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We show that electron recombination using positively charged excitons in single quantum dots provides an
efficient method to transfer entanglement from electron spins onto photon polarizations. We propose a scheme
for the production of entangled four-photon states of GHZ type. From the GHZ state, two fully entangled
photons can be obtained by a measurement of two photons in the linear polarization basis, even for quantum
dots with observable fine structure splitting for neutral excitons and significant exciton spin decoherence.
Because of the interplay of quantum mechanical selection rules and interference, maximally entangled electron
pairs are converted into maximally entangled photon pairs with unity fidelity for a continuous set of observa-
tion directions. We describe the dynamics of the conversion process using a master-equation approach and
show that the implementation of our scheme is feasible with current experimental techniques.
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I. INTRODUCTION

Spin light-emitting diodes �spin LEDs�,1–8 in which elec-
tron recombination is accompanied by the emission of a pho-
ton with well-defined circular polarization, provide an effi-
cient interface between electron spins and photons. The
operation of such devices at the single-photon level would
allow one to convert the quantum state of an electron en-
coded in its spin state into that of a photon with a wide range
of possible applications. In view of quantum information
schemes, converting spin into photon quantum states corre-
sponds to a conversion of localized into flying qubits, which
can be transmitted over long distances and could overcome
limitations caused by the short-range nature of the electron
exchange interaction.7 On a more fundamental level, the
photon polarization can be readily measured experimentally
such that an interface between spins and photons will allow
one to measure quantum properties of the spin system via the
photons generated on recombination. More specifically, the
entanglement of electron spins could be demonstrated not
only in current noise9,10 but also via photon polarizations,
which allows one to test Bell’s inequalities.11

In this work, we show that nonlocal spin-entangled elec-
tron pairs that recombine in single quantum dots contained in
spatially separated spin LEDs are converted into
polarization-entangled photon states. In addition to its appli-
cations in quantum communication, this transfer can be used
to characterize the output of an electron spin entangler12–19 in
a setup as shown in Fig. 1. Furthermore, such a setup acts as
a deterministic source of polarization-entangled photon pairs.
Recently, the decay of biexcitons in single quantum dots has
been proposed for the production of entangled photons.20,21

However, several experiments22–26 have only shown polar-
ization correlation but not entanglement of the photons. The
fine structure splitting �ehx of the bright exciton ground
state27 has been identified to be crucial for the lack of en-
tanglement: First, the polarization-entangled photons are also
entangled in energy if �ehx is larger than the exciton
linewidth.28 Second, for �ehx�0, the exciton spin relaxation

rate due to phonons 1/T1,X is enhanced29 and leads to an
increased decoherence rate, 1 /T2,X=1/2T1,X+1/T�,X, where
1/T�,X is the pure decoherence rate. To overcome these dif-
ficulties, we propose using positively charged excitons �X+�,
for which �ehx=0 up to small corrections. Moreover, we
demonstrate that the antisymmetric hole ground state of the
X+ enables the production of entangled four-photon states.
We study the transfer of entanglement for different photon
emission directions by calculating the von Neumann entropy.
Due to quantum mechanical interference, the fidelity of this
process approaches unity, not only for photon emission along
the spin quantization axis, but for a continuous set of obser-
vation directions. The relaxation and decoherence of the
electron spins in the leads is modeled using a master equa-
tion, and it is quantified by the fidelity of the entangled state.

This work is organized as follows. In Sec. II we describe
the dynamics of the conversion process. In Sec. III we focus
on the microscopic expressions for the involved optical tran-
sitions, leading to entangled four-photon and two-photon
states. In Sec. IV we quantify the entanglement of the two-
photon state as a function of the emission angles. We con-
clude in Sec. V.

FIG. 1. �Color online� Schematic setup for the transfer of en-
tanglement between electrons and photons. An electron entangler
�gray box� injects a pair of spin-entangled electrons into two current
leads. The electrons recombine individually in one quantum dot
located in the left �L� and one in the right �R� spin LED and give
rise to the emission of two photons.
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II. DYNAMICS OF THE CONVERSION PROCESS

The effective Hamiltonian of the system is given by

H = HL + HR + Hrad + Hint, �1�

where H�=p2 /2m+Vqd�r� is the Hamiltonian of the quantum
dot �=L ,R with confinement potential Vqd�r�. The Hamil-
tonian of the radiation field is Hrad=�k,���kak�

† ak� and Hint
=−eA ·p /m0c=Hem+H.c. is the optical interaction term,
which is linear in both the vector potential A and the electron
momentum p, and can be decomposed into a photon emis-
sion term Hem and its Hermitian conjugate. For simplicity,
we assume that the dots L and R are identical, with a cubic
crystal structure and with aligned main crystal axes. We
choose the z axis parallel to the quantum dot growth direc-
tion �e.g., �001��. If the quantum dot confinement is stronger
in the z direction than in the xy plane, z defines the spin
quantization axis and heavy-hole �hh� and light-hole �lh�
states are energetically split by �hh-lh �typically �hh-lh
�10 meV�. We consider a hh ground state, with angular mo-
mentum projection ±3/2 in terms of electron quantum num-
bers. We further focus on the strong-confinement regime,
where the dot radius is smaller than the exciton Bohr radius.

The quantum dots in both spin LEDs are prepared in a
state �	��, where two excess holes occupy the lowest hh level
in each dot. This initial state, which can be generated by
applying an appropriate bias voltage across the LED, has
several advantages. First, electrons with arbitrary spin states
can recombine optically, as demonstrated for electron spin
detection in a recent experiment.5 Second, the z component
of the total hole spin vanishes. This is a consequence of the
fact that in quantum dots the hh-lh exciton mixing due to the
electron-hole exchange interaction �ehx is determined by a
small parameter �ehx/�hh-lh�0.01. Thus, injected spin-
polarized electrons give rise to circularly polarized X+ lumi-
nescence. This remains true for dots with asymmetric con-
finement in the xy plane, in stark contrast to the case with an
electron and only one hole in the dot,27 where the good ex-
citon eigenstates are horizontally polarized and are split in
energy typically by �ehx�0.1 meV. Thus, the electron-hole
exchange interaction can be neutralized by initially providing
two holes. Interband mixing �e.g., hh and lh states� in
strongly anisotropic dots reduces the maximum circular po-
larization of photons emitted from spin-polarized electrons4

and reduces the fidelity of our scheme. However, because the
interband transition probability for lh states is three times
smaller than that for hh states, and hh-lh mixing is typically
controlled by some small parameter in slightly elliptical
dots,27 we neglect lh transitions.

A. Electron injection and photon emission

We first describe the dynamics of the electron injection
and recombination in the two dots using a master equation.
The rate for the injection and the subsequent relaxation of
electrons into the conduction band ground state in the dot �
is denoted by We�. It has been demonstrated that this entire
process is spin conserving and occurs much faster than the
optical recombination,5,6 which is described by the rates Wp�.
Typically, Wp��1 �ns�−1 and We��0.1 �ps�−1 for the inco-

herent transition rates. We solve the master equation for the
classical occupation probabilities and obtain the probability
that two photons are emitted after the injection of two elec-
trons into the dots at t=0,

P2p = 	
�=L,R

We��1 − e−tWp�� − Wp��1 − e−tWe��
We� − Wp�

. �2�

For Wp�
We�, P2p
	�=L,R�1−e−tWp��. After photon emis-
sion, bipartite photon entanglement is achieved by a mea-
surement of the hole spins as we describe below and the
initial state is finally restored by the injection of two holes
into each of the two dots. We estimate the production rate of
entangled photons in a setup to test some of the proposed
electron entanglers.12–19 For example, electron spin singlets
��−�= ��↑ ↓ �− �↓ ↑ �� /�2 are produced by the Andreev
entangler12 with an average time separation �t�10−5 s,
while for the entangler based on three quantum dots,17 �t
�10−8 s. The two electrons of a singlet typically are injected
into the current leads with a relative time delay ��10−13 s
for both of these entanglers. Because � ,Wp�

−1 
�t, photons
originating from a single pair of entangled electrons can be
identified with high reliability. In the steady state, the gen-
eration rate of entangled photons is determined by the rate at
which entangled electron pairs leave the entangler, 1 /�t.

