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We present theoretical and experimental results for the density dependence of terahertz emission from
undoped biased semiconductor superlattices excited via an ultrashort optical pulse. We show that exciton-
exciton interactions lead to a density-dependent terahertz frequency. At low to moderate densities, the carriers
undergo Bloch oscillations, with the oscillation frequency initially redshifting with increasing density. At
higher densities, the Bloch oscillations transform into plasma oscillations and the oscillation frequency blue-
shifts with increasing density. We model the system using our excitonic Bloch equations, solved nonperturba-
tively in the optical field by employing a factorization scheme that allows for the inclusion of dynamic
screening. We show that the observed density dependence on the terahertz frequency cannot be obtained using
a method that is perturbative in the optical field.
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I. INTRODUCTION

The main difficulty in treating the ultrafast coherent re-
sponse of semiconductor heterostructures lies in trying to
calculate the response to infinite order in the optical field
while retaining the key many-body effects.1–15 On the one
hand, the temporal duration of the photon-matter interaction
is usually much shorter than either the dephasing or relax-
ation time. Thus, except in the low-field perturbation limit,
the ultrafast dynamics should intrinsically be treated to infi-
nite order in the optical field, especially when a system is
resonantly excited, where such effects as Rabi flopping may
occur. On the other hand, in contrast to atomic gases, many-
body Coulomb correlations among quasiparticles can pro-
foundly affect the nonlinear response in semiconductors.2

Like in classical statistical physics, the key in quantum ki-
netics is to deal with an infinite hierarchy of correlation func-
tions, the quantum version of the Bogoliubov-Born-Green-
Kirkwood-Yvon �BBGKY� hierarchy. There are many ways
to truncate the hierarchy such as a perturbation theory to a
definite order in the optical field6,16–18 and the cluster-
expansion method,3,8,19 which was originally employed in
truncating the BBGKY hierarchies in classical statistics.
Many important optical properties of semiconductors can be
explained by employing just the lowest-order cluster expan-
sion, as can been seen in the success of the semiconductor
Bloch equations3,20 �SBE’s� in treating many phenomena.
The first-order SBE’s are basically a set of time-dependent
Hartree-Fock �or mean-field� equations and thus include only
static screening. Higher-order cluster expansions are neces-
sary if one wants to account for such phenomena as dynamic
screening and dephasing. Dynamic screening appears self-
consistently only beyond a first-order cluster expansion.8

Thus, it is necessary to go beyond the first-order expansion if
carrier-carrier or carrier-phonon correlations play an impor-
tant role in the dynamics being investigated.5,9,21

There are many successful quantum kinetic treatments be-
yond first-order cluster expansion such as those using either

Green’s function22–24 or density-matrix formalism8,25,26 in
such systems as bulk semiconductors or single quantum
wells. Unfortunately, the dynamic equations resulting from a
higher-order cluster expansion can be computationally pro-
hibitive for complex systems such as superlattices. Thus, one
is generally forced to use a different truncation approach for
such systems. One option is to employ a perturbative expan-
sion in the optical field to a definite order. Although this has
been successful in the treatment of many systems, as we will
show it cannot be applied successfully to the system we are
considering here, even at moderate densities. We therefore
take a different approach.

In this work, we employ an exciton basis27 to treat the
dynamics of excitons in a biased semiconductor superlattice
�BSSL�. In other words, we employ a composite quasiparti-
cle through a canonical transformation to replace the former
single-particle electron and hole states. As we shall show,
using an excitonic basis greatly simplifies the dynamics cal-
culations. By using an excitonic basis, we can treat higher-
order Coulomb correlations in a much easier and more effi-
cient way than is possible in an electron-hole basis. The key
approximation that we employ is to factorize a three-point
exciton correlation function into the product of two-point
and one-point correlation functions. This roughly corre-
sponds to the factorization of a six-point electron-hole corre-
lation function into the product of four-point and two-point
electron-hole correlation functions and corresponds approxi-
mately to a second-order cluster expansion, where scattering
effects have been neglected. This factorization allows us to
include dynamic screening in the formalism, which is not
accounted for in the usual first-order SBE’s. The crucial fea-
ture of our approach is that the use of the exciton basis re-
duces enormously the computational effort needed, while
still capturing the key features of the system dynamics that
would be lost in a perturbative expansion in the optical field.

