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We show that two-dimensional �2D� and three-dimensional �3D� electron systems with the long-range
Coulomb electron-electron interaction could develop ferromagnetic instabilities due to strong exchange effects
at low densities. The critical densities in both 2D and 3D systems, at which the magnetic instability could
either be of Stoner type �second-order� or of Bloch type �first-order�, are higher than the dispersion instability
critical density where effective mass at the Fermi surface diverges. We discuss the theoretical as well as
experimental implications of the ferromagnetic instability at low electron densities, particularly in low-disorder
semiconductor-based two-dimensional systems.
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I. INTRODUCTION

With the development of high mobility semiconductor
based two-dimensional �2D� electron systems such as Si
metal-oxide-semiconductor field-effect transistors �MOS-
FETs� and GaAs heterojunction insulated gate field-effect
transistors, where extremely low carrier densities and very
high quality can be achieved, a number of recent experi-
ments has been carried out to measure fundamental physical
quantities such as magnetic susceptibility1–13 and effective
mass14 in low density 2D electron systems at low tempera-
tures ��100 mK�. These experiments have triggered many
theoretical as well as experimental studies on 2D and 3D
electron systems. One important purpose of these studies is
to obtain the ground state phase diagram for such systems. It
is well-known that the zero temperature 2D and 3D electron
systems can be characterized by a single dimensionless in-
teraction parameter rs=Ee-e /EK �where Ee-e denotes the in-
teraction energy and EK the kinetic energy�, which depends
only on the density �n� of the system with rs�n−1/2�n−1/3� in
2D �3D� systems. For small rs, electron systems can be well-
described by Landau’s Fermi liquid theory. �Actually, there is
an exception even to this as at exceptionally low tempera-
tures an interacting Fermi liquid undergoes a Khon-Luttinger
superconducting transition, which we ignore for our purpose
since it is of no physical relevance.� In the limit of large rs,
the system tends to reduce its interaction energy Ee-e at the
cost of higher kinetic energy by forming into an electron
crystal �the so-called Wigner crystal15�, which has been es-
tablished by Monte Carlo studies in both 2D16 �where the
crystallization transition happens at rs�32–42� and 3D
systems17 �where the transition happens at rs�55–75�. How
the system behaves in between the above-mentioned two
limits of rs is not yet clear. It has been widely accepted, and
also suggested by Monte Carlo studies, that there may exist a
ferromagnetic phase �of either fully or partially polarized
spins� in the intermediate rs region. Many other theoretical
studies for such a high rs value region typically start with a
more or less arbitrary assumption of a particular ground state
symmetry of the system. Among the various models of ex-
otic interaction-driven electronic ground states, charge or
spin density wave states, various superconducting states,

glassy or clustered ground states have been much discussed
in the literature.

From a theoretical perspective, it is important to study the
evolution of the Fermi liquid state starting from the weakly
interacting �small rs� regime. As rs increases, all the single
particle properties of the system are increasingly renormal-
ized by interaction effects. The question is whether the Cou-
lomb interaction renormalization brings about certain insta-
bilities eventually at some large rs, and hence changes the
ground state symmetry. The existence of degrees of freedom
related to spin and momentum makes it natural to consider
the possibility of a magnetic instability or an instability that
is related to the dispersion of a quasiparticle, which we call
“dispersion instability” for short. In spite of a great deal of
past theoretical work investigating the magnetic
instability18–35 and dispersion instability possibilities36,37 in
both 2D and 3D electron systems using a large variety of
different theoretical techniques, a unified theoretical treat-
ment of the ferromagnetic instability, starting from the weak-
coupling Fermi liquid ground state with interaction effects
introduced systematically, is still lacking. This absence of a
unified picture has left many unanswered important ques-
tions. First, what is the order of any possible ferromagnetic
instability? It could be a second-order transition �the so-
called Stoner instability� caused by the continuous diver-
gence of the susceptibility as the critical density or rs value is
approached from the weak-coupling side. Or it could be a
first-order transition �the so-called Bloch ferromagnetism�
which could happen abruptly at a specific rs value. Both have
been predicted and studied in the literature, but their inter-
relationship has not been clarified. Second, what is the rela-
tionship between magnetic instability and dispersion instabil-
ity? Whether the possible divergence of the interacting spin
susceptibility �*, which can be written as �*=g*m*, where
m*�g*� are the effective mass �g-factor� of the system, is
caused by the divergence of m* �dispersion instability� or g*,
or both? In order to answer these questions, we provide in
this paper a comprehensive picture of the Bloch ferromag-
netic instability, Stoner ferromagnetic instability, and the dis-
persion instability of the 2D and 3D electron system using
the method of random phase approximation �RPA�.38

