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The magnetic field dependence of the local phonon-assisted nuclear spin relaxation rate in two-dimensional
electron systems with magnetic impurities is studied theoretically. For weak- and strong-scattering limits under
strong magnetic fields we show that the magnetic field dependence of T1

−1 exhibits giant spikes, due to the
energy matching of the electron Zeeman splitting with the energy spacing between the vibrational mode
energies. The localized mode is created by the lattice distortion around the impurity. This resonance phenom-
enon could be used as a local probe for studying the localized vibrational modes and their coupling to electrons
and for the resonant manipulation of the nuclear spin qubits. Possible applications to the future nuclear
spin-qubit based quantum computation and communication devices are discussed.
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I. INTRODUCTION

The unique properties of two-dimensional electron sys-
tems �2DES’s� in strong magnetic fields together with their
potential applications in microelectronics put these systems
among the hottest topics in the studies of strongly correlated
electron systems. The nuclear and electron spin states in het-
erostructures, quantum wires, dots, and similar nanostruc-
tures have attracted much attention in recent years. Recent
progress in quantum Hall effect �QHE� physics1 is closely
connected with the rich world of the hyperfine interaction
between nuclear and electron spins in quantum Hall2,3 and
nanosystems.4–7

Various types of excitons8–10 and collective topological
excitations �Skyrmions� �Ref. 11� arise due to the interplay
between orbital and spin degrees of freedom in the integer
quantum Hall effect �IQHE�. The fractional quantum Hall
effect is a manifestation of unusual electron correlations, re-
sulting in unusual quantum statistics of 2DES’s. The nuclear
spin subsystem being coupled by hyperfine interactions to
the electron spin subsystem may be extremely operative in
providing microscopic information on the correlated elec-
tronic states.2,12 The hyperfine field of nonequilibrium
nuclear spins may result in an electron Zeeman splitting
equivalent to several tesla of external magnetic field,13 which
can even produce new, dynamic, low-dimensional systems.5

Experiments indicate very long spin decoherence times and
small nuclear spin transition rates.3

These promising results have motivated proposals for in-
formation processing based on nuclear and electron spins
which might lead to the realization of nuclear-spin-based
quantum memory14 and computing.15–19

Nuclear and electron spin can be manipulated better in a
coherent way when they can be isolated from the surround-
ing environment. One of the measures for such isolated sys-
tems is the strength of the coupling to the environment which
depends on the spin-flip transition rate.

The simultaneous electron-nuclear spin flip, caused by the
contact �Fermi� interaction, in QHE systems and nanosys-
tems with the discret electron spectrum is severely restricted,
at low temperatures, by energy conservation.2 This follows
from the fact that the electron Zeeman splitting is orders of
magnitude larger than the nuclear Zeeman splitting. The
electron-nuclear flip-flop process in these systems can take
place, therefore, when external factors, such as impurities,
phonons, edge states, etc., couple the electron to an external
energy bath.2

An effective mechanism in QHE systems is the phonon-
assisted electron-nuclear flip-flop.20

Unlike the case of 2D extended Landau states we deal
here with a substitutional impurity. The impurity scattering is
responsible for the broadening of Landau levels and the cre-
ation of localized states in 2DES’s. The genesis of the bound
states due to short-range potential scattering was described in
Refs. 21 and 22 The role of magnetic impurities in the for-
mation of the excitation spectrum in 2DES’s was discussed
previosly in our previous paper.23 We have shown there that
the resonance impurity scattering results in the appearance of
bound Landau states with zero moment between the Landau
subbands. Since the resonance scattering is spin selective, it
results in a strong spin polarization of Landau states. The
nuclear spin impurity interacts, therefore, only with these
discrete bound Landau states.

Using similar arguments one may expect resonant en-
hancement of the phonon-assisted flip-flop processes, since
the lattice distortion around the defect creates localized
phonons in the phonon band gap. These localized phonons
may be considered as breathing modes acting up to a few
nearest neighbors in a shell around the impurity.24

In this paper we calculate the magnetic field dependence
of the nuclear spin relaxation rate �NSR� T1

−1 of nuclei be-
longing to magnetic impurities placed in the two-
dimensional electron system under strong external magnetic
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fields. The cases of weak- and strong-scattering limits are
treated in detail. It is found that only resonance transitions
are allowed to occur, whenever electron magnetic gaps fit the
vibrational-mode energies. This spectral structure can be
used as a probe for studying the localized vibrational-mode
frequency and the electron-phonon coupling for various
transition-metal impurities.

The hyperfine contact �Fermi� interaction with the local-
ized Landau state is calculated here for the first time. Esti-
mates for the Fe impurity in GaAs in the framework of our
model are given.

