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We study spin transport in forward and reverse biased junctions between a ferromagnetic metal and a
degenerate semiconductor with a �-doped layer near the interface at relatively low temperatures. We show that
spin polarization of electrons in the semiconductor, Pn, near the interface increases both with the forward and
reverse current and reaches saturation at certain relatively large current while the spin injection coefficient, �,
increases with reverse current and decreases with the forward current. We analyze the condition for efficient
spin polarization of electrons in degenerate semiconductor near interface with ferromagnet. We compare the
accumulation of spin polarized electrons in degenerate semiconductors at low temperatures with that in non-
degenerate semiconductors at relatively high, room temperatures.
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I. INTRODUCTION

The idea of solid state electronic devices using a electron
spin has given rise to the field of spintronics.1,2 Among
practically important spintronic effects are the giant magne-
toresistance in magnetic multilayers and the tunnel
ferromagnet-insulator-ferromagnet �FM-I-FM� structures.3–5

Of particular interest is injection of spin-polarized electrons
into semiconductors because of large spin relaxation time7

and a prospect of using this phenomena for the next genera-
tion of high-speed low-power electronic devices6,8,9 and
quantum computing.1 Relatively efficient spin injection into
nonmagnetic semiconductors �S� has been demonstrated at
low temperatures in ferromagnet-semiconductor heterostruc-
tures both with metallic ferromagnets10–12 and magnetic
semiconductors13 as the spin sources. Theoretical aspects of
the spin injection have been studied in Refs. 14–26.

There are several fundamentally different types of FM-S
junctions with the energy band diagrams shown in Fig. 1.
The band diagrams depend on electron affinity of a semicon-
ductor, �S, and a work function of a ferromagnet, �F, elec-
tron density in a semiconductor, n, and a density of surface
states at the FM-S interface.27 Usually, a depleted layer and a
high Schottky potential barrier form in S near metal-
semiconductor junction, Figs. 1�a� and 1�b�, at �S��F and
even when �S��F, due to the presence of surface states on
the FM-S interface.27 In some systems with �S��F, a layer
with accumulated electrons can form in S near the FM-S
interface, Figs. 1�c� and 1�d�. Such a rare situation is prob-
ably realized in Feu InAs junctions studied in Ref. 12. The
barrier height in the usual situation �Figs. 1�a� and 1�b�� is
equal to ��0.5–0.8 eV for GaAs and Si in contacts with
practically all metals, including Fe, Ni, and Co.27,11 The bar-
rier width, i.e., the Schottky depleted layer width, is large,
l�30 nm, for doping donor concentration Nd�1017 cm−3.
The injection of spin-polarized electrons from FM into S
corresponds to a reverse current in the Schottky contact,
when positive voltage is applied to n-S region. The current in
reverse-biased FM-S Schottky contacts is saturated and usu-

ally negligible due to such large barrier thickness and height,
l and �.27 Therefore, a thin heavily doped n+-S layer between
FM metal and S should used to increase the reverse current
determining the spin injection.19,25 This layer drastically re-
duces the thickness of the barrier, and increases its tunneling
transparency.27,25 Thus, an efficient spin injection has been
observed in FM-S junctions with a thin n+ layer.11

In forward-biased FM-S Schottky contacts without the
thin n+ layer, the current can reach a large value only at a
bias voltage V close to � /q, where q is the elementary
charge.27 Realization of the spin accumulation in S due to
such thermionic emission currents is problematic. Indeed,
electrons in FM with energy F+� well above the Fermi level
F are weakly spin polarized.

The energy band structure of FM-S junctions, their spin-
selective and nonlinear properties have not been actually
considered in majority of theoretical works on spin
injection.14–24 Authors of these prior works have developed a
linear theory of spin injection describing the spin-selective
properties of FM-S junctions by various, often contradictory,
boundary conditions at the FM-S interface. For example,
Aronov and Pikus assumed that a spin injection coefficient
�spin polarization of current in FM-S junctions� �
= �J↑−J↓� /J at the FM-S interface is a constant, equal to that
in the FM metal, and studied spin accumulation in semicon-
ductors considering spin diffusion and drift in applied elec-
tric field.14 The authors of Refs. 15–19 assumed a continuity
of both the currents and the electrochemical potentials for
both spins and found that a spin polarization of injected elec-
trons depends on a ratio of conductivities of a FM and S �the
so-called “conductivity mismatch” problem�. At the same
time, the authors of Refs. 20–24 have asserted that the spin
injection becomes appreciable when the electrochemical po-
tentials have a substantial discontinuity at the interface �pro-
duced by, e.g., a tunnel barrier�.21 However, they described
this effect by the unknown constants, spin-selective interface
conductances G	, which cannot be found within those theo-
ries. In fact, we have shown before that the parameters G	

are not constant and can strongly depend on the applied bias
voltage.9,25
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In our earlier works9,25,26 we have studied the nonlinear
spin injection in nondegenerate semiconductors near modi-
fied FM-S Schottky contacts with �-doped layer, Fig. 1�a�, at
room temperature and showed that the assumptions made in
Refs. 15–19 are not valid at least in that case. Here we derive
the boundary conditions and study nonlinear spin injection in
degenerate semiconductors near reverse-based and forward-
biased FM-S Schottky contacts with an ultrathin heavily

doped semiconductor layer ��-doped layer� between FM and
S, Fig. 1�b�. In degenerate semiconductors, unlike in nonde-
generate semiconductors studied in Refs. 25 and 26, the spin
injection can occur at any �low� temperatures. We consider
below the case when the temperature T
�S, where �S
= �F−Ec0� is the Fermi energy of equilibrium electrons in S,
where Ec0 is the bottom of the conduction band in equilib-
rium, Fig. 1, and T is the temperature in units of kB=1.