The structure of the paper is the following: in Sec. II we
discuss briefly the background for Bloch and Stoner ferro-
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magnetism; in Sec. III we describe our theoretical formalism;
in Sec. IV we present and discuss our theoretical results for
ferromagnetic instability in interacting 2D and 3D quantum
Coulomb systems; we conclude in Sec. V with a discussion
of experimental implications and related open questions.

II. BACKGROUND

The possibility of a density driven ferromagnetic transi-
tion in an interacting electron system was first suggested by
Bloch39 more than 75 years ago. Bloch’s basic idea, essen-
tially a Hartree-Fock mean field theory, remains fundamen-
tally valid even today. The idea is that at high density the
electron system would be paramagnetic in order to optimize
the kinetic energy cost �which is high in a high-density quan-
tum fermionic system� whereas at low density the system
should spontaneously spin-polarize itself into a ferromag-
netic ground state in order to optimize the exchange energy
arising from the Pauli principle and Coulomb interaction. For
an electron gas �in a positive jellium background� it is a
straightforward exercise to write down the total Hartree-Fock
energy per-particle as a sum of the noninteracting kinetic
energy and the �Fock� exchange energy due to unscreened
Coulomb interaction at T=0 as

E

n
=

EKE

n
+

Eex

n
=

0.55

rs
2 ��1 + ��5/3 + �1 − ��5/3�

−
0.23

rs
��1 + ��4/3 + �1 − ��4/3� �1�

for the 3D system, and

E

n
=

0.50

rs
2 �1 + ��2 −

0.30

rs
��1 + ��3/2 + �1 − ��3/2� �2�

for 2D systems, where n=n↑+n↓ is the total number density
of electrons; �= �n↑−n↓� /n is their spin-polarization �or mag-
netism� density; aB

3n= � 4
3�rs

3�−1 and aB
2n= ��rs

2�−1 define the
dimensionless interaction parameters rs in 2D and 3D, re-
spectively �with aB=�2 / �me2�, the Bohr radius�; and the en-
ergy is measured in Rydberg units �i.e., e2 /aB�. It is easy to
see that the above Hartree-Fock energy expressions lead to a
first-order ferromagnetic transition �the “Block ferromag-
netism”� at rs=rB where rB�5.45 �3D� and rB�2 �2D�, i.e.,
E��=1� ferromagnetic state is lower �higher� in energy than
E��=0� paramagnetic state for rs� �	�rB. We refer to such
an energy-difference-driven abrupt �first order� transition as
Bloch ferromagnetism in the rest of this paper.

The Stoner ferromagnetic instability40 refers to the diver-
gence of the spin susceptibility and hence a second-order
continuous magnetic phase transition from a paramagnetic
�rs	rSt� weak-coupling side to a ferromagnetic side
�rs�rSt�. The simplest model to consider is, following Ston-
er’s original work, a zero-range delta-function-like interac-
tion of strength “I” �a constant in momentum space� between
the electrons, leading to an interacting static long-
wavelength spin susceptibility �in the dynamical Hartree-
Fock approximation� given by �* /�= �1−D0I�−1, where D0

�D�EF� is the electronic density of states at the Fermi en-

ergy. This immediately leads to the Stoner criterion for fer-
romagnetic instability defined by a divergent �* /� when
1−D0I=0. Since the 2D density of states is a density-
independent constant, this instability criterion does not lead
to a meaningful condition in 2D unless we arbitrarily define
I to be the Coulomb interaction strength at Fermi wave vec-
tor, whence the Stoner instability criterion leads to unphysi-
cally low rs values for the ferromagnetic instability given by
rSt�0.7 �2D� and rSt�1.5 �3D�, which are absurdly small rs
values and are unrealistic. Of course, in real electron systems
the electron-electron interaction is the long-range Coulomb
interaction, and therefore the simple Stoner instability crite-
rion, defined by D0I=1 where I is an effective short-range
interaction strength, is inapplicable. But the basic idea of the
ferromagnetic Stoner instability, defined by a continuous di-
vergence of �*�rs� as rs is increased, still applied. We refer to
the ferromagnetic transition defined or characterized by a
divergence of the interacting susceptibility as the Stoner in-
stability.

