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As a candidate scheme for controllably coupled qubits, we consider two quantum dots, each doped with a
single electron. The spin of the electron defines our qubit basis and trion states can be created by using
polarized light; we show that the form of the excited trion depends on the state of the qubit. By using the
Luttinger-Kohn Hamiltonian we calculate the form of these trion states in the presence of light-heavy hole
mixing, and show that they can interact through both the Förster transfer and static dipole-dipole interactions.
Finally, we demonstrate that by using chirped laser pulses, it is possible to perform a two-qubit gate in this
system by adiabatically following the eigenstates as a function of laser detuning. These gates are robust in that
they operate with any realistic degree of hole mixing, and for either type of trion-trion coupling.
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I. INTRODUCTION

In the quest for a solid state quantum information proces-
sor, there is great attraction in combining the relatively long
coherence times of spins with the speed and versatility of
optical manipulation. There have been many papers describ-
ing different ways to embody a qubit by using the two levels
of a confined spin-1 /2 electron.1–6 The direct interaction be-
tween two such spin qubits is often quite weak, but they can
be enhanced by exploiting degrees of freedom which lie out-
side the computation Hilbert space. For example, spin infor-
mation can be transferred to spatial degrees of freedom in a
double quantum dot structure,6 or to photons in an electro-
magnetic cavity.7 Recent proposals8–10 have described ways
in which spins might be coupled by using polarized light to
selectively create trion states. Such spin selective charge ex-
citations benefit directly from the recent progress in ultrafast
optoelectronics: both the coherent manipulation of excitons
in quantum dots �QDs� �Refs. 11–13� and spin selective op-
tical transitions14 have been demonstrated. Moreover, once a
gate operation is complete, it is possible to arrange that all
population returns to the qubit subspace, and the quantum
device therefore benefits from the robust coherence
properties15–17 of the electron spin.

In Ref. 10, we demonstrated that an entangling CPHASE
gate can be performed between single spins on each of two
adjacent QDs by the spin selective excitation of a single,
delocalized, exciton. The required delocalization occurs
when the dots are �near� resonant, and if they interact
through the Förster energy transfer mechanism.18,19 The pro-
posal is based on the Pauli blocking mechanism20 and is
valid only in the special case of no light-heavy hole mixing,
which, though sometimes applicable,21 is not generally true
for most QD systems.22 We shall here demonstrate an alter-
native method of performing a two-qubit gate, which solves
this problem. Following Ref. 9, it is based on using chirped
laser pulses to perform adiabatic quantum gate operations.

To develop this model, the following steps are necessary.
We shall first describe how the QDs employed in our quan-

tum information implementation scheme are modeled. We
describe the hole sub-band mixing in terms of a four band
Luttinger-Kohn model,23 and show how this affects the cou-
pling of confined charge carriers to a laser field �Sec. II�. We
then consider a coupled QD system and present the depen-
dence of the Förster transfer operator on the angular mo-
menta of the excitonic states which it connects. We shall
derive the form of the Förster transfer interaction for two
coupled trions and hence write down an effective Hamil-
tonian for two interacting QDs coupled to a laser field, in the
presence of hole mixing �Sec. III�. The proposal for perform-
ing quantum gates by creating trions adiabatically is then
discussed �Sec. IV�, and we describe two different modes in
which the two qubit gate can be operated. We shall demon-
strate that the adiabatic scheme circumvents the hole mixing
problem and briefly discuss why it should also reduce pho-
non decoherence. State measurement, preparation and scal-
ability will be discussed next �Sec. V� and then we summa-
rize �Sec. VI�.