II. SPIN TUNNELING THROUGH THIN �-DOPED
BARRIER AT THE FM-S INTERFACE

We assume that the donor concentration, Nd
+, and thick-

nesses, l, of the �-doped layer satisfy the conditions Nd
+l2q2

�2��0� and l� l0, where l0=�
2 / �2m*�� is a typical tun-
neling length �l0�2 nm for Nd

+�1020 cm−3�. The energy
band diagram of such a FM-S junction includes a potential �
spike of the height � and the thickness l. We assume the
elastic coherent tunneling through this � layer, so that the
energy E, spin 	, and the component of the wave vector k�

parallel to the interface, k��, are conserved. In this case the
tunneling current density of electrons with spin 	= ↑ ,↓ near
the FM-S junction containing the �-doped layer �Fig. 1� can
be written as28,5,25,26

J	0 =
− q

�2��3 	 d3k�f�Ek	 − F	0
f � − f�Ek	 − F	0

S ��v	xTk	

=
q

h
	 dE�f�E − F	0

S � − f�E − F	0
f �� 	 d2k�

�2��2T	, �1�

where Tk	 is the transmission probability, f�E� the Fermi
function, v	x the x component of velocity v	=
−1
�kEk	
 of
electrons with the wave vector k� and spin 	 in the ferromag-
net, the integration includes a summation with respect to a
band index. Importantly, one needs to account for a strong
spin accumulation in the semiconductor. Therefore, we use
the nonequilibrium Fermi levels, F	0

f and F	0
S for electrons

with spin 	= ↑ �↓� in the FM metal and the semiconductor,
respectively, near the interface, x=0. In particular, the local
electron density with spin 	 in the degenerate semiconductor
at the FM-S junction at low temperatures is given by

n	0 =
21/2m*

3/2Mc

3�2
3 �F	0
S − Ec�3/2

=
n

2�S
3/2 �F	0

S − Ec�3/2 =
n

2
�1 +

�F	0
S

�S
�3/2

, �2�

where Mc the number of effective minima of the semicon-
ductor conduction band; Ec0 and Ec=Ec0+qV are the bottom
of conduction band in S at equilibrium and at the bias voltage
V, �S=F−Ec0 is the equilibrium Fermi energy of the elec-
trons in the semiconductor bulk, with F the Fermi level in
FM metal bulk, F	0

S is the quasi Fermi level in S near the
interface �point x=0, Fig. 1�, �F	0

S =F	0
S −Ec=F	0

S −Ec0−qV,

�F	0

S 
��S, n and m* are the concentration and effective
mass of electrons in S. We note that V�0 and current
J�0 in forward-biased FM-S junctions, i.e., J flows in x
direction from FM to S when V�0 �usual convention�,27 and

FIG. 1. Energy diagrams of modified ferromagnet-
semiconductor �FM-S� junctions at equilibrium: modified Schottky
contact of a FM metal with nondegenerate �a� and degenerate �b�
semiconductors with a depletion layer in S near the interface. The
Schottky contacts are modified by highly doped very thin semicon-
ductor �-doped layer between FM and S, � is the Schottky barrier
height, �S is the Fermi energy in the degenerate S. Band diagrams
�c� and �d� are for modified ohmic contacts of a FM metal with
nondegenerate �c� and degenerate �d� semiconductors with an accu-
mulation layer in S.
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V�0 and J�0 in reverse biased junctions. The current �1�
should generally be evaluated numerically for a complex
band structure Ek	.29 The analytical expressions for T	�E ,k��
can be obtained in an effective mass approximation, 
k	

=m	v	 where v	 is the velocity of electrons in the FM with
spin 	. This applies to “fast” freelike d electrons in elemental
ferromagnets.30,5 Approximating the � barrier by a triangular
shape, we find

T	 =
16�m	m*k	xkx

m*
2k	x

2 + m	
2�2 e−��l =

16�v	xvx

v	x
2 + vtx

2 e−��l, �3�

where �= �2m* /
2�1/2��+F−E+E��3/2 / ��−qV�, E� =
2k�
2 /

2m*, vx=�2�E−Ec−E�� /m* is the x component of the veloc-
ity of electrons in S, 
kx=vxm*, vt=
� /m* the “tunneling”
velocity, �=���l�1/3�31/3�2� 2

3
��−1�1.2��l�1/3, �=4/3 �for

comparison, for a rectangular barrier �=1 and �=2�, ��x�
=1 for x�0, and zero otherwise. The preexponential factor
in Eq. �3� takes into account a mismatch between effective
mass, m	 and m*, and velocities, v	x and vx, of electrons in
the FM and the S. Obviously, only the states with Ek	�Ec
are available for transport.