In real electron liquids, the exchange-only Hartree-Fock
approximation considered above for the Bloch instability is
inadequate because correlation effects �i.e., energy contribu-
tions beyond Hartree-Fock� are known to be extremely im-
portant, and must be included in the energetic considerations.
Similarly, the interacting susceptibility must be calculated for
the real Coulomb interaction in the system, not for a hypo-
thetical zero-range interaction, in order to obtain a better
estimate of the Stoner instability criterion. In the rest of this
paper we consider both Bloch and Stoner ferromagnetic in-
stabilities using better many-body approximations for Cou-
lomb electron liquids, namely RPA.

III. THEORY

In this work we follow the notation of Refs. 36, 37, and
41. Within RPA,36–38,41–44 the Coulomb contribution to the
ground state energy of a jellium electron system with long-
range Coulomb interaction can be denoted by the Feynman
diagrams shown in Fig. 1�A�. The quasiparticle energy is
then obtained by Ek=
EG /
nk, where nk is the distribution
function at momentum k. The second order derivative of the

FIG. 1. The RPA Feynman diagram for �A� the Coulomb inter-
action contribution to the ground state energy; �B� Landau’s inter-
action function; and �C� dynamically screened interaction. The
circles are polarization bubbles, the thin wiggly lines are the bare
Coulomb interaction, and the solid lines the noninteracting electron
Green’s function.
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total ground state energy is referred to as Landau’s interac-
tion function: f�k ,k��=
2EG /
nk
nk�, represented by the
Feynman diagram shown in Fig. 1�B�. Graphically, taking
the nk variational derivative of a quantity simply means that
one cuts one solid line of the Feynman diagram and takes the
external momentum and frequency to be on-shell �i.e., �
=k2 /2m−EF with m the band electron mass and EF the
Fermi energy�. We emphasize that the RPA as shown in Fig.
1 necessarily implies that this on-shell self-energy approxi-
mation is used for calculating the quasiparticle energy dis-
persion Ek and Landau’s interaction function f�k ,k�� since
all energy and momenta in Fig. 1 correspond to the nonin-
teracting system. Thus RPA self-energy approximation nec-
essarily implies an on-shell approximation �Fig. 1�A�� as em-
phasized by Rice42 a long time ago. Solving the full Dyson
equation using the off-shell renormalized energy, as is some-
times done in the literature, would be completely inconsis-
tent within RPA as it would incorrectly mix various pertur-
bative orders.

Following Hubbard’s notation,43 the ground state energy
per particle EG /N with N the particle number can be written
as EG /N=EK /N−v�0� /2+EC /N, where EK is the kinetic en-
ergy, v�0�=�vqddq / �2��d is the interaction energy at zero
separation with the bare Coulomb interaction vq=2�e2 /q for
2D and vq=4�e2 /q2 for 3D, and EC is the Coulomb contri-
bution to the ground state energy �both exchange and corre-
lation� which can be denoted as in Fig. 1�A�. Note that the
singularities in v�0� /2 and EC /N cancel out each other. In
the 2D system, it is easy to show43 that RPA leads to

EG

N
=

EF

2
+

Eex

N
+

16EF

gs�
	

0

�

xdx	 du�ln 
�x,u� − 
�x,u�� ,

�3�

where 
�q ,�� is the dynamical dielectric function, gs is the
spin degeneracy �gs=2 for par amagnetic states and gs=1 for
fully spin-polarized state�, and Eex is the exchange part of the
ground state energy. Note that in Eq. �3� we subtracted a
term 
�q ,�� from ln�
�q ,��� in order to handle the ultravio-
let divergence in the integration. Similarly for 3D we have

EG

N
=

3

5
EF +

Eex

N
+

48EF

gs�
	

0

�

x2dx	 du�ln 
�x,u� − 
�x,u�� .

�4�

It is convenient to convert all the expressions in terms of
the dimensionless units rs. The definition of rs is as rs
=1/ ��kFaB� where kF is the Fermi momentum and aB

=1/ �me2� is the Bohr radius. In 2D �=
gs /2 and in 3D �
= �2gs /9��1/3. Also we choose �=1 throughout, which makes
wave vector and momentum �as well as energy and fre-
quency� equivalent. In these notations, it is easy to show that
Eex /N=−8�rs / �3��EF for 2D, and Eex /N=−3�rs / �2��EF

for 3D. In the actual calculation, the integration in Eqs. �3�
and �4� can be performed on either the real or imaginary axis.
By examining the rs and gs dependence of the ground state
energy, we study the Bloch magnetic instability of the elec-
tron system. The integrals in Eqs. �3� and �4� are the corre-

lation contributions not included in our Hartree-Fock consid-
erations of Bloch ferromagnetic in Sec. II. Note that gs
=1�2� corresponds to �=1�0� in Sec. II.