II. SINGLE QUANTUM DOT MODEL

Let us consider self-assembled QDs with strong confine-
ment along the growth direction z, which is also the QD
symmetry axis. This type of QD can be produced in materi-
als such as InGaAs by using the Stranski-Krastanow
method,24 which may allow the realization of a controllably
coupled many dot system. Such QDs exist in the strong con-
finement regime, in which the typical size, L, of the QD in
the growth direction is of the order of 10–20 nm. In this
regime, the Coulomb interaction between charge carriers
scales as 1 /L, but the single-particle excitation energy has a
1/L2 dependence. Excitonic wave functions can therefore be
modelled by products of single particle electron and hole
states, with Coulomb effects being introduced by using first
order perturbation theory. This approximation results in a
shift to the excitonic energy but does not lead to the en-
tanglement of electron and hole. The effective mass and en-
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velope function approximations reveal that the electronic
states inside the QD exhibit atomiclike symmetries, which
have been identified experimentally.25

The wave function for a single particle in a QD can be
described by a product of a Bloch function U, which has the
periodicity of the atomic lattice, and an envelope function �,
which describes the amplitude modulation of the wave func-
tion that is imposed by the confinement potential. Henceforth
we shall only consider the lowest energy envelope function
for both the conduction and valence bands �which has no
nodes in both cases�, and neglect any mixing with higher
envelopes. This approximation is discussed in Ref. 26: we
use it for clarity and our scheme does not depend on it; a
more thorough desciption of the electronic structure of self-
assembled QDs is presented in Ref. 27.

The eigenstates of the angular momentum operators, Ĵ

and Ĵz for the six hole states closest to the top of the valence
band can be represented by28

�3/2h,3/2� =
fhh�r�
�2

��X + iY��� , �1�

�3/2h,− 3/2� =
fhh�r�
�2

��X − iY��� , �2�

�3/2h,1/2� =
f lh�r�
�6

���X + iY��� − �2Z��� , �3�

�3/2h,− 1/2� =
f lh�r�
�6

���X − iY��� + �2Z��� , �4�

�1/2h,1/2� = −
fso�r�
�3

���X + iY��� + �Z��� , �5�

�1/2h,− 1/2� = −
fso�r�
�3

���X − iY��� − �Z��� . �6�

We have labeled the Bloch functions U by using the notation
�Jh ,Jz�. The first two states correspond to heavy holes �hh�,
the next two are light holes �lh�, and the last two are split-off
holes �so�. The functions f i describe the radial dependence of
each Bloch function type i� �hh , lh , so	; � and � are the up
and down spin states respectively. The X, Y, and Z represent
orbital wave functions as follows:


r�X� =� 3

4�
sin � cos � , �7�


r�Y� =� 3

4�
sin � sin � , �8�


r�Z� =� 3

4�
cos � . �9�

The electron states are simply

�1/2e,1/2� = g�r��S�� , �10�

�1/2e,− 1/2� = g�r��S�� . �11�


r �S�=1/�4� is the isotropic orbital function and g�r� is the
radial dependence of the electron’s wave function.

We now note that

� 
r�X�x
r�S�d� =� 
r�Y�y
r�S�d�

=� 
r�Z�z
r�S�d� =
r

�3
, �12�

where d� is the infinitesimal solid angle. We also see that

� 
r�X�y
r�S�d� =� 
r�X�z
r�S�d� = 0, �13�

� 
r�Y�x
r�S�d� =� 
r�Y�z
r�S�d� = 0, �14�

� 
r�Z�x
r�S�d� =� 
r�Z�y
r�S�d� = 0. �15�

These relations will be important in the following discussion.

A. Hole mixing

Most semiconductors exhibit mixing of the heavy and
light hole sub-bands, which we shall now describe by using
the Luttinger-Kohn model.23 The electron eigenstates of bulk
semiconductors may be characterized by the crystal momen-
tum wave vector, k= �kx ,ky ,kz	. The coupling between light
and heavy holes is described by a four band Luttinger-Kohn
Hamiltonian,23 so long as the split off holes are energetically
distant enough that coupling to this band can be neglected.28

In the basis ��Jz= +3/2� , �Jz= +1/2� , �Jz=−1/2� , �Jz=−3/2�	,
the Hamiltonian is written

H =�
Hhh − b − c 0

− b* Hlh 0 − c

− c* 0 Hlh b

0 − c* b* Hhh


 . �16�

The uncoupled heavy hole Hamiltonian, Hhh is

Hhh =
�2kz

2

2m0
��1 − 2�2� +

�2�kx
2 + ky

2�
2m0

��1 + �2� . �17�

The uncoupled light hole Hamiltonian, Hlh is

Hll =
�2kz

2

2m0
��1 + 2�2� +

�2�kx
2 + ky

2�
2m0

��1 − �2� . �18�

The mixing parameters are

c =
�3�2

2m0
��2�kx

2 − ky
2� − 2i�3kxky� �19�

and

LOVETT et al. PHYSICAL REVIEW B 72, 115324 �2005�

115324-2



b =
�3�2

m0
�3kz�kx − iky� . �20�

�1, �2, and �3 are the Luttinger parameters28,29 and m0 is the
free electron mass.