Although the excitonic approach has definite advantages,
there has been considerable controversy in recent years re-
garding how to deal with the fact that the excitons are not

PHYSICAL REVIEW B 72, 115313 �2005�

1098-0121/2005/72�11�/115313�12�/$23.00 ©2005 The American Physical Society115313-1

http://dx.doi.org/10.1103/PhysRevB.72.115313


exact bosons, but rather are composite bosons.28,29 The de-
viation of the excitons from pure bosonic behavior leads to
so-called phase-space filling �PSF� effects.28,29 However, the
controversy regarding the excitonic basis is only relevant at
relatively high densities, where PSF becomes important. At
the densities considered in most of the results presented here,
it is expected that the PSF effects will be small and thus there
is no difficulty in using an excitonic approach. This is dis-
cussed in more detail in the last section.

Just as in the case of the SBE’s, our approach treats the
dynamics nonperturbatively in the optical field.3,11,19 This is
very important for the system being studied because, as we
show, approaches that are perturbative in the optical field
break down when the optical intensity is larger than a certain
critical value. Perturbative approaches are widely used and
can account for various optical phenomena, such as four-
wave mixing �FWM� signals in BSSL’s.18 However, in
BSSL’s, higher-order effects have been seen both
experimentally10,15 and theoretically.27,30 It is thus essential
that a nonperturbative approach be employed in treating
BSSL’s when high laser intensities are used.

In this work, we will investigate the terahertz �THz� emis-
sion from a BSSL �Refs. 31 and 32� excited via ultrashort
optical pulses. BSSL’s are of fundamental importance for
their role in furthering the understanding of transport in pe-
riodic systems and for their potential application as THz ra-
diation sources.33 In a single-particle picture, the electronic
eigenstates of a BSSL form the so-called Wannier-Stark lad-
der �WSL� with the energies given by En=E0+neFod, where
d is the superlattice period, Fo is the applied dc field, and n is
the WSL index. Bloch oscillations �BO’s� occur when wave
packets are formed from a superposition of WSL states cre-
ated via an ultrashort optical pulse. The BO frequency is
given by �B�eFod /�, which, in the single-particle picture,
is only a function of the external dc field Fo for a given
BSSL. This picture is complicated somewhat by the correla-
tions between electrons and holes, which leads to the forma-
tion of excitons.34 The electron-hole correlations within ex-
citons lead to significant modifications of the single-particle
WSL. However, the resulting excitonic states still retain
many of the basic features of the single-particle WSL and
form the so-called excitonic WSL �see Fig. 1�. Excitation via
an ultrashort optical pulse thus leads to excitonic BO’s,
which have been investigated by a large number of
authors.6,8–11,16–18,20,27,33,35 As will be shown both theoreti-
cally in this paper, the above picture begins to or even com-
pletely breaks down when the exciting optical pulse becomes
intense enough that carrier interactions become important.

As discussed above, we will employ an exciton formalism
to investigate the ultrafast dynamics in BSSL’s. In this for-
malism, the carrier-carrier interactions are included at two
levels. The electron-hole correlations for a single electron-
hole pair are included by employing a basis of excitonic
states. Then, the residual exciton-exciton interaction is in-
cluded in the long-wavelength limit through a dipole-dipole
interaction.18 The exciton-exciton interaction in the BSSL
amounts to a self-induced internal electric field that can sig-
nificantly modify the nonlinear response of the system. The
effect of this internal intraband field is particularly large in
BSSL’s due to the asymmetry introduced by the applied dc

field. It is this asymmetry that leads to the very large nonlin-
earities we observe. The key theoretical and experimental
results in this work are the following: as the pulse intensity is
increased, the BO frequency begins to redshift due to the
reduction of the applied dc field via the dc part of the exci-
tonic intraband polarization. As the intensity is increased fur-
ther, dynamic screening begins to play a significant role and
we find that a competition arises between BO’s and plasma
oscillations �PO’s�. Finally, we show theoretically that at
very high intensities, the BO’s completely disappear and the
dynamics becomes essentially pure PO’s. As we shall show,
none of key experimental effects in this work can be de-
scribed satisfactorily via perturbation theory, but are de-
scribed very well within our nonperturbative formalism. We
compare our calculated results to experimental results and to
results using fourth-order perturbation theory. We find good
agreement between our nonperturbative theory and experi-
ment and show that a perturbative approach fails to repro-
duce many experimentally observed features, even at moder-
ate excitation densities.