We investigate the Stoner instability by calculating the
magnetic susceptibility �* within RPA which is represented
by the Feynman diagram shown in Fig. 2. Direct calculation
of these diagrams turns out to be difficult for the long ranged
Coulomb interaction. However, at T=0, Landau showed that
�* can be equivalently expressed as the following equation:42

�

�* =
m

m* + �	 fe���do , �5�

where � is the Pauli spin susceptibility, fe���= fe�k ,k�� with
k and k� on-shell; k2 /2m=k�2 /2m�=EF� is the exchange
Landau’s interaction function, � is the angle between k and
k�, do the element of solid angle along k� times cos � in 3D
and d� in 2D, and �=1/ �2��2 in 2D and �=kF / �2��3 in
3D. Similarly, the Landau theory expression for the effective
mass m* is42

m

m* = 1 − �	 f���do . �6�

In Eq. �5�, fe��� is the exchange part of the Landau’s inter-
action function, which is represented by Fig. 1�B��a�. This
spin independent term is responsible for the difference be-
tween the ratio � /�* and m /m*.42 An equivalent and easier
way to derive the effective mass is through calculating qua-
siparticle self-energy and obtaining its momentum deriva-
tive. The self-energy within RPA can be written as36

��k,�� = −	 ddq

�2��d 	 d�

2�i

vq


�q,��
G0�q + k,� + �� , �7�

where d=2 or 3 is the dimension of the system, and

FIG. 2. �a� The ladder-bubble series for the interacting suscep-
tibility with the bold straight line the interacting Green’s function
and the bold wavy line the dynamically screened interaction; �b� the
noninteracting susceptibility; �c� the Dyson’s equation for the inter-
acting Green’s function in terms of the noninteracting Green’s func-
tion and the self-energy; �d� the self-energy in the leading-order
expansion in the dynamical screening; �e� the Dyson’s equation for
the dynamically screened interaction in terms of the bare Coulomb
interaction �thin wavy lines� and the polarization bubble; and �f� a
charge fluctuation diagram which does not contribute to spin
susceptibility.
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G0�k,�� =
1 − nF��k�

� − �k + i0+ +
nF��k�

� − �k − i0+ �8�

is the bare Green’s function, where nF is the Fermi distribu-
tion function, �k=k2 / �2m�−EF. It is shown37 that the integra-
tion along the real axis in the expression of self-energy �Eq.
�7�� can be deformed onto the imaginary axis, which avoids
the singularities along the real axis and makes the integration
easier. The contour deformation also breaks the expression of
self-energy into separate terms that correspond, respectively,
to contributions from the spin-dependent and spin-
independent part of the Landau’s interaction function shown
in Fig. 1, and is very useful for us to derive the expression
for susceptibility as shown below. The expression of the real
part of the self-energy can then be written as

Re ��k,�� = −	 ddq

�2��dvq��2m� + kF
2 − �q − k�2�

+	 ddq

�2��dvq Re
1


�q,�q−k − ��

� ���2m� + kF
2 − �q − k�2� − ��kF

2 − �q − k�2��

−	 ddq

�2��d 	 d�

2�
vq� 1


�q,i��
− 1


�
1

i� + � − �q+k
. �9�

The effective mass is derived from the expression of the real
part of the quasiparticle self-energy by m /m*=1+ �m /kF�
��d /dk� Re ���k ,�k��k=kF

.42 Combining this with Eq. �5�, we
have

�

�* = 1 + �	 fe���do +
m

kF

d

dk
Re ���k,�k��k=kF

. �10�

It is not difficult to show that the second term of Eq. �9�
accounts for the contribution from the spin-independent ex-
change Landau’s interaction function fe�k ,k�� �Fig. 1�B��a��,
and therefore the term �� fe���do in Eq. �10� exactly cancels
the momentum derivative of the second term in the self-
energy Eq. �9�. Hence the expression of � /�* only contains
contributions from the k derivatives of the first and third term
in Eq. �9�. After converting all the expressions in terms of the
dimensionless parameter rs, and using 2kF ,4EF ,2m as the
momentum, energy, and mass units, we obtain the expression
for the 2D magnetic susceptibility as