We obtain the following expression for the current at the
temperature T
�S with the use of Eqs. �1� and �3�, noting
that the electron velocity in the semiconductor is singular
near E=Ec,

J	0 =
2�qm*Mc

h3 
	
Ec

F	0
S

dE	
0

E−Ec

dE�T	

− 	
Ec

F	0
f

dE	
0

E−Ec

dE�T	� , �4�

where the second integral corresponds to electrons tunneling
from the metal into semiconductor that can only take place
when F	0

f �Ec. As a rule, v	x and vtx are smooth functions
over E in range E=F±�S of interest to us in comparison
with a singular vx. At not very large bias voltages of interest,

V
�� /q all factors but vx can be taken outside of integra-
tion. We obtain, therefore, from �2� and �4� the expression

J	0 =
32��0qm*Mcv	

h3�v	
2 + vt

2�
e−��0l

�
	
Ec

F	0
S

dE	
0

E−Ec

dE�vx

− ��F	0
f − Ec�	

Ec

F	0
f

dE	
0

E−Ec

dE�vx� , �5�

which with use Eq. �2� can be finally written as

J	0 = j0d	
�1 +
�F	0

S

�S
�5/2

− �1 +
�F	0

f − qV

�S
�5/2

���S + �F	0
f − qV�� , �6�

where

j0 = 4
5qnvF

S�0 exp�− ��0l� , �7�

d	 =
vFv	0

vt0
2 + v	0

2 . �8�

Here �0�1/ l0= �2m* /
2�1/2��−qV�1/2; �0=0.96��0l�1/3; vF
S

=�2�S /m* is the velocity of electrons in the degenerate
semiconductor, v	0=v	 the velocity of electrons in the FM
�taken at E=F and F+qV for reverse and forward bias volt-
ages, respectively, see below�, vt0=�2��−qV� /m*, and
�F	0

f =F	0
f −F is the splitting of the quasi Fermi level F	0

f for
nonequilibrium electrons with spin 	= ↑ �↓� in FM metal. We
notice that only spin factor d	 determines the dependence of
current on materials parameters of a ferromagnet. The need
for a different choice of v	0 for forward and reverse bias
voltage is evident from Fig. 2. At forward bias the electrons
tunnel from the semiconductor into the states in the ferro-
magnetic metal at E=F+qV, so there v	0�v	�F+qV�. At
reverse bias voltage �V�0� the electrons tunnel to the semi-
conductor in the interval of energies Ec0+qV�E�F. In this
case the effective tunnel barrier height is smallest for elec-
trons with energies E�F, so v	0�v	�F�. Moreover, at re-
verse bias a spatial charge starts to buildup in semiconductor
and a wide barrier forms at energies E�Ec0. Therefore, only
electrons in narrow energy range Ec0−�S�E�F can tunnel,
and the reverse current practically saturates at V�−�S /q.

Finally, we can present the currents of electrons with spin
	= ↑ �↓� at the interface in the following useful form:

J↑�↓�0 =
Jm0

2
�1 ± PF�
�1 ± Pn�5/3

− �1 +
�F	0

f − qV

�S
�5/2

���S + �F	0
f − qV�� , �9�

where

FIG. 2. �Color online� Energy diagram of the modified Schottky
junction between a FM metal and an n-type degenerate semicon-
ductor with �-doped layer at equilibrium �zero bias, V=0� and at
reverse �forward� bias voltage qV��↓�↑�. F is the Fermi level in
FM, � is the barrier height, �S is the Fermi energy in S, Ec0�x� is
the bottom of the conduction band of the semiconductor at equilib-
rium. Left �right� bold horizontal arrows show a flux of electrons at
forward �reverse� bias voltage. The corresponding states in FM are
dominated by minority �majority� electrons and this may lead to an
accumulation of the spins of the same sign in the semiconductor at
respective forward and reverse bias voltages.
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Jm0 = �d↑ + d↓�j0 = 4
5 �d↑ + d↓�qnvF

S�0 exp�− ��0l� �10�

and

PF =
d↑ − d↓

d↑ + d↓
=

�v↑0 − v↓0��vt0
2 − v↑0v↓0�

�v↑0 + v↓0��vt0
2 + v↑0v↓0�

. �11�

As we see below the value of PF determines maximum spin
polarization.