For the quantum confined states that are found in semi-
conductor nanostructures, the crystal momentum is no longer
a good quantum number. It is therefore necessary to replace
each component of k with its expectation value, taken over
the hole envelope function, ��r�.28 That is,

k → − i� ��r� � ��r�dr � 
k� . �21�

If the envelope function has a well-defined parity, then 
kx�
= 
ky�= 
kz�=0, and so, from Eq. �20�, b=0. Therefore, the
Hamiltonian, Eq. �16� decouples and acts in two separate
two-dimensional Hilbert spaces. We find that the hole eigen-
states are given by the two pairs

�h+� = �1 − 	2�Jz = + 3/2� + 	�Jz = − 1/2� ,

�h−�� = �1 − 	2�Jz = − 1/2� − 	�Jz = + 3/2� , �22�

and

�h−� = �1 − 	2�Jz = − 3/2� + 	�Jz = + 1/2� ,

�h+�� = �1 − 	2�Jz = + 1/2� − 	�Jz = − 3/2� , �23�

where 	 characterizes the degree of mixing. �h+� and �h−� are
degenerate states that are predominantly heavy-holelike, and
which are split from the second degenerate pair, �h+�� and
�h−��, which have predominantly light-hole character. The na-
ture of mixing here is quite different to the type considered
in Ref. 9, where mixing between the �Jz= +3/2� and �Jz=
+1/2� �or �Jz=−3/2� and �Jz=−1/2�� states was assumed.

To estimate the hole mixing parameter let us now consider
a specific and very simple model: that of a hole bound in a
parabolic potential in all three dimensions.30 This external
potential is defined by V�x ,y ,z�= �
x

2x2+
y
2y2+
z

2z2� /�1,26

where 
 j is the frequency of the trapping potential in the
j= �x̂ , ŷ , ẑ	 direction. We shall make the axial approximation,
i.e., we shall ignore terms which are not axially symmetric
about the z-axis; this is a good approximation for GaAs �Ref.
31� �corrections to this approximation are discussed in Ref.
32�. Then the Luttinger-Kohn Hamiltonian �Eq. �16�� be-
comes, in the ��Jz= +3/2� , �Jz=−1/2�	 basis �or equivalently
the ��Jz=−3/2� , �Jz= +1/2�	 basis�:

H =
1

4
�2
T + �Eh W

W 2
T − �Eh
� , �24�

where, in order to simplify notation, we have defined 
T
�
x+
y +
z, �Eh��
T−3
z���2 /�1�, and W���3��2

+�3� /2��
x−
y�.
Assuming that the difference between the diagonal ele-

ments is much greater than the magnitude of the off-diagonal
elements, i.e., 2�Eh�W, then 	
1 and is given by

	 �
W

2�Eh
=

�3�1��2 + �3��
x − 
y�
4�2�
T − 3
z�

. �25�

As expected, the mixing is proportional to subband coupling
and inversely proportional to the energy difference between
the heavy and light hole subbands. Taking typical values for
the Luttinger parameters for GaAs ��1=6.8, �2=2.1, and
�3=2.9�, and estimating the different trapping frequencies
for an anisotropic QD to be �
x=10 meV, �
y =11 meV,
and �
z=45 meV, leads to 	�0.1. We shall use this value
throughout the rest of the paper.