II. GENERAL MODEL

Let us consider the model of a two-dimensional electron
gas in a quantizing magnetic field which interacts with the
impurity nuclear spins and phonons. Here we discuss the
nuclear spin relaxation of the impurity via a hyperfine inter-
action with localized Landau states. The Hamiltonian of such
a system is

H = He + Hph + Hint. �1�

Here He is the impurity Hamiltonian in a magnetic field B
parallel to the z axis,

He = H0 + Vd�r − R0� , �2�

where

H0 =
1

2m*�P +
e

c
A�2

+ V�z� �3�

describes the motion of an electron in the conduction band
with the effective mass m*, confined in the z direction by the
potential V�z�. Vd�r−R0� is the substitutional impurity poten-
tial at a site R0. It is shown23 that this scattering results in the
appearance of bound Landau states with zero moment be-
tween the Landau subbands. The resonance scattering is spin
selective, and it results in a strong spin polarization of Lan-
dau states, as well as in a noticeable magnetic field depen-
dence of the g factor and crystal field splitting of impurity d
levels. The Hph term is the Hamiltonian of the phonon sys-
tem.

Two interaction terms are considered here to be respon-
sible for relaxing a polarized nuclear spin of the impurity by
flipping an electron spin. This spin flipping is caused by the
contact hyperfine interaction described by

Hhf =
2

3
�0ge�BgN�NI · S��r − R0� , �4�

where I and s are the nuclear and electron spins, respectively,
ge and gN are the electron and the nuclear �N� g value, and
�B and �N are the electron and nuclear Bohr magnetons.12,13

For free electrons, in the absence of the quantized magnetic
field, the change in energy accompanying a spin flip caused
by the hyperfine scattering is compensated for by an appro-
priate change in its kinetic energy. In our system of the
bound electron with a discrete energy spectrum, no
hyperfine-induced transition will occur because the energy
required for the electron spin flip is not available. Therefore,

the nuclear spin relaxation in our system requires taking into
account the electron coupling to the lattice vibrations.

The electron-phonon interaction contains two parts,

Heph = Heph
c + Heph

loc , �5�

where Heph
c is the electron interaction with the continues lat-

tice phonons and Heph
loc is the electron interaction with the

localized phonons coupled to the localized magnetic impuri-
ties. Since the localized Landau states are s functions �m
=0�, the nuclear spin of the impurity interacts mainly with
these states. In our case, we would expect, therefore, the
important interaction to be with the localized phonons acting
as a breathing-mode distortion up to a few nearest-neighbor
shells around the impurity.24

The electron phonon interaction in the occupation number
formalism can be written in the form

Heph
loc = �

�M

A�M
��,�����,�

�M �a�M
† + a�M� , �6�

where a�M
† and a�M are, respectively, the phonon creation

and annihilation operators for the �M vibration modes.

A�M
��,�� is the electron-phonon coupling having dimension of

energy for the � irreducible representation for lattice distor-
tions. ��,��

�M is the dimensionless tensor whose upper indices
relate to the lattice coordinates while the lower indices relate
to the electrons, �=n	
. 	
 is the localized electron in the
nth Landau level with the energy Ebn

� .23 Here 	=e, t2 deter-
mines the irreducible representation of the crystalline point
group for the d states and 
 enumerates lines of these irre-
ducible representations. The point group Td is implied
throughout this paper. Thus for Td symmetry there are four
nearest neighbors that give rise to the vibrational modes �
=A1+E+2T2+T1.25 The electron-phonon coupling is de-
scribed by

A�M
��,�� =

1

��
��i	�
�

�n����V�M�r���i	

�n��� , �7�

where ��=	M���� /� and M��� and � are the reduced
mass and frequency of the � vibrational mode, respectively.
V�M�r� is the linear term of the interaction energy of the
crystal potential. �i	


�n� is the wave function of the localized
electron obtained by solving the Hamiltonian �2� of the elec-
tron system with energy Ebn

� �see Ref. 23�.
There are two possible channels for relaxing the polarized

nuclear spin of the impurity with a phonon-assisted process;
one of them is presented in Fig. 1.

The transition rate is calculated by

W�T1� = �
if

WifN�fn↑�1 − fn�↓� , �8�

where the Fermi function fn�= �e��Ebn
� −��+1�−1 and the Bose

function N����= �e���−1�−1 are the occupation probabili-
ties for both electron and phonons, respectively. �=1/kBT, �
is the chemical potential, and n and n� are the initial and final
electron states. To obtain the transition probability Wif we
employ second-order perturbation theory:
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Wif =
2�

�

�

m
� �f �Heph�m��m�Hhf�i�

Ei − Em
+ c.c.�
2

��Ei − Ef� ,

�9�

where i, m, and f denote, respectively, the general wave
function �= �I��s��N�M��i	�

�n�� of the initial, intermediate, and
final states. Here �I� and �s� are the nuclear and electron spins
functions and �N�M� are the phonon states of the harmonic
oscillator energy. N�M denotes the number of localized
phonons with angular frequency �.