At small bias voltage qV when �F	0
S , and �F	0

f are much
smaller than �S, and by linearizing Eq. �6� we obtain

J	0 = 5
2 j0d	��F	0

S + qV − �F	0
f �/�S = G	��	0

S − �	0
f � ,

�12�

where �	0
S =F+qV+�F	0

S and �	0
f =F+�F	0

f are the electro-
chemical potentials at the FM-S interface in the semiconduc-
tor and ferromagnet, respectively, G	= 5

2 j0d	 /�S is the spin-
selective interface linear conductance. It is worth noting that
if we were to use the assumption of Refs. 15–19 about a
continuity of the electrochemical potentials at FM-S junc-
tion, �	0

S =�	0
f , we must have concluded that no current flows

through the junction, J	0=0. We note that the boundary con-
dition similar to Eq. �12� was used in a linear theory of spin
injection in Refs. 20–22 and 24, where G	 were introduced
as some phenomenological constants. Here, we have found
the explicit expressions for the spin conductances G	 for the
FM-S junction under consideration. Obviously, G	, as well
as �	0

S and �	0
f , are not universal and depend on all specific

parameters of the junctions, Fig. 1 �cf. Ref. 25�. Moreover,
the conclusions drawn from the linear approximation
strongly differ from the results of a full nonlinear analysis
provided below �see also Ref. 25�.

Importantly, we can neglect the quasi-Fermi splitting in
FM metal compared to that in the semiconductor because the
density of electrons in the FM metal is several orders of
magnitude larger that in real semiconductors. It is easy to
prove that �F	0

f 
qV for the currents of interest to us �see
Appendix A�, therefore we can simplify the expression �9�
for tunneling currents of spin-polarized electrons as

J↑�↓�0 =
Jm0

2
�1 ± PF�
�1 ± Pn�5/3 − �1 −

qV

�S
�5/2

���S − qV�� .

�13�

III. INJECTED AND EXTRACTED SPIN POLARIZATION
IN A DEGENERATE SEMICONDUCTOR

The assumption of elastic coherent tunneling means a
continuity of the currents J	0 of spin-polarized electrons
through the FM-S junction. In this case the FM-S junction
can be characterized by the spin injection coefficient � ac-
cording to the definition

� = �J↑0 − J↓0�/J , �14�

where J	0�J	�0� are the currents of electrons with 	
= ↑ �↓� near the FM-S interface, Fig. 1. Notice that � is the
spin polarization of a current in the FM-S junction, therefore
we used symbol PJ instead of � in our earlier papers.9,25,26

The following derivation of bispin diffusion applies to
both semiconductor and ferromagnet based on an assumption
of quasineutrality �see Appendix A�. The current J	 is given
by

J	 = 		E + qD	dn	/dx , �15�

where 		=q�	n	, D	, �	, and n	 are the conductivity, the
diffusion constant, the mobility and the density of electrons
with spin 	= ↑ �↓�, respectively, E the electric field in S or
FM. We assume quasineutrality, n=n↑�x�+n↓�x�=const and
later prove that it holds very well indeed �see Appendix A�
and a continuity of the total current, J=J↑�x�+J↓�x�=const,
so that one has

�n↑ = n↑ − n↑
0 = − �n↓, �16�

and for the electric field

E =
J

	
−

q�D↑ − D↓�
	

d�n↑
dx

, �17�

where 	=	↑+	↓=q��↑n↑+�↓n↓� is the total conductivity of
S or FM. Substituting �17� into �15�, we find

J↑�↓� =
	↑�↓�

	
J + qD̄

d�n↑�↓�

dx
, �18�

where D̄= �	↑D↓+	↓D↑� /	 is the bispin diffusion constant
for the semiconductor or ferromagnet.

The bispin diffusion that appears in the case of degenerate
semiconductors is different in comparison with nondegener-
ate semiconductor where D	 and �	 do not depend on spin
orientation �see Refs. 14, 18, and 25�. In degenerate semi-
conductors we need to account for the density dependence of
the diffusion constant. We will assume that the relaxation
time of electron momentum � weakly depends on a quasi-
Fermi level �i.e., on electron density�. Therefore, the mobil-
ity of electrons �	 in nonmagnetic semiconductors in ques-
tion weakly depends on the electron density. In this case we
can put �	=�, 		=	n	 /n, and D	= �1/3�v	

2�
=D0�2n	 /n�2/3 at low temperature, where D0 and 	 are the
diffusion coefficient in a nonpolarized semiconductor and the
total conductivity of the semiconductor, respectively. The ac-
count for a density-dependent diffusion coefficient gives the
following expression for the bispin diffusion coefficient:

D̄�n� = D0
n↑
n
�2n↓

n
�2/3

+
n↓
n
�2n↑

n
�2/3��D0u�Pn� ,

�19�

where

u = 1
2 ��1 + Pn��1 − Pn�2/3 + �1 − Pn��1 + Pn�2/3� , �20�

and we have introduced the spin polarization of electrons

Pn =
n↑ − n↓

n↑ + n↓
=

2�n↑

n
. �21�

When the polarization is small, Pn
1 �as is always the case
at distances x�Ls from the interface�, the bispin diffusion
coefficient has only quadratic corrections to the usual diffu-
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sion coefficient, D̄�D0�1− �7/9�Pn
2�, and D̄ is quite close to

the diffusion coefficient in a nondegenerate semiconductor
D0.