B. Relevant trion states

We shall now assume that the hole states �h+�� and �h−�� are
energetically distant enough from �h+� and �h−� that they may
be ignored in our calculations of quantum dynamics �in the
parabolic well model considered in the previous section this
splitting is of the order of 11 meV�. We are interested in
using single excess spins in QDs to embody our qubit, and in
exploiting spin-dependent exciton creation to couple together
spins in adjacent dots. A single spin becomes a trion state33

following the creation of an exciton, and by using Eqs. �22�
and �23� we find that the trion eigenstates are

�x+� = �S↑↓� � �h+� , �26�

�x−� = �S↑↓� � �h−� , �27�

where S↑↓ denotes two electrons in opposite spin states.
We emphasize that the states �h+� and �h−� are not eigen-

states of the Jz operator, and this has profound consequences
for both the coupling of charge carriers to the laser field as
well as the Förster transfer interaction. We now specifically
calculate the form of these two interactions.

C. Interaction with a laser field

The QD-light interaction for a �classical� laser pulse of
amplitude E�t� and central frequency 
L�t� impinging on a
single QD may be expressed in the dipole approximation29

through the following Hamiltonian operator:

ĤL�t� = eE�t�r̂ · n̂ cos�
L�t�t� , �28�

where r̂ is the dipole operator, n̂ is the polarization vector of
the light field, and e is the electronic charge. The time de-
pendence of E and 
 allows us later to introduce chirped
laser pulse shapes: we assume that the time dependence is
slow compared with the oscillation period of the laser.

We assume that the laser pulse has a spectral width which
is narrower the typical QD level spacing. If we choose the
laser frequency to be close to resonance with the ground state
exciton, we can then consider an idealized model in which
the dynamics is restricted only to the two qubit states defined
as

�0� = �− 1/2e� ,

�1� = �1/2e� , �29�

and to the trionic states �x+� and �x−�.

QUANTUM COMPUTING WITH SPIN QUBITS… PHYSICAL REVIEW B 72, 115324 �2005�

115324-3



By choosing the laser pulse to be directed along z and �+

circularly polarized, we find that r̂ · n̂= �x+ iy�. Equations
�1�–�4�, �10�, �11�, and �28� then allow us to calculate the
form of the interaction between the qubit electron spin and
trion states. Let us first define the length

li �� f i�r�r3g�r�dr , �30�

with i� �lh ,hh	. We also use the modified mixing parameter
	̃�	�llh / lhh

�3� and the Rabi frequency

��t� �
2eE�t�lhh

�6
. �31�

Then we find, for a quantum dot labelled by �,

H�+,��t� = ��t�cos�
L�t�t���1��
x+� + 	̃�0��
x−� + h.c.� .

�32�

In the absence of mixing �	̃=0� only the spin up qubit
state �1� is coupled to the laser field; the spin down state �0�
is completely decoupled. However, for a finite amount of
hole mixing the spin-selectivity of trion excitations �required
for the scheme of Ref. 10� is no longer maintained �see Fig.
1� and we must therefore consider an alternative gating strat-
egy.

III. COUPLED QUANTUM DOT STRUCTURE

There are two principal interactions between trion states
in adjacent quantum dots. The first of these is the direct
Coulomb binding energy VXX between two trions, which
leads to the biexcitonic shift.34 The other interaction is the
off-diagonal Förster coupling, which induces the transfer of
electron hole pairs, through virtual photons, and we discuss
this in the following sections.

A. Angular momentum dependence of the Förster interaction

The general form of the Förster coupling Hamiltonian in
QDs was discussed in detail in Ref. 35, where it was found
that the magnitude of the interaction is given by

VF =
e2

4�	0	rR
3W1W2�
r1� · 
r2� −

3

R2 �
r1� · R��
r2� · R�� ,

�33�

where R is the vector connecting the centers of the two QDs.
The term 
ri� represents the interband expectation value of
the atomic position operator for dot i,


ri� = �
cell,dot i

Ue�r�rUh�r�dr , �34�

where the Ue and Uh represent the Bloch functions for elec-
trons and holes within dot i. The Wi represent the overlap of
the envelope functions �e and �h for dot i,

Wi = �
space

�e
i �r��h

i �r�dr . �35�

An experiment would typically be performed on a pair of
vertically stacked quantum dots, where the vector R lies
along the growth direction z: by using this in Eq. �33�, it is
easy to show that the Förster interaction conserves the angu-
lar momentum of transferring excitons. However, the nature
of the exciton state before and after the transfer affects the
magnitude VF: By substituting the Bloch functions of Eqs.
�1�–�6� into Eq. �33� and using the relations of Eqs.
�12�–�15�, we can obtain the strength of the Förster coupling
for excitons which are composed of electrons and holes of
varying angular momentum. We defined

Mij =
e2

12�	0	rR
3W1W2lilj , �36�

for i , j� �lh ,hh	. Table I then shows the matrix element for
all transitions which are induced by the Förster interaction.