The paper is organized as follows. First, in Sec. II, we
present the formalism for treating intraband dynamics both
perturbatively and nonperturbatively. Then, in Sec. III, we
look at the induced dc field and energy conservation to show
that, for high to moderate densities, only the nonperturbative
theory produces physical results. In Sec. IV, we present the-
oretical and experimental results for the intensity dependence
of the frequency of the emitted THz radiation. In Sec. V, we
show theoretically that at very high intensities, plasma oscil-
lations appear. Finally, in Sec. VI, we summarize our find-
ings.

II. DYNAMIC EQUATIONS

In this section, we derive the equations of motion of the
excitonic correlation functions used to calculate the intra-
band and interband response of a BSSL. We begin by pre-
senting the excitonic Hamilton that we developed in earlier
work.18,27 We then use this Hamiltonian to derive both the

FIG. 1. The calculated linear absorption spectrum for the BSSL
with a bias field of Fo=11.5 kV/cm. Also shown is the power spec-
trum of the transform-limited Gaussian optical pulse used in all
calculations and experiments. The state labelling is described in
Sec. III.
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perturbative and nonperturbative equations of motion for the
correlation functions.

A. System Hamiltonian

We express our system Hamiltonian in the basis of exci-
tonic states, which are the electron-hole eigenstates of the
superlattice in the presence of an applied dc field, Fo. These
include the 1s-like excitonic Wannier-Stark ladder states as
well as higher in-plane excitonic states, including continuum
electron-hole pair states. Treating the exciton-exciton inter-
action in the long-wavelength dipole approximation, the
Hamiltonian is given by18,27

H = �
�

���B�
† B� + V�− Eopt · Pinter +

1

2�
Pintra · Pintra� ,

�1�

where V is the volume of the system, � is the static dielectric
constant and B�

† �B�� is the creation �annihilation� operator
for a WSL exciton in the dc field, with internal quantum
number � and energy ���. The optical field takes the form

Eopt�t� = E�t�e−i�ct + c.c., �2�

where �c is the central laser frequency and E�t� is the ul-
trafast optical pulse envelope. The polarization operator is
defined as

P � Pinter + Pintra, �3�

where Pinter and Pintra denote, respectively, the interband and
intraband polarization. The interband polarization is defined
as

Pinter �
1

V
�
�

�M�B�
† + M�

* B�� , �4�

where

M� = M0
	A
 dz��*�z,z,0� �5�

is the interband dipole matrix element of the �th excitonic
state, ����, where M0 is the bulk interband dipole matrix
element and A is the transverse area. The intraband polariza-
tion is defined as

Pintra �
1

V
�

�,��

G�,��B�
† B��, �6�

where G��� is the intraband dipole matrix element between
two excitonic states ���� and �����, given by

G��� = ��� − e�ze − zh������ . �7�

The detailed derivations of these expressions for the polar-
ization are given in our earlier work.18 We finally note that
the dependence of the excitonic states on the exciton center
of mass wave vector was neglected in the above Hamil-
tonian. This is valid since we are only considering single-
pulse excitation, where all the optically generated excitons

have the same momentum, given by the tiny photon momen-
tum.

B. Nonperturbative equations

Using the exciton Hamiltonian of Eq. �1�, we first derive
the dynamic equations for the exciton creation operator B�

†

from the Heisenberg equation of motion. Taking the expec-
tation value of the equation of motion and adding a phenom-
enological interband dephasing time constant, T�=T2inter, we
obtain

i�
dB�

† �
dt

+ ���� +
i

T�
�B�

† � − Eopt · M�
* =

−
1

�0�

1

V �
��,��,��

G��,�� · G��,�B��
† B��B��

† � . �8�

Solving this equation would require the solution to the equa-
tion of motion for B��

† B��B��
† �, which in turn would require

equations of motion for five operator correlation functions
and so on. This, therefore leads to an infinite hierarchy of
equations. There are two common ways to truncate such hi-
erarchies: �i� adopt a factorization scheme or �ii� apply per-
turbation theory in the optical field. In this section, we em-
ploy a factorization, while in the next we use perturbation
theory.