In nonmagnetic semiconductors the electron density n	 is
determined by the continuity equation14,18

dJ	/dx = q�n	/�s, �22�

where �n	=n	−n /2, n is the total density of equilibrium
electrons, �s is spin-coherence lifetime of electrons in S. The
expression for current �18� now gives

J

n

dn	

dx
+ q

d

dx
�D̄�n�

dn	

dx
� =

q�n	

�s
. �23�

We can rewrite this as an equation for the polarization dis-
tribution Pn�x�, using �n↑=−�n↓ and n↑ /n= �1+ Pn� /2, as

J

Js

dPn

dx̃
+

d

dx̃
�u

dPn

dx̃
� = Pn, �24�

where x̃=x /Ls is the dimensionless coordinate and

Ls = �D0�s, JS =
qnD0

�s
=

qnLs

�s
, �25�

are the typical spin-diffusion length and the characteristic
current density. It is very convenient to rewrite the spin cur-
rents �18� through Pn as

J↑�↓� =
J

2
�1 ± Pn� ±

Js

2
u

dPn

dx̃
. �26�

The spin currents at the interface x=0 should be equal to the
tunneling spin currents through FM-S junction given by Eq.
�13�. With the use J=J↑�x�+J↓�x�=const, this gives the main
boundary condition at the interface

J

Js
�Pn0 − PF� + u�dPn

dx̃
�

x=0

=
Jm

2Js
��1 + Pn0�5/3 − �1 − Pn0�5/3� ,

�27�

where

Jm = Jm0�1 − PF
2� , �28�

Pn0= Pn�x=0� the spin polarization next to the interface. It is
easy to see that Eq. �24� becomes linear �u=1� away from
the interface where Pn�x�→0. Therefore, it has an
asymptotic behavior14,18,25

Pn�x� = A exp�− x/L�, when x � L , �29�

L/Ls = �1 + �J/2JS�2 − J/2JS, �30�

where coefficient A would have been equal A= Pn0 for u=1
�D	=D0 case� like in a nondegenerate semiconductor.25 The
stationary polarization distribution Pn�x� is found from Eq.
�24� solved with the boundary conditions �27� and �29�.

Interestingly, the effect of nonlinearity of the diffusion
coefficient in degenerate semiconductors, given by the func-
tion u�Pn� in Eq. �20�, appears to be very small. This is

confirmed by comparing the solution of �24� with the case of
constant diffusion coefficient, u=1, but we first give simple
arguments why this is so. Nonlinearity could have only been
important in Eq. �24� when the polarization is close to unity,
Pn0�1, so that u
1. At the same, relatively large Pn0 can
only be achieved at a large current J�JS and a large polar-
ization in ferromagnet, PF�1 �i.e., for a half-metallic FM�,5
but even in this case Pn remains considerably smaller than
PF, see Fig. 3 and the discussion below. As a result, the
polarization dependence of the diffusion changes the polar-
ization profile Pn�x� very little, see Fig. 3 where we compare

the exact polarization profile with that for D̄=D0.
We study the current dependence of the polarization in

Fig. 4. It illustrates two important points: �i� the effect of PF,
the polarization of injected carriers in a semiconductor and
�ii� the effect of having different maximal currents through
the structure Jm in comparison with the characteristic current
density JS. We see that the difference between the polariza-
tion dependent and independent diffusion coefficients is
minute at all parameters. A small difference is only present
for the spin extraction near maximal current J�Jm for
Jm /JS=5 where the nonlinearity in the diffusion coefficient
slightly reduces the extracted polarization. In the opposite
case of relatively small maximal current, Jm /JS=0.2, the dif-
ference in polarizations is not discernible at all. The case of
Jm /JS�1 is of most interest to us, since there the absolute
value of the accumulated polarization is maximal. The over-
all behavior of the injected/extracted polarization with the
current is similar to the one we found for nondegenerate
semiconductors.9,26

Since we have determined that the density dependence of
the diffusion coefficient in a semiconductor has little effect,
the solution of the kinetic equation �24� reduces to �29� and
�30�, where the prefactor A= Pn0. The boundary condition
�27� then simplifies to

FIG. 3. �Color online� Spatial profiles of accumulated polariza-
tion with a full account for nonlinear density dependence of diffu-

sion coefficient �D̄= D̄�n�, numerical solution� and for constant dif-

fusion coefficient �D̄= D̄0, analytical solution� for PF=0.95, Jm /JS

=5 and J=Jm �forward bias�. Note that in this case the spin pen-
etration length is L�LsJS /Jm= 1

5Ls so that the spin accumulation
layer is squeezed towards the interface.
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Pn0
L

Ls
+

Jm

2JS
��1 + Pn0�5/3 − �1 − Pn0�5/3� = − PF

J

JS
. �31�

This is similar to the case of nondegenerate semiconductor,
the difference being the term in square brackets, which is
specific for the degenerate semiconductor.

General analytical solution for polarization Pn0 is readily
found by noticing that the right hand side of Eq. �31� is very
close to a linear function of Pn0 at all values of parameters.
Therefore, a general solution for the polarization in degener-
ate semiconductor can be written very accurately as

Pn0 = − PF
3J

3JSL/Ls + 5Jm
= − PF

6J

3��J2 + 4JS
2 − J� + 10Jm

.