First consider the initial intermediate and final energies

Ei = Ebn
↑ +

1

2
	n�B + ���N +

1

2
� ,

Ef = Ebn�
↓ −

1

2
	n�B + ���N� +

1

2
� ,

Em = Ebn�
↓ −

1

2
	n�B + ���N� +

1

2
� for channel A ,

Em = Ebn�
↑ +

1

2
	n�B + ���N� +

1

2
� for channel B ,

�10�

where Ebn
↑,↓ is the renormalized bound Landau states23 and

1
2	n�B is the nuclear spin energy splitting.

Inserting the interaction terms �4� and �6� into the transi-
tion probability �9� and combining with Eq. �8� we obtain the
following expression for the relaxation rate:

W�T1� =
��A��2

2� �
�MN������

R

Q
��Ebn

↑ − Ebn�
↓ + ��� , �11�

where A�= 2
3�0ge�BgN�N. Here R is the amplitude of the

transition probability given by

R =
R�M↓
�����

�Ebn
↑ − Ebn�

↓ �2
+

R�M↑
�����

�Ebn
↑ − Ebn�

↑ + ���2
, �12�

where R�M↓
�����= �A�M

��,��↓���,��
�M S��↓,�↑�2 for channel A and

R�M↑
�����= �S��↓,��↑A�M

��,↑���,�
�M �2 for channel B. The matrix ele-

ments of the Fermi contact interaction are

S��↓,�↑ = ��i	���
�n��↓ ���r���i	�

�n�↑� . �13�

Q−1=N�fn↑�1− fn�↓� can be written as

Q−1 =

exp�
2

�Ebn�
↓ − Ebn

↑ − ����
sinh

�

2
���cosh f��E� + cosh

�

2
�Ebn�

↓ − Ebn
↑ �� ,

�14�

where f��E�= �� /2��Ebn�
↓ +Ebn

↑ −2��.
Using the energy conservation ��Ebn

↑ −Ebn�
↓ +��� the re-

laxation rate �11� becomes

W�T1� =
��A��2

2�
�

�MN������

R

�

��Ebn
↑ − Ebn�

↓ + ���

sinh
�

2
���cosh f��E� + cosh

�

2
����� ,

�15�

where f��E�=��Ebn
↑ −�+ 1

2���.
To complete the calculation of the relaxation time we ex-

press the energies Ebn
� in Eqs. �12� and �14�. In the limit of a

strong magnetic field ��b0�lB
2�1 the energy spectrum of the

localized states is

�b�
�n� = ��

�n� −
2�n+1

lB
2 , �16�

where �n= �ln 2e��n� / ��b0�lB
2 �−1�1,21 �b0 is the energy of the

electron, bound by the attractive potential V, lB is the the
magnetic length, and ��n� is the digamma function. This
yields the energy to be

Ebn
� = �c�n +

1

2
− �n+1� + �gef f�BB . �17�

The effective g factor gef f of the bound electron will be con-
sidered here as field independent �see Ref. 23 for a detailed
calculation of the magnetic field dependence of the g factor
in these systems�. The energy difference becomes

Ebn
↑ − Ebn�

↓ = �c�n − n� + �n�n� − gef f�BB , �18�

where �n�n=�n�+1−�n+1. Substituting B= ñ�0 /x, where x is
the number of full bands, ñ=N /L2 is the electrons density,
and B /�0 is the Landau level degeneracy and using �c

FIG. 1. A schematic diagram for processes in the phonon-
assisted NSR mechanism for relaxing the polarized nuclear spin
under the QHE condition. The dashed line represents the phonon.
The inital, intermediate, and final states of each process are denoted
accordingly. The phonon energy and the electronic and nuclear Zee-
man energy splittings are drawn out of scale.
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=h2ñ /2�m*x the energy difference in Eq. �12� for channel A
becomes

Ebn
↑ − Ebn�

↓ =
ñ

x
� h2

2�m* �n − n� + �n�n� − gef f�B�0� .

�19�

In a strong magnetic field limit, �n�1 and �n�+1−�n+1
=�n�n�0 so that �n−n��� ��n�n�. Therefore

Ebn
↑ − Ebn�

↓ =
ñ

x
�− Fn�n − gef f�B�0� , �20�

where Fn�n= ��h2 /2�m*��n−n�+�n�n��. Using the energy
conservation Ebn

↑ −Ebn�
↓ +��=0, the energy difference in Eq.

�12� for channel B becomes

Ebn
↑ − Ebn�

↑ + �� =
ñ

x
� h2

2�m* �n� − n� + �n�n�� + gef f�B�0� ,

Ebn
↑ − Ebn�

↑ + �� =
ñ

x
�Fn�n� + gef f�B�0� , �21�

where Fn�n�= �h2 /2�m*��n�−n�+�n�n��.
Inserting Eqs. �20� and �21� and the energy conservation

��Ebn
↑ − Ebn�

↓ + ���

=
1

�c
��n − n� +

2�me
*��

h2ñ
x −

2�me
*gef f�B�0

h2 − �nn��
into Eq. �15� the transition rate becames

W�T1� =
��A��2

2�
�

�Mnn�n�

2�me
*

h2

x3

ñ3

�R
1

sinh
�

2
���cosh f��x� + cosh

�

2
����� ,

�22�

provided the final state n� satisfies

n� = n +
2�m*��

h2ñ
x −

2�m*ge�B�0

h2 − ��n+1 − �n�+1� .