B. Förster interaction for coupled trions

We next derive the form of the Förster transfer operator T̂

for two coupled trions. The most general definition of T̂ is

FIG. 1. �Color online� Hole states in the pres-
ence of hole subband mixing and its effect on
Pauli blocking. The arrows denote the allowed
optical interband transitions for an incoming �+

polarized laser pulse. The left part of the figure
represents the situation where no hole mixing is
present and the right-hand side shows the effects
of mixing.
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T̂ = �
i,j,k,l

VF
i,j,k,l��Jz,e

i ,Jz,h
j ;vac�
vac;Jz,e

k ,Jz,h
l � + h.c.� , �37�

where VF
i,j,k,l is the size of the Förster matrix element which

connects an electron and hole on dot 2 �whose angular mo-
mentum states are labelled with indices k and l� to an elec-
tron and hole and dot 1 �whose angular momentum states are
labelled with indices i and j�. The only nonzero values of
Vi,j,k,l

F are given in Table I, and we use that table to work out

the effect of T̂ on states in our two-dot system. For example,
we have that

T̂�1x+� = T̂� +
1

2 e; +
3

2 h,S↑↓� + 	� +
1

2 e;−
1

2 h,S↑↓�
= Mhh,hh� +

3

2 h,S↑↓; +
1

2 e�
+

	Mlh,lh

3
�−

1

2 h,S↑↓; +
1

2 e�
+

4	Mlh,lh

3
� +

1

2 h,S↑↓;−
1

2 e� . �38�

We can now see that


x+1�T̂�1x+� = Mhh,hh +
	2Mlh,lh

3
, �39�


x−0�T̂�1x+� =
4	2Mlh,lh

3
. �40�

Similar calculations allow us to find all of the Förster
coupling terms, which may be expressed by the following
Hamiltonian, correct to first order in 	,

HF = Mhh,hh��0x−�
x−0� + �1x+�
x+1��

+
2Mhh,lh	

�3
��1x−�
x+0� + �x−1�
0x+�� + h.c. �41�

C. Full Hamiltonian

The total Hamiltonian of the two QD system in the pres-
ence of laser excitation may now be written as

HT�t� = �
�=a,b

���1��
1� + 
X�
P̂X�

+ H�+,��t�� + HF

+ �
�,���x+,x−	

VXX�����
���� . �42�

The state �00� sets the zero of energy, and then the first term
describes the Zeeman energy splitting � of the spin qubits;
the second term represents the trion creation energy 
X�

where P̂X�
��x+��
x+�+ �x−��
x−� is the projection operator

onto the single trion state located in the QD labeled by �; the
next two terms are defined by Eqs. �32� and �41�, respec-
tively, and the last term describes the static dipole-dipole
binding energy between trions VXX.9,35

We now move to a frame which is rotating at the laser
frequency 
L for both spin-trion transitions, and make the
rotating wave approximation �RWA�. We then find that

HT�t� = �
�=a,b

���1��
1� + ���t�P̂X�
+ H�+,�

� �t�� + HF

+ �
�,���x+,x−	

VXX����
��� , �43�

where 
X�
has now been replaced by the time dependent

detuning of the laser from the spin to trion transition energy
���t��
X�

−
L�t�. The charge-laser field coupling is now
given by

H�+,�
� �t� =

��t�
2

��1��
x+� + 	̃�0��
x−� + h.c.� . �44�

The Hamiltonian, Eq. �43�, spans a 16-dimensional Hil-
bert space. It is composed of the four computational basis
states ��00�, �01�, �10�, and �11��, eight single trion states, and
four double trion states. In order to get a little more insight
into the behavior of the system, we plot its eigenenergies as
a function of the ratio � /� in Fig. 2. There are three main
groups of curves that are well separated away from � /�
=0 �i.e., when �� /���1�; these groups are simply the four
computational basis states, eight single trion states and four
double trion states. As � /� approaches zero �i.e., when the
laser becomes resonant with the spin to trion transition ener-
gies�, the eigenstates become superpositions involving differ-
ent numbers of trions, and many anticrossings can be seen in
the eigenstate spectrum.