�32�

As expected, Pn0 vanishes with current, Pn0�−J when

J
�JS, and increases in absolute value when the current
approaches maximum. It follows from Eq. �32� that the po-
larization can reach an absolute maximum only when
Jm�JS, where the maximal injected polarization is Pn0

�−Jm�= 3
8 PF, and the maximal extracted polarization is

Pn0�Jm�=−0.6PF.
The solution for Pn0 �32� together with the expression for

current �13� allows one to obtain the I-V curve. The closed
expression for the I-V curve can be obtained in the case of
small bias voltage 
qV
��S, where 
Pn0

1:

J =
Jm0�5Jm + 3JSL/Ls�

5Jm0 + 3JSL/Ls

1 − �1 −

qV

�S
�5/2� , �33�

where according to �10� Jm0 and Jm depend on V. Equation
�33� is a transcendental one, but at 
qV

�S when 
J

JS we
have L /Ls�1, and it becomes an expression for the current
that starts as an Ohmic law

J =
5qJm0�5Jm + 3JSL/Ls�
2�S�5Jm0 + 3JSL/Ls�

V �34�

and then deviates from it at larger bias.
The behavior of injection coefficient � is very different

compared to the polarization. Using the relation �26� for u
=1 �neglecting the polarization dependence of the diffusion
coefficient� and Eqs. �32�, �25�, and �30� we find a relation
between the injection coefficient � �polarization of current�
and the polarization of density Pn,

� �
J↑ − J↓

J
= − Pn0

JsL

JLs
= 3PF

�J2 + 4JS
2 − J

3��J2 + 4JS
2 − J� + 10Jm

.

�35�

The injection coefficient does not vanish with current, but
tends to a finite value

� =
3PFJS

3JS + 5Jm
when J = 0. �36�

In order to maximize the polarization Pn0, according to Eq.
�32�, one needs to use the modified Schottky contact with
Jm�JS �transparent for tunneling electrons�, where the injec-
tion coefficient would be very small, ��J→0��0.6PFJS /
Jm
 PF. In this case, at large forward current ��Jm�
= 3

5 PF�JS /Jm�2
1, so the spin injection coefficient practi-
cally vanishes in spin extraction regime �in other words, the
polarization of current vanishes�. Very differently, under re-
verse bias voltage ��−Jm�= Pn0= 3

8 PF, so that the polarization
of the injected current is large. Note that here we still assume
that the densities of carriers in the FM metal and the degen-
erate semiconductor are vastly different, so that there is a
clear conductivity mismatch and yet the spin injection pro-
ceeds very efficiently. On the other hand, if we were to make
the contact opaque, where Jm
JS, the polarization of elec-
trons, according to Eq. �32�, would become minute, Pn0
1,
since the current through the structure becomes very small
compared to the characteristic current that polarizes elec-
trons, JS. But at the same time, the injection coefficient be-
comes large, �= PF. This is the same behavior as observed in
FM-I-FM tunnel junctions:5 relatively thick tunnel barriers
facilitate strong polarization of current but the accumulated
spin polarization remains very small since the current density
is insufficient.

The described behavior of the polarization and the injec-
tion coefficient is very important for proper understanding of
the behavior of spintronic structures. In particular, we have
demonstrated once again an ill-conceived nature of the con-
ductivity mismatch problem.17 The condition of the maxi-
mum spin accumulation in semiconductor, Jm�JS, in accor-
dance with Eqs. �10�, �28�, and �25� can be written down as

FIG. 4. �Color online� Current dependence of spin polarization
near the FM-S interface Pn0 / PF for two polarizations of a ferromag-
net PF=0.95 �top panel� and PF=0.5 �bottom panel� for two values
of the dimensionless parameter Js /Jm=5 and 0.2. The broken curve
is for Pn0 for the case where the density dependence of the diffusion

coefficient has been neglected �D̄=D0�. Although the absolute val-
ues of accumulated polarization are very different, the relative po-
larizations, Pn0 / PF are almost independent of PF.
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�0�1 − PF
2��d↑0 + d↓0�

�svT

Ls
exp�−

�l

l0
� � 1. �37�

This condition can be rewritten with the use of Eq. �33� at
qV
�S as

rc 
 Ls/	S, �38�

where rc= �dJ /dV�−1 is the tunneling contact resistance. We
emphasize that Eq. �38� is opposite to the condition of maxi-
mum of current spin polarization found in Ref. 21 for small
currents. At rc�Ls /	S, i.e., when Jm
JS, as we noted
above, a degree of spin accumulation in the semiconductor is
very small, Pn
1, but exactly this Pn is the characteristic
that determines chief spin effects.1,6,8,25 Note that the condi-
tion �38� does not depend on the electron concentration,
therefore it coincides with that for nondegenerate semicon-
ductors �see Ref. 25�.