�23�

The amplitude R, Eq. �12�, becomes

R =
R�M↓

�− Fn�n − gef f�B�0�2 +
R�M↑

�Fn�n� + gef f�B�0�2 .

R�M� will be presented in detail in Sec. IV. Here

f��x� = t�A�n +
1

2
− �n+1� − 1�1

x
− �*� +

�

2
��,

�24�

with the parameters A, t, and �* defined by

t =
1

2
�gef f�B

e ñ�0, A =
2�e

m*cgef f�B
e , �25�

�* =
2�

gef f�B
e ñ�0

. �26�

The dominant contribution of the transition rate, Eq. �22�,
obtained for n, n�, and n� leads to Fn�n=0—i.e., n�=n—and
Fn�n�=0—i.e., n�=n�:

W�T1� = D �
�Mnn��

�R�M��x3

sinh
�

2
���cosh f��x� + cosh

�

2
����� ,

�27�

where D=8�3m*��0gN�N�2 /9h3ñ3�0
2.

�* is defined for two different cases: for the case when �F
is situated between Zeeman-split electron energy levels and
for the case when �F is between two adjacent Landau levels.
The magnetic field dependence of the chemical potential �*

is calculated in the next section.

III. CHEMICAL POTENTIAL OSCILLATIONS

In order to calculate the transition rate W�T1� we are re-
quired to calculate the chemical potential ��B� for two cases:
�nF

↓ ����nF

↑ —i.e., �F between two Zeeman levels and �nF

↓

�����nF+1�
↑ —i.e., �F between two Landau levels. We start

with the normalization condition

N =
BL2

�0

�
�,n=0

� 1

exp���c�n +
1

2
� +

1

2
�ge�B

e B − ��� + 1

,

�28�

and by using the definition for t, A, �*, and x this normal-
ization term becomes

x = �
�,n=0

� 1

expt�A�n +
1

2
�1

x
+ �

1

x
− �*�� + 1

. �29�

The number of full Landau bands, for the first case �nF

↓ ��

��nF

↑ , is nF� −1, so that Eq. �29� becomes
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x = 2�nF� − 1� +
1

expt�A�nF� −
1

2
�1

x
+

1

x
− �*�� + 1

+
1

expt�A�nF� −
1

2
�1

x
−

1

x
− �*�� + 1

. �30�

Here n�=n+1. Introducing the definitions s=x−2�nF� −1� and
�= t /x, Eq. �30� becomes

s =
1

y exp��� + 1
+

1

y exp�− �� + 1
, �31�

where

y = expt�A�nF� −
1

2
�1

x
− �*�� . �32�

We arrive at a simple algebraic equation of second order:

y2 + 2y�1 −
1

s
�cosh��� + 1 −

2

s
= 0. �33�

The solution of this quadratic equation for y�0 is

y = − �1 −
1

s
�cosh��� + ��1 −

1

s
�2

cosh2��� − �1 −
2

s
��1/2

,

�34�

and, replacing y the chemical potential, Eq. �32�, we obtain

�* = A�nF +
1

2
�1

x
�35�

−
1

t
ln1 − s

s
cosh

t

x
+ ��1 − s

s
�2

cosh2 t

x
+

2 − s

s
�1/2� ,

�36�

where s=x−2nF. Based on those definitions nF can be cal-
culated: if 2nF+1�x�2�nF+1�, then �nF

↓ ����nF

↑ .
For example, if 1�x�2, then �0

↓����0
↑—therefore,

nF=0—and if 3�x�4, then �1
↓����1

↑—therefore, nF=1.
x counts the full subbands �=↑ and �=↓. So x /2−1

�nF� �x−1� /2.
In the second case, when �nF

↓ �����nF+1�
↑ , Eq. �29� be-

comes

x = 2�nF� − 1� + 1 +
1

expt�A�nF� +
1

2
�1

x
−

1

x
− �*�� + 1

+
1

expt�A�nF� −
1

2
�1

x
+

1

x
− �*�� + 1

. �37�

Introducing y=exp�t�A�nF���1/x�−�*��, s�=x−2nF� +1 and
�= �A /2−1�t /x, we rewrite Eq. �37� as

s� =
1

y exp��� + 1
+

1

y exp�− �� + 1
�38�

or

y2 + 2y�1 −
1

s�
�cosh��� + 1 −

2

s�
= 0. �39�

Taking the solution for y�0,

y = � 1

s�
− 1�cosh��� + �� 1

s�
− 1�2

cosh2��� + � 2

s�
− 1��1/2

,

�40�

and substituting y via the chemical potential we obtain

�* = A�nF + 1�
1

x
�41�

−
1

t
lnG cosh�A�t

x
� + �G2 cosh2�A�t

x
� +

2 − s�

s�
�1/2� .