The factorization scheme that we use for the triple-
operator term is

B��
† B��B��

† � = B��
† B���B��

† � . �9�

This factorization is similar to the random-phase or Hartree-
Fock approximation used in deriving the semiconductor
Bloch equations.3 However, because we are using the exci-
tonic basis, our approximation is preferable for the current
system because it fully retains the electron-hole correlations
within an exciton.18,27 Using this in Eq. �8�, we obtain

i�
dB�

† �
dt

+ ���� +
i

T�
�B�

† � − Eopt · M�
*

= Eintra�
��

G��,�B��
† � , �10�

where

Eintra � −
1

�0�
Pintra� �11�

is the induced intraband electric field in the structure. The
term on the right-hand side �RHS� of Eq. �10� originates
from the exciton-exciton interaction term �1/2��Pintra ·Pintra

in the Hamiltonian �Eq. �1��. Therefore, within our formal-
ism, the exciton-exciton interaction in the BSSL system
amounts to a self-induced electric field Eintra within the su-
perlattice.

Using the factorization scheme

B��
† B��B��

† B�� = B��
† B���B��

† B�� , �12�

we obtain from Eq. �1� the intraband equation of motion:
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i�
dB�

† B��
dt

= − ���� − �� +
i

T��
�B�

† B��

+ Eopt · �M�
* B�� − M�B�

† ��

+ Eintra�
��

�G��,�B��
† B�� − G��,�

* B�
† B���� ,

�13�

where T�� is the intraband dephasing constant, T2intra when
���, and the exciton population lifetime T1ex when �=�.
After solving the set of coupled Eqs. �10� and �13�, we obtain
the intraband polarization by taking the expectation value of
Eq. �6�. The THz signals are then obtained by taking the
second derivative of this intraband polarization.

The factorization in Eq. �12� is of key importance in our
formalism. Although this results in the loss of biexciton cor-
relations, the factorization makes it possible for us to treat
the dynamics to infinite order in the optical field—i.e., non-
perturbatively. As we will show, this nonperturbative ap-
proach is necessary to account for the experimental results in
the case of high optical excitation. In Eq. �13�, the local
self-generated intraband electric fields Eintra defined in Eqs.
�6� and �11� depend only on the correlation functions B�

† B��.
Therefore, by using the factorization in Eq. �12�, the local
fields Eintra are in fact treated self-consistently. In other
words, any change of the intraband local fields is fed back to
the dynamic equations self-consistently. This allows the in-
stantaneous net electric field to directly affect the exciton
dynamics.

Generally, most methods in treating quantum kinetics are
either perturbative in the optical field, but keep as many of
the Coulomb correlations as possible, or are nonperturbative
in the optical field, but keep certain types of Coulomb cor-
relations up to definite orders. However, it is impossible to
be nonperturbative in the both optical field and all types of
Coulomb correlations. When the optical field is larger than a
certain critical value, then it is preferable to treat the system
to infinite order in the optical field at the cost of losing
higher order Coulomb correlations. We refer to our approach
as a nonperturbative approach, in that it is nonperturbative
in the optical field. Our approach is similar to the recent
work of Axt and Mukamel on molecular systems,11 except
that we neglect phase-space filling and explicitly employ the
intraband polarization, which greatly reduces the computa-
tional effort. Because we use an excitonic basis, our ap-
proach cannot be compared directly to recent cluster-
expansion approaches.8 However, roughly speaking, our
approach corresponds to a second-order cluster expansion,
where dynamic screening is included, but carrier-carrier scat-
tering is neglected. In deriving the above equations of mo-
tion, we have assumed that the excitons are bosons and have
thus neglected PSF effects. These effects can be taken into
account using our formalism by using nonbosonic commuta-
tion relations.18 However, it can be estimated that these
phase-space filling effects will not play a significant role un-
til densities are well above 1010 cm−2 per period. Although it
is preferrable to include PSF effects as in other works em-
ploying an exciton basis,11,36 to treat the intraband dynamics

self-consistently while still including the PSF effects would
make the calculations completely intractable in the BSSLs
investigated.