IV. DISCUSSION

We obtained an analytical solution for spin injection/
extraction for degenerate semiconductor in addition to nu-
merical results for nonlinear spin diffusion. The nonlinear
dependence of the bispin diffusion coefficient in semicon-
ductor on accumulated polarization appears to be small. We
emphasize that the value of PF �11� determining maximum
spin polarization of the FM-S junction depends on bias volt-
age V, because the spin factor d	 given by Eq. �8� is deter-
mined by v	0=v	�F+qV�. Since usually v	0�vt0, the spin
factor d	�v	0

−1. In a metal, as a rule, v	0
−1 �g	0=g	�F+qV�,

therefore d	�g	�F+qV�, where g	0=g	�F+qV� is the den-
sity of states of the d electrons with spin 	 and energy E
=F+qV in the ferromagnet. Thus, assuming m	=m we find
from Eq. �11� that PF��g↑0−g↓0� / �g↑0+g↓0�. The polariza-
tion of d electrons in elemental ferromagnets Ni, Co, and Fe
is reduced by the current of unpolarized s electrons rJs,
where r�1 is a factor �roughly the ratio of the number of s
bands to the number of d bands crossing the Fermi level�.
Together with the contribution of s electrons the polarization
parameter PF is approximately

PF =
J↑0 − J↓0

J↑0 + J↓0 + Js0
�

J↑0 − J↓0

J↑0 + J↓0 + 2rgs0
. �39�

We note that such a relation for PF can be obtained from a
standard “golden-rule” type approximation for tunneling cur-
rent that is supposed to be proportional to the density of
states g	�E� �cf. Refs. 27 and 31–33�. The density of states g↓
for minority d electrons in Fe, Co, and Ni has a large peak at
E=EF+�↓ ��↓�0.1 eV�, much larger than g↑ for the major-
ity d electrons and gs for s electrons,34,35 Fig. 2. Therefore,
the spin polarization and spin injection coefficient can poten-
tially achieve a large value of 
PF
 in the forward-biased FM-
S at a bias voltage qV=�↓ �Fig. 2�. In reverse biased junc-
tions the situation is different in that most effective tunneling
is by electrons in FM with energies close to the Fermi level,
E�F where the polarization of carriers is positive, PF
=40–50% �Ref. 35� and a good fraction of it may be injected
into a semiconductor. In this case the excess of majority

spins may be created in semiconductor for both reverse �in-
jection� and forward �extraction� bias voltages. This implies
a complex dependence of accumulated spin polarization on a
bias voltage.

V. CONCLUSION

Let us compare spin injection in the modified Schottky
FM-S junctions with degenerate semiconductor at low tem-
peratures with nondegenerate semiconductors at large �room�
temperature. In both cases the process of spin injection/
extraction strongly depends on current density and is gener-
ally nonlinear. The condition for most efficient spin accumu-
lation is similar in both cases, Jm�JS, that sets constraints on
materials parameters, see Eq. �37�. We have studied this case
for both reverse25 and forward bias voltages.26

We have shown that the spin injection in reverse-biased
FM-S junctions differs from that in the forward-biased junc-
tions. In the reverse-biased junctions spin polarization of in-
jected electrons, Pn0, and spin injection coefficient, �, in-
crease with current up to a maximum Pn0�−Jm�=��−Jm�
= 3

8 PF, where PF is the polarization of ferromagnet, Fig. 4. In
forward-biased FM-S junctions the polarization approaches
Pn0�Jm�=−0.6PF at large currents in a shrinking region with
the width L�1/J. In this case the spin injection coefficient is
small, �=0.6PFJS /Jm
1 already at J=0, and decreases at
large current, ��Jm�=0.6PF�JS /Jm�2
1. Analogous results
are obtained in Refs. 25 and 26 for the FM-S junctions with
nondegenerate semiconductors, with the only difference that
�= PF at forward current when the minority electrons are
extracted into the energy region with a peak in the density of
states. The I-V characteristics for Schottky contacts with de-
generate and nondegenerate semiconductors are also quite
different.

It is worth mentioning a different dependence of effective
polarization of ferromagnet PF �11� on bias voltage in both
cases. In a nondegenerate semiconductor PF corresponds to
the electron energy E=Ec0+qV�F, whereas in a degenerate
semiconductor to E=F+qV. The value of 
PF
 for the non-
degenerate semiconductor can reach its maximum at a re-
verse bias voltage qV�Ec0−F−�↓ ��↓�0.1 eV� while for
degenerate semiconductor PF can have the same large value
at a forward voltage qV��↓, Fig. 2. In a nondegenerate
semiconductor, PF has the same sign practically indepen-
dently of the bias while in the degenerate semiconductor PF
may change sign with bias voltage and, at least potentially,
can become close to unity at the forward bias qV��↓, but
not at a reverse bias. Under reverse bias voltage, the elec-
trons are injected into the degenerate semiconductor from
states in the ferromagnet with energies E�F, where their
polarization is �40% –50%. The predicted strong depen-
dence of accumulated polarization on bias voltage can be
exploited in order to reveal possible effect of peaks in the
density of states. Indeed, if the filling of the conduction band
of the degenerate semiconductor is relatively small, �S

0.1 eV��↓, as is usually the case, then by changing the
forward bias one could “scan” the density of states in FM
with a “resolution” �S
�↓, Fig. 2. One may see an increase
in current and a maximum in an extracted polarization at
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qV=�↓. Interestingly, one may expect a sign change of the
polarization in FM-S modified Schottky contact with a de-
generate semiconductor S.