�

�* = −
2�rs

�
+


2�rs

�
	

0

�

x2dx	
0

�

du� 1


�x,iu�
− 1


� �A
1 + A/R − B
1 − A/R�R−5/2, �11�

where A=x4−x2−u, B=2xu, R=
A2+B2. Similarly for 3D
we have

�

�* = −
�rs

�
+

�rs

2�2	
0

�

dx	
0

�

du� 1


�x,iu�
− 1


� �ln�F/G� − 2C/F + 2D/G� , �12�

where C=1−q, D=1+q, F=C2+u2, and G=D2+u2. Note
that in the expressions of the dielectric function 
�x ,u�, x
=q / �2kF� and u=� / �4EF�.

IV. RESULTS

In Fig. 3 we present the calculated magnetic susceptibility

FIG. 3. �Color online� �A� and
�C�: Calculated renormalized spin
susceptibility �* /�, effective mass
m* /m, and g-factor g* /g. For the
2D system, �* and g* diverge at
rs�7.3 while m* diverges at rs

�18.1. For the 3D system, �* and
g* diverge at rs�18.7 while m*

diverges at rs�49.9. �B� and �D�:
inverse susceptibility shows �* di-
verges at rs�7.3 for 2D and 18.7
for 3D systems. Note that the �*

and g* are calculated for paramag-
netic systems �gs=2� while m* are
for ferromagnetic systems �gs=1�.
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as a function of rs for both 2D and 3D systems, together with
the calculated g-factor g*=�* /m* and the effective mass m*.
It is clear from Fig. 3 that both 2D and 3D systems experi-
ence Stoner ferromagnetic instabilities, characterized by the
divergence of magnetic susceptibility as the density de-
creases. It is important to note that this Stoner instability
�i.e., divergence of �*� does not arise from an effective mass
divergence since the m* divergence happens at much lower
densities. In other words, g* and m* both diverge, with the
divergence of g* occurring at a lower rs value. For the 2D
system, �* and g* diverge at rs�7.3 while m* diverges at
rs�18.1. For the 3D system, �* and g* diverge at rs�18.7
while m* diverges at rs�49.9.

We emphasize that both m* and g* divergences actually
happen independently and are completely unrelated phenom-
ena. On the other hand, it is also worth mentioning that the
g* divergence does have some quantitative effect on the m*

divergence. After g* diverges, the system becomes a ferro-
magnetic liquid, and the momentum distribution is different
and the Fermi energy increases. This change results in a
small increase in the critical rs value where m* diverges. In
fact for gs=2 paramagnetic systems, m* diverges at 16.1 for
2D and 47.8 for 3D,36 in contrast to the gs=1 case where m*

diverges at 18.1 for 2D and 49.9 for 3D. But this effect is
rather small and is of no particular significance.

In real experimental systems, the value of rs at which �*

diverges should be influenced by many factors �even within
our RPA many-body approximation scheme�. Here we con-
sider the valley degeneracy gv and the finite width effect on
the magnetic susceptibility divergence in semiconductor-
based realistic 2D electron systems. The effect of gv is ex-
actly the same as the effect of gs on the system, and therefore
can be easily incorporated. For the finite width effect, we
introduce a form factor to the Coulomb interaction, follow-
ing the standard procedure described in detail in Refs. 45 and
46. Using appropriate semiconductor parameters, we obtain
the susceptibility in GaAs quantum wells and Si-inversion
layers, plotted in Fig. 4. It is clear from Fig. 4 that multival-
ley degeneracy and finite width both suppress the divergence
of the susceptibility renormalization and make the critical rs
value for �* divergence considerably larger than the strict 2D
results.