C. Perturbation theory equations

To demonstrate the necessity of employing a nonperturba-
tive approach at moderate to high densities, we wish to com-
pare the results from our nonperturbative theory with pertur-
bation theory results. Thus, we now derive dynamic
equations using perturbation theory to second16,17 and fourth
order in the optical field.

We expand the exciton creation operator as

B�
† = B�

†�1� + B�
†�2� + B�

†�3� + ¯ , �14�

where the superscripts describe the order in the optical field.
Using the Heisenberg equations of motion and employing
factorizations similar to that of Eq. �9�, we obtain the follow-
ing equations of motion for describing the intraband dynam-
ics up to fourth order in the optical field:

i�
dB�

† ��1�

dt
= − ���� +

i�

T�
�B�

† ��1� + Eopt · M�
* , �15�

i�
dB�

† B���2�

dt
= − ���� − ��� +

i�

T��
�B�

† B���2�

+ Eopt · �M�
* B���1� − M�B�

† ��1�� , �16�

i�
dB�

† ��3�

dt
= − ���� +

i�

T�
�B�

† ��3� + Eintra
�2� · �

��

G��,�B��
† ��1�,

�17�

i�
dB�

† B���4�

dt
= − ���� − ��� +

i�

T��
�B�

† B���4�

+ Eopt · �M�
* B���3� − M�B�

† ��3��

+ Eintra
�2� · �

��

�G��,�B��
† B���2�

− G���
* B�

† B���
�2�� . �18�

The intraband polarizations up to second and fourth order in
the optical field are given, respectively, by

Pintra
�2� � �

1

V
�

�,��

G�,��B�
† B���

�2�, �19�

Pintra
�4� � �

1

V
�

�,��

G�,���B�
† B���

�2� + B�
† B���

�4�� . �20�

The term Eintra
�2� in Eqs. �17� and �18� is defined as

Eintra
�2� = −

1

�0�
Pintra

�2� � . �21�

The corresponding THz signals up to second- and fourth-
order optical responses are obtained by taking a second de-
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rivative with respect to time. We note that in addition to
factorizations of the form given in Eq. �9�, we have also
employed four operator factorizations of the form

B��
†�1�B��

�1� B��
†�1�B�

�1�� = B��
† B����2�B��

† B���2�. �22�

Although strictly speaking we do not need to employ factor-
ization in the fourth-order equations, we use the factoriza-
tions because they speed up the calculations enormously. We
have shown in previous work18 that they have only a very
small effect on the calculated polarizations.

III. COMPARISON OF PERTURBATIVE AND
NONPERTURBATIVE RESULTS

In this and all following sections, the structure we inves-
tigate both theoretically and experimentally is an undoped
GaAs/Ga0.3Al0.7As superlattice with well width of 6.7 nm
and barrier width of 1.7 nm. The physical parameters used in
calculations are given in Ref. 34. The applied dc field is
taken as 11.5 kV/cm in all calculations and is estimated as
12±0.5 kV/cm in the experimental setup. This gives a WSL
energy spacing of approximately 10 meV and a correspond-
ing BO frequency of 2.4 THz.

We use Eqs. �10�, �13�, and �15�–�18�, to calculate the
emitted THz electric field when the BSSL is excited by an
ultrashort optical pulse. In this section we compare the ul-
trafast dynamics of the BSSL calculated to second order,
fourth order, and nonperturbatively in the optical field. We
then discuss the conditions under which finite-order pertur-
bation theory breaks down.