B. Electron spin dynamics

Relaxation and decoherence is taken into account for the
two spins by the single-spin Bloch equation.30 Given that the
electrons are in different leads, they interact with different
environments �during times t and t�, respectively�. Therefore,
we consider different magnetic fields h and h�, enclosing an
angle , each acting on an individual spin. We calculate the
two-spin density matrix 	�t , t�� and obtain for the singlet
fidelity f =4�−�	�t , t����−� �given in Ref. 30 for t= t� and
=0�,

f = 1 − cos aa�PP� + e1�e2� sin2  cos�h�t�� + e1� cos2 �

+ e2e1� sin2  cos�ht� + e2e2��2 cos  sin�ht�sin�h�t��

+ �cos2  + 1�cos�ht�cos�h�t��� , �3�

where for the first �second� spin ei=e−t/Ti�ei�=e−t�/Ti��, a
=1−e1�a�=1−e1��, P�P�� is the equilibrium polarization,
and T2 and T1 �T2� and T1�� are the spin decoherence and
relaxation times, respectively. For t
T1 ,T2 and t�
T1� ,T2�
�in bulk GaAs T2�100 ns has been measured31 and, typi-
cally, T1�T2�, the electrons form a nonlocal spin-
entangled state after their injection into the dots L and R
and after their subsequent relaxation to the single-electron
orbital ground states �c��rc� ,��. A local rotation of one of
the two spins in the leads �for h�h�� enables a transfor-
mation of ��−� into another �maximally entangled� Bell
state ��+�= ��↑ ↓ �+ �↓ ↑ �� /�2 or ��±�= ��↑ ↑ �± �↓ ↓ �� /�2.
This can be achieved, e.g., by controlling the local Rashba
spin-orbit interaction in the current leads.10,30
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III. OPTICAL TRANSITIONS

The optical recombination processes of the two electrons
occur independently, except for the entanglement of the spin
wave functions. We consider one single branch �=L ,R of
the apparatus and omit the index �. The state of the single
quantum dot that is charged with two hhs in the orbital
ground state and into which a single electron with spin � has
been injected is given by

�e,�� =� d3rc�c
*�rc,��bc�

† �rc��	� . �4�

Here, bc�
† �rc� creates an electron with spin Sz=� /2

= ±1/2 at rc in the ground state of the dot, �	�
=������d3rv1 d3rv2 �v�rv1 ,� ;rv2 ,���bv��rv1�bv���rv2��g�,
where �g� is the electrostatically neutral ground state of the
quantum dot, and �v�rv1 ,� ;rv2 ,��� is the orbital part of the
two-hole wave function. In the strong-confinement regime
where Coulomb correlations are negligible, �v is a product
of the single-particle valence band states. The labels � ,��
denote the hh spin component Sz=� /2= ±1/2 that factor out
for angular momentum Jz= ±3/2. We now calculate the
emission matrix element f �Hem�i� with initial state �i�
= �e ,�� � � . . . ,nk� , . . . � and final state �f�=bv���rv2��g�
� � . . . ,nk�+1, . . . �, where � . . . ,nk� , . . . � is a Fock state of the
electromagnetic field, typically the photon vacuum. Because
of quantum mechanical selection rules, the optical transitions
connect only states with the same spin, such that ����. In
the envelope-function and dipole approximations,32

�f �Hem�i�� =
e

m0c
A0��k��nk� + 1�ek�

* · pcv
* Ceh� , �5�

where pcv
* =pvc is the interband momentum matrix element,

ek� is the unit polarization vector with �= ±1 for circular
polarization ��±�, A0��k�= �� /2��0�kV�1/2, and Ceh

=�d3r �c
*�r ,���v�r ,��, where �n is the envelope function of

a carrier in the band n=c ,v. For cubic symmetry, ek�
* ·pcv

*

= pcv�cos �−���e−i�� /2� pcvm���� ,��, where � and �
are the polar and the azimuthal angle of the photon
emission direction, respectively. With the transition �e ,��
→bv−��rv2��g�, a photon,

��,�,�� = N����m�,+1��,����+� + m�,−1��,����−�� , �6�

is emitted into the direction �� ,��. Here, N���= �2/ �1
+cos2 ���1/2 is a normalization factor. Equation �6� shows
that for �=0, a spin-up ��= +1� electron generates a ��−�
photon, whereas a ��+� photon is obtained from a spin-down
��=−1� electron. The admixture of the opposite circular po-
larization increases with �, leading to linear polarization for
�=� /2. For ��0, the spin-inverted states �+1,� ,�� and
�−1,� ,�� have interchanged coefficients for ��+� and ��−�, up
to a relative phase determined by the �global� phase factors
exp�−i���. Note that in two-photon states the azimuthal
angles thus can provide a relative phase, as we exploit below.