IV. ADIABATIC QUANTUM GATES

In this section, we shall describe how an adiabatic change
in the ratio � /� can allow us to follow the eigenstate curves.
Not all of the computational basis states mix in the same way
with trions when � /� is small. Following Ref. 9, it is pos-
sible to use chirped laser pulses to slowly vary � /�, which
causes a nontrivial two qubit operation via trion state anti-
crossings.

TABLE I. Relative size of the matrix element for exciton states
coupled by the Förster interaction. M is defined in Eq. �36�.

State 1
�Jz,h ,Jz,e�

State 2
�Jz,h ,Jz,e�

Matrix
element Net Jz

− 3
2 ; 1

2 − 3
2 ; 3

2 Mhh,hh −1↔−1
3
2 ; − 1

2
3
2 ; − 1

2 Mhh,hh +1↔ +1

− 1
2 ; 1

2 − 1
2 ; 1

2 −4Mlh,lh /3 0↔0
1
2 ; − 1

2
1
2 ; − 1

2 −4Mlh,lh /3 0↔0

− 1
2 ; 1

2
1
2 ; - 1

2 4Mlh,lh /3 0↔0

− 1
2 ; − 1

2 − 1
2 ; − 1

2 Mlh,lh /3 −1↔−1
1
2 ; 1

2
1
2 ; 1

2 Mlh,lh /3 +1↔ +1

− 3
2 ; 1

2 − 1
2 ; − 1

2 Mlh,hh /�3 −1↔−1
3
2 ; − 1

2
1
2 ; 1

2 Mlh,hh /�3 +1↔ +1
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A. Chirped pulses

Let us consider such a chirped laser pulse, where the de-
tuning varies in time as follows:

��t� = − �0�1 − 1
2e−�t/���2� . �45�

�0 represents the maximum detuning and �� is a parameter
characterizing the time variation of the detuning.

The time dependence of the laser intensity is assumed to
cause the Rabi frequency to take the following form:

��t� = �0e−�t/���2
, �46�

where, similarly, �0 represents the maximum Rabi frequency
and �� is a parameter characterizing its time variation. For a
review of experimental methods for pulse shaping, see Ref.
36.

We calculate the quantum dynamics caused by our Hamil-
tonian with these time-varying laser pulses by using a nu-
merical Schrödinger equation solver. If the adiabatic ap-
proximation holds true, population will return to the initial
state at the end of the operation �nonadiabatic corrections
limit the gate fidelity and are described below�. However, the
phase accumulated during the gate varies depending on the
initial state. We characterize the gate by looking at the rela-
tive phase � gained when the pulse is applied to each of the
four computational basis states in turn9

� � �00 − �01 − �10 + �11, �47�

where �n is the phase change of �n� during the gate opera-
tion. The relative phase � is the part of the phase which is
invariant under single qubit operations �see Ref. 37 for a
detailed discussion�. We can see this by considering the ef-
fect of the following gates. First,

U1 = �e−i�00 0

0 e−i�10
� �48�

is performed on qubit 1 �in the �0�, �1� basis�, and then

U2 = �1 0

0 ei��00−�10� � �49�

is performed on qubit 2. These two single qubit gate opera-
tions remove any phase picked up on the states �00�, �01�, and
�10�, with �11� undergoing a net phase change of �. In the
basis �00�, �01�, �10�, �11�, a CPHASE gate is

UCPHASE =�
1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 − 1

 . �50�

This can be constructed from any gate operation in which
�=�, together with appropriate single qubit gates.10