�42�

Here s�=x− �2nF+1�, G= �1−s�� /s�, and A�=A /2−1. If
2�nF+1��x�2nF+3, then �nF

↓ �����nF+1�
↑ .

In Fig. 2 the chemical potentials, Eqs. �35� and �41�, are
plotted as a function of inverse magnetic field at T=1 K. The
chemical potential oscillates with the field. Sharp disconti-
nuities are well emphasized at low temperatures. These dis-
continuities arise due to the presence of gaps in the electron
energy spectrum. The discontinuity occurs at x=1,3 , . . . and
x=2,4 , . . . as �* crosses the energy gap between two Landau
levels and between two spin-split levels of the same Landau
levels, respectively. The amplitude of discontinuity at even
and odd integer values of x is proportional to the energy gap
between two Landau levels, �c, and the electron Zeeman
splitting, �z, respectively.

IV. ELECTRONIC PART OF THE TRANSITION RATE

In order to investigate the field dependence of the relax-
ation time T1, Eq. �27�, we consider below, as an example,
the electronic properties of the magnetic impurity in GaAs
quantum wells. It is known26 that the resonance d level of
TM impurities in a neutral state with configuration 3dn al-
ways arises below the bottom of the conduction band. The
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crystal field acting on the impurity electron splits the d level
into the 	
= t2 or e states of a 3D crystal point group �we
assume that the potential V�z�, responsible for the z confine-
ment, forms a wide well which does not disturb the crystal-
line environment of the impurity cell�. Only the orbitals
�e1�� �r2−3z2��Y20 are strongly hybridized with the Landau
states.23 Therefore we are left with the 	
=e�u� wave func-
tion.

In the case of charged impurity states 3dn+1, however, the
bare e level may appear very close to the bottom of the
conduction band. For example, vanadium impurity V2+ in
GaAs possesses just this kind of spectrum.27 In some cases
�e.g., Cr in GaAs� the e state of the charged impurity may
appear above the bottom of the conduction band,26 and this is
the case of a strong resonance scattering, leading to a shift of
the levels Ebn downward �dashed line in Fig. 1�a� �Ref. 23��.

There are three limits for this state to hybridize with the
Landau electron states. The three examples of spin splitting
illustrated by Fig. 3 in Ref. 23 show the variety of possibili-
ties for bound states. The weak-scattering limit is presented
in Fig. 3�a�.23 In this case the deep d level �ie↓ is situated
deeply below the first Landau subband. In this limit the lo-
calized Landau states Ei�

�b� are of the antibonding type. In the
case when the Landau level Eb and the impurity level �ie↓ are
nearly degenerate, Fig. 3�b�,23 it causes strong resonance
scattering for ↓ states. The strong resonance scattering limit
for ↓ states occurs also when the impurity level �ie↓ is within
the Landau subbands. In this case the localized Landau states
Ei�

�b� change character from bonding to antibonding type, de-
pending on the impurity level position.

Since the influence of the TM impurity on Landau levels
is spin selective, one should take into account the fact that
the resonance states have a definite configuration of electron
spins.26 Let us consider, for example, the state of a TM im-
purity in a configuration dn where the last �nth� electron oc-
cupies the bonding level Eie�

�b� .23 Then the many-electron state
of the 3d shell may be represented as dn= �ne↑

r1e↓
r2t2↑

r3 t2↓
r4 �

where �iri=n �↓ and ↑ are two projections of the electron
spin�. Normally, TM ions in a crystal field of III-V semicon-

ductors exist in the so-called high-spin state, which means
that the t2� and e� states are occupied in accordance with the
Hund rule. Therefore, the spins of the e electrons in the 3dn

ions with n�5 �from Ti to Mn� are directed parallel to the
external field B. These electrons form the deep energy levels
Eie↑�dn /dn−1� well below the bottom of the conduction band.
The notation �dn /dn−1�, commonly accepted in the spectros-
copy of deep d states in semiconductors,26,28–30 means that
the occupation of the level Ei	��dn /dn−1� corresponds to a
change of the atomic configuration from dn−1 to dn due to a
transfer of a host spin � electron to a 	 state of the impurity
3d shell. The levels Eie↓ are more shallow, so that Eb−Eie↑
�Eb−Eie↓. Filling these levels begins when the 3d shell is
more than half-filled �n�5, the elements from Fe to Ni�. In
this case both the Eie↑ and Eie↓ levels are deep below the
bottom of the conduction band, and the resonance scattering
is weak.

As a result, one can expect that the effect of the resonance
scattering will be strong for light elements �Ti, V, Cr, Mn�
and resonance interaction splits the m=0 states predomi-
nantly from the down-spin Landau subband, whereas the po-
tential scattering is spin independent.