A. Entangled four-photon state

The two photons produced at recombination are entangled
with the two holes that remain in the dots, due to the anti-

symmetric hole ground state. By injecting a pair of electrons
with spins polarized in the xy plane into the dots,33 a four-
photon state of the Greenberger-Horne-Zeilinger �GHZ�
type34 can be produced if T1,X and T2,X exceed the exciton
lifetime �X. For the two polarized electrons, only the electron
spin orientation in z direction which satisfies the optical se-
lection rules contributes to the optical transition, respec-
tively. For circularly polarized photons emitted along z, the
electron Bell states give rise to the photon states,

��±� → ��+�−�−�+� ± ��−�+�+�−� , �7�

��±� → ��−�−�+�+� ± ��+�+�−�−� , �8�

where the first two entries indicate the first photon pair �L,R�
and the third and fourth entry the second photon pair �L,R�,
respectively. Normalization has been omitted for simplicity.
Yet, the second photon pair is generated by neutral excitons
and is thus exposed to the same problems as the biexciton
decay cascade in asymmetric quantum dots. Here, a cavity
can be used to maintain the GHZ state since the energy en-
tanglement of the second photon pair can be erased,28 and �X
can be shortened due to the Purcell effect to reduce exciton
polarization decoherence.

B. Entangled two-photon state

Full bipartite photon entanglement of the first photon pair
is obtained, e.g., by directing the second photon pair via
secondary optical paths to a linear polarization measurement
that is performed before the first photon pair is measured;35

see Fig. 2�a�. Even different bases, ��H� , �V�� and ��H�� , �V���,
can be chosen for the two photons of the second pair. Note
that the electron-hole exchange interaction in elliptical dots
assists this projection into linearly polarized eigenstates
�along the major and the minor axis of the dots, respectively�
already during the lifetime of the remaining two excitons.
While the loss of �linear� polarization coherence is tolerable
for these excitons, T1,X��X is required for entanglement of
the first photon pair. This suggests that the scheme presented
here can be realized with typical quantum dots; see Ref. 29
and references therein.

If the second photon pair is measured in the state �HH�� or
�VV��, the electron Bell states have given rise to the two-
photon states,

��±� → � + 1,�1,�1�L�− 1,�2,�2�R

± �− 1,�1,�1�L� + 1,�2,�2�R, �9�

��±� → � + 1,�1,�1�L� + 1,�2,�2�R ± �− 1,�1,�1�L�− 1,�2,�2�R.

�10�

Here, normalization has been omitted for simplicity. If the
second photon pair is measured as �HV�� or �VH��, � is
replaced by � on the right-hand side of Eqs. �9� and �10�.

Obviously, above two-photon states �9� and �10� are maxi-
mally entangled for �1=�2=0. For �1=�2� �0,� /2�, the to-
tal relative phase factor between the two-photon states in Eq.
�9� is exp�i�+2i ���. Here, ��=�1−�2, and the relative
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phase of the two-electron states is �=� for ��−� and �=0 for
��+�. For Eq. �10�, the relative phase factor is exp�i�
+2i��1+�2��, with �=� for ��−� and �=0 for ��+�. By
tuning the relative phase factors in Eqs. �9� and �10� to −1,
two circularly polarized photons can be recovered for �1
=�2� �0,� /2� from the elliptically polarized single-photon
states due to quantum mechanical interference.36 Thus, maxi-
mal entanglement is transferred from two electron spins to
the polarizations of two photons for certain ideal emission
angles. For ��−����+��, ��=0���=� /2� needs to be satis-
fied mod �, whereas the condition for ��−����+�� is �1+�2

=0��1+�2=� /2�mod �. For �1=�2=� /2 these two-photon
states vanish completely due to destructive interference.

IV. PHOTON ENTANGLEMENT AS A FUNCTION OF
EMISSION DIRECTIONS

For arbitrary emission directions of the two photons, the
degree of polarization entanglement can be quantified by the
von Neumann entropy E=−tr2��̃ log2 �̃�. Here, �̃=tr1 � is the
reduced density matrix of the two-photon state � with the

trace tr1 taken over photon 1. For a maximally entangled
two-photon state E=1, while E=0 represents a pure state �̃
�which implies the absence of bipartite entanglement�. If the
two electrons recombine after times much shorter than the
spin lifetimes T1 ,T1� ,T2 ,T2�, E oscillates for Eq. �9� as a func-
tion of �� of the two emitted photons between a minimal
value,

Emin = log2�1 + x1x2� −
x1x2 log2�x1x2�

1 + x1x2
, �11�

and a maximal value,

Emax = log2�x1 + x2� −
x1 log2�x1�

x1 + x2
−

x2 log2�x2�
x1 + x2

, �12�

where xi=cos2 �i, which is �only� obtained for the ideal
angles �1 and �2 mentioned above; see Figs. 2�b� and 2�c�.
For Eq. �10�, E oscillates between Emin and Emax as a func-
tion of �1+�2. As expected, Emax=1 for all �1=�2
� �0,� /2�. The discontinuity in Emax for �1=�2=� /2 is due
to the vanishing two-photon state.

