=1.5�, U=40�, and p=0.5. The figure was generated using the
scheme for the perturbation expansion in the presence of sequential
tunneling.
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V. SUMMARY

We have discussed electronic transport through quantum
dots coupled to ferromagnetic leads. Based on a formalism
that allows for a systematic perturbation expansion in the
tunnel coupling strength, we analyzed the TMR through a
single-level quantum dot for the linear- and nonlinear-
response regime, at or off resonance, with an even or odd dot
electron number. We found different TMR values for differ-
ent transport regimes. In addition to the full numerical results
we provided approximate analytic expressions for various
limiting cases. The most important findings are as follows:

�i� Except for the Coulomb-blockade valley with an even
dot-electron number and the nonlinear-response regime of
the Coulomb-blockade valley with an odd dot-electron num-
ber, the TMR is below that of a single magnetic tunnel junc-
tion.

�ii� There is an even-odd asymmetry between the
Coulomb-blockade valleys with an even or odd number of
electrons, that is related to the absence or presence of spin-
flip cotunneling, respectively.

�iii� In the Coulomb-blockade valley with an odd number
of electrons, the TMR values for the linear and nonlinear
response regimes differ strongly from each other, associated
with different spin-relaxation processes that affect the spin
accumulation.

�iv� The linear-response TMR in the Coulomb-blockade
valley with an odd number of electrons is a function of gate
voltage, which reflects the relative importance of spin-flip
and non-spin-flip cotunneling.

�v� The TMR at the onset of sequential tunneling displays
a local minimum, which is a consequence of interpolating
the TMR behavior away from resonance.

The results presented in this paper are applicable to
single-level quantum dots. Transport characteristics may be-
come more complex in the case of multilevel dots. However,
they should reveal the crossover from the limit of single-
level dots considered in this paper to the limit of large me-
tallic dots with continuous density of states studied in Ref.
39.
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APPENDIX: DIAGRAMMATIC TECHNIQUE

In this Appendix we present general rules in energy space
for calculating contributions of various diagrams. We also
present an exemplary calculation of one of the second-order

self-energies. Afterwards, we show how to determine self-
energies contributing to electric current.

1. Rules in energy space

Contribution of a particular diagram to the self-energy
���� can be found following the general rules in the energy
space:

�1� Draw all topologically different diagrams with fixed
time ordering and position of vertices. Connect the vertices
by tunneling lines. Assign the energies of respective quantum
dot states to the forward and backward propagators. To each
tunneling line assign a frequency 	, the spin of tunneling
electron and label of the junction.

�2� Tunneling lines acquire arrows indicating whether an
electron leaves or enters the dot. For tunneling lines going
forward with respect to the Keldysh contour assign a factor
�r

−��	�, whereas for tunneling lines going backward assign
�r

+��	�.
�3� For each time interval on the real axis limited by two

adjacent vertices draw a vertical line inside the interval and
assign a resolvent 1 / ��E+ i0+�, with �E being the difference
of all energies crossing the vertical line from right minus all
energies crossing the vertical line from left.

�4� Each diagram gets a prefactor �−1�b+c, with b being
the number of vertices lying on the backward propagator and
c denoting the number of crossings of the tunneling lines.

�5� Each internal vertex represents a matrix element
���A����, with A being a dot operator, A=d�

† ,d�. Conse-
quently, a minus sign may appear due to these matrix ele-
ments. This is because �d�=d�

† ��̄�=−d�̄
† ��� �depending on the

definition of state �d��, where �=↑ or �=↓. To account for
this factor, multiply each diagram by �−1�m, where m is the
number of vertices connecting the spin-� state with doubly
occupied state.

�6� Integrate over all frequencies and sum up over the
reservoirs.

The parameters �r
±��	� are defined as

�r
+��	� =

�r
�

2�
f�	 − 
r� , �A1�

�r
−��	� =

�r
�

2�
	1 − f�	 − 
r�
 , �A2�

with f�x� being the Fermi-Dirac distribution function, f�x�
=1/ 	exp�x /kBT�+1
, and 
r representing the electrochemi-
cal potential of lead r.