We confine ourselves to the two-level approximation, so
that the wave functions become

�i�
b = cos �� ie� + sin �� b�, �43�

�i�
a = − cos �� b� + sin �� ie�, �44�

with the mixing coefficient given by

tan 2�� =
2Veb

��
, �45�

where Veb is the hybridization matrix elements:

Veb =� dr e1�r�Vd�r� b�!;Ebn�"0�z� . �46�

Here ��=Eb−�e�,  e1 is the atomic d orbital that forms the
“core” of the impurity wave function that retains its 3D char-
acter, because its radius rd is small in comparison with the
width of the well V�z� responsible for the confinement in the
z direction.  b is the wave function s for the bound Landau
states with m=0. The spectrum and wave functions of these
states were calculated in Ref. 21. The wave functions
 b�! ;Ebn� decaying at !→� describe the tail solution of the
bound states,

 b�!,Ebn� =

��1

2
− �n�

	2���1

2
− �n�

W�n,0�!�

lB!
1/2 . �47�

Here != 1
2 �� / lB�2�n= 1

2 �1−#bnlB
2�, #bn=2m�Ebn /�2, W�n,0�!�

is the Whittaker function, and � is the radius from the impu-
rity site. The energy levels #bn split from the corresponding
Landau levels #n0.

Now we are using Eq. �44� to calculate the matrix ele-

ments of the hyperfine interaction, Se1
n�↓,n↑, Eq. �13�, and of

FIG. 2. The inverse field dependence of the dimensionless
chemical potential is ploted for T=1 K. x is the number of full
Landau subbands. The chemical potential oscillates with sharp dis-
continuities due to the presence of gaps in the electron energy
spectrum.
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the electron phonon coupling, A�M
n�,ne1�, Eq. �7�. Since both

interactions are mostly within the impurity crystalline cell
the dependence of its matrix elements on the indices of the
Landau states is very weak and we neglect it for the sake of
simplicity. The obtained Fermi contact term

Se1
n�↓,n↑ = ��ie1

�n��↓���r���ie1
�n�↑� �48�

=cos �↑ cos �↓� b↓
�n�����r�� b↑

�n��

+ sin �↑ sin �↓� ie↓���r�� ie↑� �49�

has a contribution from the spin density at the impurity
nucleus composed of the core and tail contributions. The
contribution from the integral on the core part, � ie�0��2
=���0�, was calculated.31 Since the tail part is an s function,
then it is approximately given by

� b↓
�n�����r�� b↑

�n�� �50�

����0��
0

!d W�n�,0
�!�W�n,0�!�

!
d! � ���0�!d, �51�

where !d= 1
2 �rd / lB�2 which is the overlap of the tail part on

the impurity site multiplied by the spin density at the impu-
rity, ���0�, which is contributed by the s orbital. This ap-
proximation does not affect the magnetic field or the tem-
perature dependence of the relaxation rate T−1 which is
retained in the term !d. Therefore the Fermi contact, Eq. �48�,
becomes

Se1
n�↓,n↑ = cos �↑ cos �↓���0��tan �↑ tan �↓ + !d� . �52�

Similarly to the hyperfine interaction, the matrix elements

for the electron phonon interaction A�M
n�,ne1�, Eq. �7�, are com-

posed of two contributions:

A�M
n�,ne1� = �cos2 ��A�M,b

n�n� + sin2 ��A�M
e1,e1� , �53�

where the tail and core parts, respectively, are

A�M,b
n�n� = �1/���� b�

�n���V�M�r�� b�
�n�� and A�M

e1,e1

= �1/���� ie��V�M�r�� ie��.
Neglecting the index dependence of matrix elements Eq.

�53� becomes

A�M
e1,e1� = �cos2 ��A�M,b

� + sin2 ��A�M
e1,e1� . �54�

Here A�M
e1,e1 is the energy interaction of the d electron with the

localized vibration and is known as the Jahn-Teller interac-
tion �except for the A1 mode�. A�M,b

� is the energy interaction
due to the tail wave function with the localized vibration.
Since the localized mode acts mainly in the intersite cell with
radius of localization of the impurity, rd, we can write

A�M,b
� � A�M�

0

!d W�n�,0
�!�W�n,0�!�

!
d! � A�M!d. �55�

The electron phonon interaction becomes

A�M
e1,e1� = cos2 ���A�M,b!d + tan2 ��A�M

e1,e1� . �56�

Assuming the force constant in the intersite cell acting on the
impurity to be equal for both the impurity and Landau elec-
tron, A�M,b=A�M

e1,e1=A�M, Eq. �56� can be written as

A�M
e1,e1� = cos2 ��A�M�!d + tan2 ��� . �57�

One can see that the tail part can interact with all vibrational
modes while the d-electron state of the impurity in the Td
symmetry site can be coupled to the vibrational modes of A1,
E, and T2 symmetry. The localized state �e1� can interact
only with the vibrational modes �M =E�u� and A1�a1� vibra-
tion modes. Therefore the contribution of the dimensionless
tensor comes from the nonzero elements �e1,e1

Eu =−1/	2 and
�e1,e1

A1a1 =1/	2.35

Inserting Eqs. �52� and �57� into the matrix elements

R�M�
����� Eq. �12� yields

R�M↓ =
1

2
cos6 �↓ cos2 �↑A�M

2 �!d + tan2 �↓�2 �58�

���2�0��tan �↑ tan �↓ + !d�2 �59�

for channel A and

R�M↑ =
1

2
cos6 �↑ cos2 �↓A�M

2 �!d + tan2 �↑�2 �60�

���2�0��tan �↑ tan �↓ + !d�2 �61�

for channel B. Now we are in the position to present the
behavior of the transition rate W�T1� for the weak- and
strong-scattering limits.