A strength of our approach is that a phase gate can be
performed whether the interdot coupling takes the diagonal
form �biexcitonic interaction� or an off-diagonal form
�Förster transfer�. We can illustrate this by performing nu-
merical simulations in two limits. First, we consider the case
where VXX�Mhh,hh=Mlh,hh. In this case the required phase is
given predominantly through the biexcitonic coupling. If we
take the same parameters as used for Fig. 2, with chirped
pulses characterized by ��=3.55 ps, ��=2.55 ps, �0
=4.5 meV, and �0=8 meV, then we can indeed obtain �
=�. This is shown in Fig. 3, which displays the time depen-
dence of �. The population of each computational basis state
�following initialization into that state� is displayed in Fig. 4;
the chirped pulse moves some of the population out of each
state �and into trion states� and then back again. The effect of
the pulse is the same for �01� and �10�, as would be expected
on further inspection of our Hamiltonian. However, there is a
distinct difference between the behavior of these two states
and that of the states �00� and �11�—and it is this difference
which allows the relative entangling phase � to be picked up.

We now move to the second case, where VXX=0. We use
the parameters �=1 meV, Mhh,hh=Mlh,hh=0.5 meV, VXX=0,
�0=8 meV, ��=4.2 ps, ��=3 ps, �0=3 meV, and 	=0.1; in

FIG. 2. �Color online� Eigenstate energy spectrum. The param-
eters are set as follows: � /�=1, Mhh,hh /�=Mlh,hh /�=0.5,
VXX /�=2, 	=0.1.

FIG. 3. Variation of � �Eq. �47�� as a function of time. The
parameters are set as follows: �=1 meV, Mhh,hh=Mlh,hh=0.5 meV,
VXX=2 meV, 	=0.1, ��=3.55 ps, ��=2.55 ps, �0=4.5 meV, and
�0=8 meV.
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Figs. 5 and 6 we show the time variation of � and the varia-
tion of basis state populations. We can see that it is possible
to pick up an entangling phase ��=�� in this case too, and
the effect now relies solely on the Förster interaction.

B. Gate fidelity

The gate fidelity is limited by a number of factors includ-
ing: corrections to our effective four level QD model, spon-
taneous emission from excited states, coupling of the charge
carriers to the underlying lattice which is responsible for
coupling to phonons, and the possibility of nonadiabatic tran-
sitions due to the finite gate operation time.

Corrections to the effective four level QD model can be
approximated as exponentially small in the ratio of the spec-
tral width of laser pulse to the energy level spacing. As we
discussed in Sec. II C, this ratio is much smaller than unity,
and the reduction in the fidelity due to excitation to higher
energy levels of the QDs can be safely ignored.

It was shown in Ref. 9 that, as well as avoiding difficul-
ties due to hole mixing, the adiabatic gating scheme also
avoids further unwanted transitions related to phonon deco-
herence. However, since the gate is operated in a finite time,
which one wishes to minimize, there are necessarily nona-
diabatic transitions between the laser dressed states. Such
nonadiabatic transitions are described by the Landau-Zener
�LZ� theory.38 If we assume a constant rate of change for the

detuning, i.e., ��t�= �̇t, the condition for adiabaticity is

given by �2 / �̇�1, where � is the energy separation of the
levels at closest approach. The probability for an unwanted

transition by P=exp�−��2 /4�̇�. There is a simple physical

interpretation of this:9 ��� / �̇ is the characteristic time of
sweep through the resonance, and so the adiabatic condition
is naturally ���1. In the nonlinearized version of LZ theory
the dependence of the unwanted transition is still an expo-
nentially small function of both the reciprocal of the energy
difference between the two levels ��E���1/��� where � ,
� are two general QD states� and the characteristic sweep
time �. The proposed adiabatic gate scheme is based on the
fact that the different avoided crossings between the laser
dressed states can be easily distinguished, i.e., different
avoided crossings occur for different values of detunings �
and energies E �see Fig. 2�. For the adiabatic gate scheme in
the limit Mhh,hh=Mlh,hh�VXX the relevant Rabi frequency is
the coupling between the states, �00�, and �11� when ��0,
which is the biexcitonic shift VXX. Therefore one can esti-
mate the probability of unwanted transitions to be around
10−6 for a typical sweep time of ��4 ps. For the case in
which the gate is based solely on the Förster transfer inter-
action Mhh,hh=Mlh,hh=0.5 meV the fidelity is lower and the
probability of unwanted transitions for the same typical
sweep time is of the order of a few percent. In order to get a
better gate fidelity for the gate based on Förster interaction
the typical sweep time � should be made longer.