The magnetic susceptibility is a thermodynamic Fermi-
surface property. As mentioned before, another way of study-
ing the magnetic instability is to compare the ground state

energy of the system for polarized and unpolarized states at
different electron densities. This is the Bloch ferromagnetism
discussed in Sec. II. Our results �Fig. 5� of RPA ground state
energy for fully polarized and nonpolarized electron states
�using Eqs. �3� and �4�� in both 2D and 3D electron systems
show a similar characteristic. When rs is very small �or elec-
tron densities high�, both systems prefer nonpolarized para-
magnetic states. As rs increases to a certain critical value
�rs�5.5 for 2D and rs�17.8 for 3D� the ground state energy
for the fully polarized electron state actually becomes lower
than the nonpolarized states. This clearly indicates that the
system undergoes a Bloch type ferromagnetic instability due
to the Coulomb electron-electron interaction in low density
2D electron systems. Note that the critical rs for the Bloch
instability is substantially higher in the RPA theory �increas-
ing from 2 to 5.5 in 2D and 5.45 to 17.8 in 3D� than in the
Hartree Fock theory due to the inclusion of correlation en-
ergy.

Comparing Figs. 3 and 5 we conclude that, at least within
our well-defined RPA ring-diagram many-body approxima-
tion scheme, the sequence of instabilities �as density de-
creases� the theory predicts for both 2D and 3D electron
liquids is the following: Bloch ferromagnetism �i.e., an
abrupt first order magnetic transition� at rs=5.5 �2D�, 17.8
�3D�; Stoner ferromagnetism characterized by a continuous
divergence �i.e., a second order magnetic transition� of the
interacting g-factor and of the susceptibility at rs=7.3 �2D�,
18.7 �3D�; and the dispersion instability associated with the
continuous divergence of the quasiparticle effective mass at
rs=18.1 �2D�, 49.9 �3D�. Of course, comparing first and sec-
ond order transitions is not particularly meaningful since
their origins are fundamentally different, and a first order
transition may always preempt a second order transition as
seems to happen in Coulomb electron liquids with Bloch
ferromagnetism always happening �both in 2D and 3D� at
slightly lower rs values �5.5 versus 7.3 in 2D and 17.8 versus
18.7 in 3D� although the difference in the critical rs values
for the two transitions �less than 10% in 3D and about 25%
in 2D� is sufficiently small so that both Bloch and Stoner
ferromagnetism remain of experimental interest.

We also note that, by definition, �*�g*m* �and �=gm�,
and therefore the divergence of the interacting susceptibility
could be caused either by a divergence g-factor or a diverg-
ing effective mass. This issue has been much discussed and
debated1–3,10–13 in the recent experimental literature on 2D

FIG. 4. �Color online�
Quasi-2D effects on magnetic sus-
ceptibility divergence. �A� GaAs
quantum well system. �B� Si-
inversion layer.
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semiconductor-based electron systems, where low-density
divergence of both 2D susceptibility and effective mass has
been reported. All we can say is that our theoretical results
are only consistent with the susceptibility divergence as aris-
ing from the divergence of the interacting g-factor, not the
effective mass, since the g-factor divergence occurs at much
lower rs values, rs�7.3 �18.7� in 2D �3D� for g* /g diver-
gence versus rs�18.1 �49.9� in 2D �3D� for m* /m diver-
gence. We add that in a realistic quasi-2D semiconductor
system �our Fig. 4� the susceptibility �as well as effective
mass� divergence occurs at substantially higher rs values due
to the considerable softening of the Coulomb interaction
from its strict 2D form due to the finite-width effect.

V. DISCUSSION

Both Bloch and Stoner instabilities imply that 2D and 3D
electron systems interacting via the long range Coulomb in-
teraction undergo a T=0 ferromagnetic quantum phase tran-
sition from a high-density paramagnetic state to a low-
density ferromagnetic state either through a first order
�Bloch� transition or a second-order �Stoner� transition �with
a continuous divergent susceptibility� at a critical rs value.
Given that the critical rs value�s� for the transition�s� we
obtain within our RPA many-body theory is rather large �i.e.,
rs�1�, we do not expect our predicted rs parameter for fer-
romagnetic transitions in 2D and 3D electron systems to be
reliable. But the basic trends, such as the sequence of insta-
bilities �i.e., Bloch followed by Stoner followed by the dis-
persion instability with diverging mass as the density is low-
ered� or the suppression of the transition to much lower
densities in quasi-2D systems should be valid, in general.