APPENDIX A: ELECTRONEUTRALITY

A deviation from the quasineutrality is determined by the
continuity equations �22� with the Poisson equation �in CGS
units�

dE/dx = − q�n/4�� , �A1�

where � is the dielectric constant of the material and �n
=n↑+n↓−n is the deviation of electron density from equilib-
rium one. We show here that �n
n↑ ,n↓ and, therefore, the
deviation from electroneutrality �n can be neglected. To this
end, we substitute the expression for the electric field, Eq.
�17� into �A1� and obtain the following estimate:

�n =
�

4�q

dE

dx
= �

�D↑ − D↓�
4�	

d2�n↑
dx2 ,


�n
 �
�D0

4�	

�n↑

Ls
2 � n�LTF

Ls
�2

, �A2�

where LTF= ��D0 /4�	�1/2= �� /4�gF�1/2 is the screening
length in the degenerate semiconductor �Thomas-Fermi
length�. We have used the Einstein relation 	=q2DgF, where
gF is the density of states at the Fermi level. Finally, the
required estimate for deviations from electroneutrality be-
comes


�n

n

� �LTF

Ls
�2


 1. �A3�

For example, in Si at doping n�1017 cm−3 the screening
length is LTF�30 Å and with Ls�1 �m one obtains �n /n
�10−5, a very small deviation from electroneutrality indeed
that can be safely neglected �cf. this with attempts to account
for deviations from electroneutrality in Ref. 2�.

APPENDIX B: QUASI-FERMI LEVEL SPLITTING IN
FERROMAGNET AND SEMICONDUCTOR

Let us prove that we indeed can neglect the splitting of
the quasi-Fermi level in FM metal, �F	0

f , compared to the
splitting of the quasi-Fermi level in semiconductor �F	0

S for
the FM-S junction under consideration. Since we can neglect
the electric field in FM metal, the distribution of spin polar-
ized electrons is determined by their diffusion: �n↑

f �x�
=�n↑0

f exp�x /Lf� in FM, i.e., in the region corresponding to
x�0, Fig. 1. Thus, according to �18� the currents of spin
polarized electrons in FM near FM-S interface are

J↑�↓�0 =
	↑�↓�0

f

	
J + �− �

qLf

�s
�n↑0

f . �B1�

We find from �B1� and �14� that J↑0��1+��J /2= �1
+ PFM�J /2+qLf�n↑0

f /�s
f, which gives

�n↑0
f = J�� − PFM��s

f/2qLf , �B2�

where we have introduced

PFM = �	↑
f − 	↓

f �/	 f , �B3�

the spin polarization of a current in the FM bulk. Thus, if we
were to make the same assumption as Aronov and Pikus in
Ref. 14 that �= PFM, we would have obtained �n↑0

f =0 and,
consequently, �F	0

f =0. In other words, there would be no
splitting at all of the Fermi levels in a ferromagnet in
Aronov-Pikus approximation. In reality, there is a splitting of
the quasi-Fermi levels in FM, but it is usually small com-
pared to the splitting in the semiconductor �see estimates
below�. This allows us to considerably simplify the descrip-
tion of the spin injection/extraction.

According to Eqs. �B2� and �35�,

��n↑0
f

�n↑0
� = ��� − PFM

�
� , �B4�

where �=�s
fLs / ��sLf��1. We have shown that the polariza-

tion of current 
�
� 
PFM
, and it may be 

PFM
, therefore,

�n↑0

f /�n↑0
�1.
The ratio of �F↑0

S and �F↑0
f is approximately equal to

��F↑0
f

�F↑0
S � �

n� f

nf�S
��n↑0

f

�n↑0
� = ���� − PFM

�
� 
 1, �B5�

where �=n� f / �nf�S�, � f and �S are the Fermi energies for
electrons in FM and S, respectively. Since the electron den-
sity in FM metals, nf �1022 cm−3, is several orders of mag-
nitude larger than in S �typically, n�1018 cm−3�, the value
���n /nf�1/3
1. Thus, one can see from �B5� that indeed

�F↑0

f 

 
�F↑0
S 
. We showed above �see also Ref. 26� that �

is small at very large forward currents, therefore, �F↑0
f can

be on the order of �F↑0
S . However, such current corresponds

to the bias voltages of Schottky junctions qV��F	0
f . Due to

the condition �F	0
f 
�F	0

S ,q
V
, we can indeed neglect �F	0
f

in Eq. �9�, so the approximation used to derive the Eqs. �9�
and �27� is justified.

We emphasize that the conclusion �F↑0
f 
�F↑0

S is valid
for FM-S Schottky junctions. Possible exception can only be
the FM-S junctions with an accumulation layer, Fig. 1�d�. In
such FM-S junctions the electron density in S near the FM-S
interface can be very large. In such rare case both � and �
can be on the order of unity, perhaps allowing for �F↑0

f

��F↑0
S and even �	0

S ��	0
f . However, this case requires a

separate study where one has also to take into account spin
selective properties of such a FM-S junctions and a steep
spatial variation of electron density in S near the FM-S in-
terface, Fig. 1�d�.
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