The adiabatic gate procedure may also reduce the effects
of phonon decoherence.9 If the gate is operated in the biex-
citonic mode the probability of unwanted transitions and de-

FIG. 4. �Color online� Variation of the initial state population for
each computational basis state during a gate operation. The param-
eters are the same as in Fig. 3.

FIG. 5. Variation of � �Eq. �47�� as a function of time. The
parameters are set as follows: �=1 meV, Mhh,hh=Mlh,hh=0.5 meV,
VXX=0, �0=8 meV, ��=4.2 ps, ��=3 ps, �0=3 meV, and 	=0.1.

FIG. 6. �Color online� Variation of the initial state population for
each computational basis state during a gate operation. The param-
eters are the same as in Fig. 5.
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crease in pure dephasing decoherence effects39–41 is expected
to be of the form

P �
J�
m�

�
exp�− ���� , �51�

where � is a positive constant of order unity and J�
m� is the
spectral function that describes the coupling of phonons to
our system evaluated at some high-frequency cut-off 
m that
is imposed by the speed of the frequency detuning sweep.

The typical time scale for spin dephasing is of the order of
�s and can be made even longer by optical pumping of
nuclear spins.42 Polarizing the nuclear spins will increase
spin coherence since the main mechanism for spin dephasing
is the coupling of the electronic spin to the nuclear spins.43

Thus the ps time scale for the adiabatic gate does not consti-
tute too strong a restriction.

V. STATE PREPARATION, MEASUREMENT,
AND SCALABILITY

Though our paper focuses on an adiabatic two qubit gate
scheme which allows one to resolve the difficulties arising
due to hole mixing, we would like to briefly comment on the
possibility for optically fulfilling the other requirements for a
quantum information implementation scheme, i.e., initial
state preparation, measurement, and scalability.

The essential test for any implementation scheme is of
course provided by experiment. Recently there has been tre-
mendous experimental effort and success in validating the
essential stages needed for solid state quantum computation
implementation schemes employing optically driven charged
QDs. In a new experiment Gurudev Dutt et al. have demon-
strated that a coherent optical field can produce coherent
electronic spin states in QDs, demonstrating that these elec-
tronic spin states have life times much longer than the exci-
ton coherence times.44 Other experiments have shown how
the spin state of the resident electron in a self-assembled
InAs-GaAs QD can be written and read using circularly po-
larized optical pumping.42,45 Methods for an optical read-out
mechanism of the spin of an electron confined to a QD have
also been theoretically suggested,46–48 and some experimen-
tal work towards this goal has already been performed for
colloidal semiconductor QDs.49 Scalability is a potential

problem, since spatial selectively of individual qubits is not
possible in our system. This is because the optical wave-
length of the exciting laser pulse is much larger than the
interdot distance needed to couple our qubits. To optically
resolve different QDs we would need to resort to energy-
selective addressing methods within different QD clusters
whose size can be controlled.50 Inside each QD cluster one
could spectrally differentiate a QD by applying a gate poten-
tial and inducing a Stark shift of the exciton levels.30 Alter-
natively, globally applied pulses could be used within a
cellular-automaton scheme.34,51 One other possibility is that
small scale processors based on our scheme could be joined
together by using the exciton coupling to single photons.
Linear optics techniques could then be used to entangle the
states of two small processors.51–53

VI. SUMMARY

To summarize, we have derived the Hamiltonian for a pair
of spin qubits in adjacent QDs, which are coupled by trion
states. Our analysis shows that it is possible to perform a
nontrivial two qubit gate in this system by using chirped
laser pulses, even in the presence of hole mixing, and for two
different types of interaction. In Ref. 9 it was shown that a
dipole-dipole interaction can be used to mediate an adiabatic
gate of this type. Our extension of that approach to include
Förster processes generalizes this to cover all significant ex-
citonic interactions in a coupled dot system.

In contrast to our previous work,10 the gate proposed here
could be performed in many different materials, since we
have shown that it is generally valid for all significant exci-
tonic interactions and for varying degrees of hole mixing. We
therefore believe that demonstration experiments could be
performed in the near future.
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