V. WEAK-SCATTERING LIMIT

In order to present an implicit behavior of W�T1� we apply
this result to the case of the weak-scattering limit—i.e.,
tan ���Veb /��. For presenting the magnetic field depen-
dence of W�T1� we use the estimation �Veb�2= �Vd�2!d where
Vd is the hybridization energy of the impurity. The Fermi
contact interaction, Eq. �52�, becomes

Se1
n�↓,n↑ = ���0��1 + �↑↓�!d, �62�

and the electron phonon interaction, Eq. �57�, becomes

A�M
e1,e1� = A�M�1 + ���!d, �63�

where ��= �Vd�2 /����.
The matrix elements, Eqs. �59� and �61�, become

R�M� =
1

2
�A�M�1 + ����2����0��1 + �↑↓��2!d

4 �64�

and can be written as
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�
�

R�M� �65�

=
1

2x4��
2�0�A�M

2 ni
4�1 + �↑↓�2��1 + �↑↑�2 + �1 + �↓↓�2� ,

�66�

where ni=�rd
2ñ is the 2D electron density on the impurity

site. Inserting Eq. �65� into Eq. �27� the transition rate be-
comes

W�T1� = D �
�Mnn�

I�M

x sinh
�

2
���cosh f��x� + cosh

�

2
����� ,

�67�

I�M =
1

2
ni

4A�M
2 ��2�0��1 + �↑↓�2��1 + �↑↑�2 + �1 + �↓↓�2� ,

�68�

provided the final state n� satisfies Eq. �23�.
As an example we apply this result to Fe impurity in

GaAs, which is known to produce an acceptor level
Eie↓�d6 /d5� well below the bottom of the conduction
band.26,34 The gaps �↑ and �↓ are, therefore, of the order of
1 eV. The hybridization parameter normally does not exceed
0.2 eV. In this case of the weak-scattering limit �� can be
neglected.

Choosing the mode symmetry of the localized phonon to
be �M =Eu two frequencies are possible: �E

A=85 cm−1 and
�E

0 =260 cm−1 for the acoustical and optical modes,
respectively.32 The acoustical phonon is the dominant mode,
so we will consider it here. The coupling to acoustic phonons
turns out to be of intermediate strength.33

We plot in Fig. 3 a quantitative picture of T1
−1 for the

nuclear spin of the Fe impurity. The calculation is done as-
suming the spin density ���0�=0.22 a.u.−3,31 and phonon
frequency �E

A=85 cm−1.32 In this figure the spikes represent
the NSR rate T1

−1 as a function of inverse field, x, for T
=20 K. In the intervals between the spikes, T1

−1, almost van-
ish since the spin-flip transitions are allowed energetically
only for discrete values of the magnetic field satisfying Eq.
�23�. These spikes may appear above the NSR rate back-
ground caused by the continuous part of the electron-phonon
interaction which was not considered here.

The obtained NSR rate T1
−1 oscillates periodically in the

inverse magnetic field due to the chemical potential oscilla-
tion with the field. The passage from minimum to maximum
is reached as �* crosses the Landau gap into the spin split-
ting gap; see Eq. �35�. The same behavior but with small
amplitude arises as �* crosses the spin splitting into the gap
between two Landan levels �LL’s�; see Eq. �41�. This oscil-
lation structure is superimposed onto the linear in the mag-
netic field background.

The resonance spikes are placed at equal distance depend-
ing on the frequency of the localized phonon.

In the Fig. 4 we plot T1 as a function of temperature for
x=1.056. The temperature dependence of T1 at low tempera-
tures differs from that at high temperature. This difference
arises from the thermal excitation of the localized phonons.
For instance, at low temperatures kBT��E

A the NSR time
varies exponentially, T1�exp��E

A /kBT�. At high tempera-
ture kBT��E

A the NSR time decreases as T1�1+�E
A /kBT

in an asymptotic form. It is clear that for high temperature
the multiphonon process becomes dominant.