V. CONCLUSIONS

We have studied the transfer of entanglement from elec-
tron spins to photon polarizations. We have discussed the
generation of entangled four-photon and two-photon states
via the injection of spin-entangled electrons into quantum
dots charged with two excess holes. We have proposed a
scheme to achieve complete entanglement transfer from two
electron spins to two photons. We have shown that this
scheme can even be realized with quantum dots exhibiting an
exciton exchange splitting. We have shown the dependence
of the photon entanglement on the emission angles and iden-
tified the conditions for maximal entanglement. This offers
the possibility to efficiently test Bell’s inequalities for elec-
tron spins. In addition, our results show that a continuous set
of directions exist along which entanglement is maximal.
Finally, similar schemes to produce entangled photons can be
realized using two tunnel-coupled dots37 instead of two iso-
lated dots. In such a setup, it is essential that tunnel coupling
is provided for the conduction-band electrons, whereas the
valence-band holes are not tunnel coupled and thus localized
in the individual dots. After a positively charged exciton is
created in each of the two dots, the spin entanglement is
provided from the singlet ground state of the delocalized
electrons and can be transferred to the photons, similarly as
described in this work.
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5 K. Gündoḡdu, K. C. Hall, T. F. Boggess, D. G. Deppe, and O. B.

Shchekin, Appl. Phys. Lett. 84, 2793 �2004�.
6 J. Seufert, G. Bacher, H. Schömig, A. Forchel, L. Hansen, G.

Schmidt, and L. W. Molenkamp, Phys. Rev. B 69, 035311
�2004�.

7 Semiconductor Spintronics and Quantum Computation, edited by
D. D. Awschalom, D. Loss, and N. Samarth �Springer-Verlag,
Berlin, 2002�.

8 M. Kroutvar, Y. Ducommun, D. Heiss, M. Bichler, D. Schuh, G.
Abstreiter, and J. J. Finley, Nature �London� 432, 81 �2004�.

9 G. Burkard, D. Loss, and E. V. Sukhorukov, Phys. Rev. B 61,
R16 303 �2000�.

10 J. C. Egues, G. Burkard, and D. Loss, Phys. Rev. Lett. 89,
176401 �2002�.

11 J. Bell, Physics �Long Island City, N.Y.� 1, 195 �1965�.
12 P. Recher, E. V. Sukhorukov, and D. Loss, Phys. Rev. B 63,

165314 �2001�.
13 G. B. Lesovik, T. Martin, and G. Blatter, Eur. J. Biochem. 24,

287 �2001�.
14 P. Recher and D. Loss, Phys. Rev. B 65, 165327 �2002�.
15 C. Bena, S. Vishveshwara, L. Balents, and M. P. A. Fisher, Phys.

Rev. Lett. 89, 037901 �2002�.
16 V. Bouchiat, N. Chtchelkatchev, D. Feinberg, G. B. Lesovik, T.

Martin, and J. Torrés, Nanotechnology 14, 77 �2003�.
17 D. S. Saraga and D. Loss, Phys. Rev. Lett. 90, 166803 �2003�.
18 P. Recher and D. Loss, Phys. Rev. Lett. 91, 267003 �2003�.
19 D. S. Saraga, B. L. Altshuler, D. Loss, and R. M. Westervelt,

Phys. Rev. Lett. 92, 246803 �2004�.
20 O. Benson, C. Santori, M. Pelton, and Y. Yamamoto, Phys. Rev.

Lett. 84, 2513 �2000�.
21 E. Moreau, I. Robert, L. Manin, V. Thierry-Mieg, J. M. Gérard,

and I. Abram, Phys. Rev. Lett. 87, 183601 �2001�.
22 A. Kiraz, S. Fälth, C. Becher, B. Gayral, W. V. Schoenfeld, P. M.

Petroff, L. Zhang, E. Hu, and A. Imamoḡlu, Phys. Rev. B 65,
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