Indeed quantum phase transitions predicted by RPA �or for
that matter even by the simpler Hartree-Fock approximation�
are always found to occur in the numerical quantum Monte
Carlo �QMC� simulation albeit at higher rs values. This is
certainly true for electron liquid ferromagnetic instabilities.
For the 3D system, QMC simulation predicts that the system
undergoes a possibly second-order phase transition and elec-
tron spins become partially polarized at rs�60 by Ref. 47 or
rs�15–25 by Ref. 17, and as rs increases to rs�100 by Ref.
47 or rs�35–45 by Ref. 17, the system becomes a fully
polarized ferromagnetic state. For the 2D case, QMC simu-
lation predicts48 that as density approaches rs�25, the sys-
tem undergoes a first-order transition into a fully spin-
polarized ferromagnetic state. Theoretically, it is possible to
obtain the spin susceptibility through calculating the second
derivative of the ground state energy with respect to � at �
=0. However, in reality too much error is introduced when
obtaining the susceptibility this way in QMC simulations,
and therefore it is difficult to ascertain the order of the fer-
romagnetic transition in QMC numerical simulations—our
RPA theory predicts the first-order Bloch instability to occur
first as the density is being lowered. Another thing to be
noticed about QMC simulation results is that the ferromag-
netic transition rs value predicted by different groups differs
by a large factor from each other �see, for example, Refs. 17
and 47�, which shows the large amount of error introduced
by such simulations due to the small energy difference be-
tween spin polarized states and spin unpolarized states �the
two density dependent energy curves are almost parallel
when they cross each other� and different choices of trial
wave functions.

Much has been written about the validity of the RPA
many-body approximation at low carrier densities �rs�1�.

FIG. 5. �Color online� �A� and
�C� The RPA ground state energy
per particle for polarized �gs=1�
and unpolarized �gs=2� cases as a
function of rs for 2D and 3D sys-
tems, calculated using Eqs. �3�
and �4�. �B� and �D� Details
around the magnetic instability at
rs�5.5 for 2D and 17.8 for 3D
systems.
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We have little to add to this issue beyond the detailed dis-
cussion we already provided in our recent publications.36,41

We want to emphasize that, although RPA is exact in the
rs→0 limit, it is by no means a theory based on an rs
expansion—it is a self-consistent field theory based on an
expansion in the dynamically screened interaction which
should be qualitatively valid for all rs below the Wigner
crystallization of the electron liquid. In fact, RPA is found to
be quantitatively valid in 3D systems42 at metallic densities
�rs�3–6� and in 2D systems for rs up to 10–15 where com-
parison with experiment has been carried out.49 Often the
error in the calculation arising from other effects �e.g., finite
temperature,50 finite quasi-2D width, band structure, etc.�
turn out to be larger than that included in the RPA approxi-
mation, and therefore improvement beyond RPA �short of a
full-fledged QMC calculation� becomes meaningless. One
can try to “improve” upon RPA by including local field cor-
rections to the dynamical electron polarizability �i.e., bare
bubble of RPA� which, in some crude manner, simulates the
incorporation of higher-order vertex corrections in the
theory. But such local field corrections are uncontrolled, and
probably inconsistent, since many diagrams in the same or-
der are typically left out. We are therefore unconvinced that
the inclusion of local field corrections in the theory is neces-
sarily an improvement on RPA. The great conceptual advan-
tage of RPA is that it is a well-defined approximation that is
both highly physically motivated �i.e., dynamical screening�
and theoretically exact in the high-density �rs→0� limit. At-
tempted improvement upon RPA through the arbitrary inclu-
sion of local field correction may neither be theoretically
justifiable nor more reliable. Keeping these caveats in mind
we have carried out our exchange instability calculations us-
ing the Hubbard local field corrections43 and we find no
qualitative changes from the RPA results presented in this
paper. The critical rs values for the occurrence of the ferro-
magnetic instability change somewhat in the presence of the
local field correction, but this is a result without any signifi-
cance since the precise values of critical rs are expected to be
not particularly accurate in any of these theories. The fact
that the basic qualitative conclusions about the various insta-
bilities do not change in the presence of local field correc-
tions demonstrates the qualitative robustness of our RPA-
based results. Another point to note is that the fact that RPA
predicts the existence of divergence of certain physical quan-
tities at certain critical densities does not necessarily imply
that RPA or Fermi liquid theory fails at that density. For
example, RPA predicts the divergence and then negative val-
ues for the compressibility38 at densities higher than ferro-
magnetic transition densities, and negative compressibility
has indeed been observed in experiments51 on 2D electron
systems as predicted by RPA calculations. Of course the total
compressibility of a system cannot be negative, but just the
electronic part of the compressibility can be negative as pre-
dicted by RPA and as is routinely observed in 2D electron
systems for rs�3. There can be no doubt that if 3D electron
systems with large enough rs values �rs�6 accordi ng to
RPA38� are found they would routinely have negative elec-
tronic compressibility as well. It is certainly true that RPA
becomes a progressively poorer approximation as density de-
creases and perhaps detailed QMC calculations should be

carried out to test the validity of our RPA-based predictions
presented in this paper.