VI. STRONG-SCATTERING LIMIT

We calculate here the behavior of W�T1� for the case of
the strong-scattering limit—i.e., �↓�Veb and Veb��↑. In
this limit we are using in the matrix elements the following
approximations: cos �↓�	1

2 +�↓ /Veb, cos �↑�	1−Veb /�↑,
sin �↓�	1

2 −�↓ /Veb, and sin �↑�Veb /�↑. Hence Eq. �52� for
the Fermi contact term becomes

Se1
n�↓,n↑ �

1
	2
���0��!d + 	�↑↑!d� . �69�

The electron-phonon interaction terms, Eq. �57�, become

FIG. 3. The field dependence of the NSR �nuclear spin relax-
ation� rate for the case of weak-scattering limit for the temperature
of T=20 K. The points represent the only allowed transitions. The
resonance spikes are equidistant and depend on the frequency of the
localized phonon. x is the number of full Landau subbands.

FIG. 4. The temperature dependence of T−1 at x=1.056 is plot-
ted. The difference between its behavior at low temperatures from
that at high temperature arises from the thermal excitation of the
localized phonons.
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A�M
e1,e1↓ �

1

2
A�M�!d + 1� , �70�

A�M
e1,e1↑ � A�M!d�1 + �↑↑� . �71�

Since !d�1, then A�M
e1,e1↑�A�M

e1,e1↓ and therefore R�M↑, Eq.
�61�, can be neglected and only channel A is dominant. The
matrix elements, Eq. �59�, become

R�M↓ =
1

16
A�M

2 ��2�0��!d
2 + 2	�↑↑!d

3/2 + �↑↑!d� . �72�

Under these conditions the relaxation rate, Eq. �27�, becomes

W�T1� =
D

16
�73�

� �
�Mnn�

A�M
2 ��2�0��ni�↑↑x

2 + 2ni
3/2	�↑↑x

3/2 + ni
2x�

sinh
�

2
���cosh f��x� + cosh

�

2
����� .

�74�

Since ni, the electron density per impurity atom for a typi-
cal concentration of 1011–1012 cm−2, is very small, only the
leading term is left:

W�T1� = D �
�Mnn�

I�Mx2

sinh
�

2
���cosh f��x� + cosh

�

2
����� ,

�75�

where

I�M =
1

16
A�M

2 ��2�0�ni�↑↑. �76�

To compare the results of the strong- and weak-scattering
limits we are using the same Fe impurity in GaAs but with
the energy position of the impurity, �e↓, close to the conduc-
tion band. With the present choice of parameters we plot in
Fig. 5 a quantitative picture of T1

−1, Eq. �75�, for the nuclear
spin of the Fe impurity. The calculation is done by using the
same details as mentioned in the former section. Unlike the
case of the weak-scattering limit here the oscillations of the
spikes in the NSR rate T1

−1 are suppressed by a strong field
dependence. Here T1

−1 fastly increases with a quadratic power
of x.

The temperature dependence of T1
−1 is the same as in the

case of the weak-scattering limit. The behavior in this case is
qualitatively as in Fig. 4 but with a larger relaxation time.

VII. CONCLUSION

The temperature and field dependence of the localized
phonon-assisted nuclear spin relaxation rate was calculated
in detail for the case of weak- and strong-scattering limits in

a 2DEG with magnetic impurities under a strong magnetic
field. It was found that only resonant transitions are allowed
to occur with equal magnetic field intervals, which depends
on the vibrational mode frequency. This spectral structure
can be used as a probe for studying the localized vibrational-
mode frequency, the electron-phonon coupling for various
transition-metal impurities, and pecularities of hyperfine in-
teractions in these systems. Our calculations show that the
NSR of the magnetic impurity in our system is enhanced by
a few orders of magnitude compared to that in bulk
semiconductors.31

Our results indicate that the nuclear spin relaxation rate of
the impurity might be controlled by the impurity element—
i.e., the position of the resonance d level of the impurity,
Eie�—and also by the electron density in the impurity site, ni.
In the weak-scattering limit we have got approximately T1
�107 s. The same parameter used for the case of the strong-
scattering limit leads us to a much shorter relaxation time
T1�10−5 s. We have here the usual situation when the theory
cannot give any reliable estimates for the relaxation time due
to its extreme sensitivity to the position of the resonance d
level of the impurity in the gap, Eie�. On the other hand,
these results show that the relaxation time T1 may vary by
orders of magnitude within reasonable values of the param-
eters.

Yet another aspect of the localized phonon-assisted reso-
nant nuclear-electron spin flip is a possibility of selective
manipulation of nuclear spin qubits in the emerging field of
spin-based quantum memory and computation devices. Be-
cause of the very long nuclear relaxation time T1 the nuclear
spins could be considered as the best suitable candidates for
a qubit.19 The main ingredients of such a prototype system
are nuclear spin qubits, coupled through the hyperfine inter-
action to a phase-coherent electron spin system in a
nanostructure18 or in a quantum Hall effect system.19

The resonant nature of the magnetic field dependence of
T1

−1 in these systems may be the solution for manipulating
the qubits with exponential precision.

FIG. 5. The field dependence of the NSR rate in the case of the
strong-scattering limit at the temperature of T=20 K. The points
represent the only allowed transitions. x is the number of full Lan-
dau subbands.
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