2. Calculation of �
�̄�
„2…

In order to find the zeroth-order and first-order probabili-
ties, one needs to determine all the self-energies of first and
second order in �. Below, we present an exemplary calcula-
tion of one of the second-order self-energies, �

�̄�
�2�. The equa-

tion for �
�̄�
�2� can be graphically presented as
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�A3�

To calculate the self-energy, it is necessary to evaluate each
contributing diagram. As an example, we present calculation
of the third diagram of Eq. �A3�. Following the general rules
described above, the corresponding contribution, �3, is given
by

�3 = �− 1�2+1�− 1�1 �
r1,r2

� � d	1d	2�r1

−��	1��r2

+�̄�	2�

�
1

	1 − �� + i0+

1

	1 + 	2 − �� − ��̄ − U + i0+

�
1

	2 − ��̄ + i0+ . �A4�

The first �second� factor on the right-hand side follows from
the rule �4� �5�. There are also three resolvents according to
the rule �3�. Among the various diagrams contributing to
�

�̄�
�2�, there is a diagram 	eleventh in Eq. �A3�
 whose contri-

bution is equal to minus complex conjugate of the contribu-
tion due to the third diagram, �11=−Re��3�+ i Im��3�. This
can be shown by interchanging the backward and forward
propagators and changing the direction of the tunneling lines.
As a consequence, the real parts of these diagrams cancel,
whereas the imaginary parts add to each other. Thus, it is
necessary to determine only the imaginary part of one of
those two diagrams, �3+�11=2i Im��3�. After contour inte-
gration, the imaginary part of �3 is given by

Im��3� =
�

U
�
r1,r2

��r1

−�����A1r2

+�̄ ���̄� + �r2

+�̄���̄�A1r1

−� ����

−
�r1

�

2�
fB�
r1

+ 
r2
− �� − ��̄ − U�

�X1r2

+�̄ �2
r2
− ��̄ − U�

−
�r2

�̄

2�
fB��� + ��̄ + U − 
r1

− 
r2
�X1r1

+� ����� ,

�A5�

with fB�x� being the Bose-Einstein distribution function
fB�x�=1/ 	exp�x /kBT�−1
. The corresponding coefficients
A�r

±����� are defined as, A�r
±�����=X�r

±�����−X�r
±����+U�, with

X�r
±�����= ±�r

� / �2��B����−
r� and B��x� given by

B�+1�x� =
d���

dx��� Re���1

2
+ i

x

2�kBT
� − ln� W

2�kBT
�� ,

where ��z� is the digamma function, and we have used the
Lorentzian cutoff function of the form ���	�=W2 / 	�	
−
��2+W2
, with W being the cutoff parameter. As contribu-
tion from a single diagram may depend on W, the final result
does not. In the calculations the cutoff parameter was taken
to be equal to 100�.

In a similar way, one can calculate contributions of all
diagrams, which give

��̄�
�2� = − 2�i �

r1,r2

��r1

−�����X2r2

+�̄ ���̄� + �r1

+�̄���̄�X2r2

−� ����

+ �r1

−���� + U�X2r2

+�̄ ���̄ + U� + �r1

+�̄���̄ + U�X2r2

−� ��� + U� − fB�
r1
− 
r2

+ ��̄ − ���

���r2

�̄

2�
�X2r1

+� ���� + X2r1

+� ��� + U� +
2

U
Ar1

+������ −
�r1

�

2�
�X2r2

+�̄ ���̄� + X2r2

+�̄ ���̄ + U� +
2

U
Ar2

+�̄���̄���� . �A6�
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3. Diagrams contributing to the current

To find current flowing through the system, one must de-
termine the self-energies �I, see Eq. �10� and �11�. This can
be done by realizing that each term of the expansion of the

current operator Î is equal to the corresponding expansion
term of the reduced density matrix multiplied by a factor of
e /�. The only difference is that now for each external vertex
lying on the upper �lower� branch of the Keldysh contour,
corresponding to tunneling of an electron into the left �right�
or out of the right �left� lead, we have a multiplicative factor
+1/2, whereas for each external vertex on the upper �lower�

branch of the contour, describing tunneling of an electron
into the right �left� or out of the left �right� lead, there is a
factor of −1/2.

We have determined all the first-order and second-order
self-energies contributing to electrical current, �I�1� and �I�2�,
and found that from the first-order self-energies only �0�

I�1�,
��0

I�1�, ��d
I�1�, �d�

I�1� give nonzero contributions. In the case of
the second-order self-energies we found ���

I�2�=0, with �
=0, ↑ , ↓ ,d. This is however only the case for the current

operator defined as Î= �ÎR− ÎL� /2, where Îr is the current op-
erator for electrons tunneling to the lead r.
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