In discussing possible experimental implications of our
results, we note the great recent experimental interest in the
literature on the possibility of a density-driven ferromagnetic
transition in semiconductor-based 2D carrier systems where
very low carrier densities �rs�10� can be achieved in rather
high-quality samples.1–14 There are recent experimental
claims1–3,12 of the observation of a low density susceptibility
divergence in Si MOSFETs for rs�7–10. Although the ex-
perimental susceptibility behavior as a function of density
�or, rs� looks similar to our theoretical results in Figs. 3 and
4, we are skeptical about the significance of this agreement.
There are several reasons for our skepticism. First, the ex-
perimental claimed susceptibility divergence occurs at far
too high a density �rs�7� compared with the theory where
we find the RPA susceptibility divergence in realistic Si
MOSFETs �Fig. 4� to be occurring at rs�23. This RPA pre-
diction for critical rs��23� is most likely the lower bound—
any real susceptibility divergence is expected to occur at
higher rs values �rs�23�. Second, the experimental diver-
gence of �* /��g*m* /gm has been claimed1–3 to be arising
from an effective mass divergence, not the g-factor diver-
gence as we find in our theory. Our theoretical effective mass
divergence, in fact, occurs at a critical rs more than twice as
large as the corresponding �* critical rs. In fact, our quasi-2D
effective mass divergence36,37 occurs for rs�40. Third, there
has been no experimental evidence for the existence of a
low-density ferromagnetic phase such as hysteresis, rema-
nence, etc. If there is indeed a ferromagnetic transition, one
should be able to observe ferromagnetic behavior at densities
below the ferromagnetic critical density �i.e., for rs values
larger than the point of �* divergence�. No such direct ferro-
magnetic behavior has ever been observed in a low-density
2D system casting serious doubts on the claims of the obser-
vation of a 2D ferromagnetic transition. A very recent ex-
tremely careful and detailed measurement of 2D susceptibil-
ity in a high-mobility n-GaAs system9 finds no divergence in
�* /� up to rs�12, calling into question the earlier claims of
susceptibility divergence in Si MOSFETs at lower rs values.
In addition, a direct thermodynamic measurement4 of 2D
susceptibility in Si MOSFETs also does not find a ferromag-
netic instability. What is clear is the observed strong en-
hancement of �* /� �and m* /m� as a function of increasing rs
which is consistent with our theoretical findings. But the ac-
tual existence of a low-density electron liquid ferromagnetic
transition has not be established experimentally in our opin-
ion.

Finally we discuss some of the earlier literature that is of
relevance to our work. Our calculation of the ground state
energy for polarized and unpolarized states partially confirms
the numerical results of Rajagopal et al.,52 who also consid-
ered the possibility of partially polarized states, and found
that for a certain range of electron densities, the system pre-
fers a partially polarized ferromagnetic state in the 3D sys-
tem. Similar results were also derived using the quantum
Monte Carlo method.17,47 In this paper we did not present our
calculation results �which confirms the results of Ref. 52� for
the Bloch instability associated with the partial spin-
polarization because this will not help our understandings of
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the relation between Stoner, Bloch, and dispersion instabili-
ties, which is the main purpose of this paper. In 3D, partially
spin polarized states is preferred energetically for the density
region of rs between �14 and �18, which is right before the
fully polarized ferromagnetic region as the density is
decreased.52 This suggests that our understanding of the re-
lation between the three kinds of instabilities will not be
affected by the consideration of partially spin-polarized
states. In 2D systems, partial spin-polarization does not
occur,17,47,52 and thus this issue does not arise at all for our
2D calculations, which is the main focus of our work. For the
magnetic susceptibility, there have been earlier RPA calcula-
tions in 2D29–31,53,54 and 3D,28 and QMC calculations in

2D.48 Only Shastry28 predicted a susceptibility divergence in
3D systems, and our results confirm his conclusion. No pre-
vious work considered the interrelations among Bloch insta-
bility, Stoner instability, and dispersion instability. Our work
is the only work in the literature connecting all these density-
driven electron liquid instabilities within one coherent theo-
retical framework.
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