In the dynamics calculations, 1s and higher s-like in-plane
excitonic states �HIES’s� in BSSL’s are all included. These
states are calculated using the two-well excitonic states de-
scribed in Ref. 16. To obtain convergence, we need to con-
sider at least 103 internal states. Thus, at least 106 dynamics
equations have to be solved simultaneously. The inclusion of
HIES’s is particularly important in modeling the dynamics in
BSSL’s. Even in the low exciton density limit, the HIES’s
can qualitatively modify the intraband dynamics of BSSL’s,
as shown in Ref. 16. We only include the heavy-hole exci-
tonic states in our calculations as these dominate the re-
sponse for the conditions considered here. Although the ex-
citonic states are very complicated,16 for the convenience of
discussion they can be approximately labeled by the index
pair �= �n ,m�, where n indicates the approximate WSL in-
dex of the exciton and m gives the dominant quantum num-
ber for in-plane motion. In this scheme, the intraband dipole
of the �n ,m� state in the z direction is approximately −ned,
where n= . . . ,−2 ,−1 ,0 ,1 ,2 , . . ., as is the case for single-
particle WSL states. The states with m=1 are 1s-like exci-
tonic states, while the states with m	1 correspond to HIES’s
with s-symmetry, up to continuum states.

We emphasize here that employing an exciton basis is
very critical in modeling the BSSL’s. This allows us to in-
clude the electron-hole correlations within an exciton ex-
actly. Furthermore, we capture the dynamic screening por-
tion of the second-order Coulomb correlations, which is
essential in accounting for the experimental phenomena be-

ing investigated. Employing such a basis also increases the
calculation efficiency enormously relative to an electron-hole
basis and thus makes the problem tractable. In Ref. 16, we
presented an efficient way for calculating the exciton basis
including both bound and unbound excitons up to continuum
states. It involves two matrix diagonalization processes: cal-
culating a two-well exciton basis first and then using this
two-well basis to calculate the final BSSL excitonic basis.
Such a method for calculating the full excitonic basis is ef-
ficient in the sense that once the two-well basis is obtained
for a certain structure, we can obtain the final exciton basis
for a given applied dc field by a further diagonalization that
is relatively fast. We do not need to recalculate the two-well
basis each time the dc field is changed. Furthermore, once
the exciton basis is obtained, we can calculate the intraband
dynamics quite rapidly �approximately 2 h on a 3-GHz Xe-
non processor for a single curve�. However, if we were to
employ an electron and hole basis to directly calculate the
intraband dynamics of BSSL’s, the calculation time would be
much longer, as the first-order correlations between electrons
and holes essentially have to be recalculated again for each
excitation condition in the dynamics calculations. In sum-
mary, the key feature of our method employing an exciton
basis is that we automatically include the electron-hole cor-
relations within an exciton, thereby allowing us to efficiently
calculate intraband dynamics with only first-order two-
operator excitonic correlation functions, rather than the four-
operator correlation functions required in an electron-hole
basis.

The optical pulse used throughout this work to excite the
system both in theory and experiments is a transform-limited
86-fs Gaussian pulse with a spectral full width at half maxi-
mum �FWHM� of 21 meV and a central frequency centered
on �c=��−1,1�, which corresponds to the n=−1 1s excitonic
WSL state. We present in Fig. 1 the calculated absorption
spectrum and the pulse power spectrum for the dc field and
optical pulse used in this work. The 1s-like heavy-hole WSL
excitonic states are labeled by the indices �n ,1�.

The optical pulse has been chosen so as to excite a super-
position of 1s-like WSL states as well as a portion of the
continuum. We expect such a pulse to excite Bloch-
oscillating excitonic wave packets. Thus, the induced intra-
band field Eintra will contain an ac portion oscillating at THz
frequencies corresponding to Bloch oscillations. However, it
will also contain a dc portion that will persist as long as the
excitonic population is present. This dc component arises
because a BSSL is an asymmetric system, with the applied
dc field introducing a strong asymmetry into the envelope
functions of the excitonic eigenstates. Thus, in general these
eigenstates have relatively large permanent intraband dipole
moments ��−end for state �n ,m��.

When an optical pulse creates an excitonic population, the
excitonic permanent dipoles result in a generation of an in-
duced intraband dc field Edc. In this section alone, we set the
excitonic lifetime T1ex to be infinite to facilitate the compari-
son of results from the different calculation methods. Thus
after the optical pulse has passed, the dc component of the
intraband field remains constant. We now want to consider
the dependence of this induced dc field on excitonic density.
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As we have discussed in earlier papers,16 when the central
laser frequency is below the transition frequency ��0,1� of the
n=0 1s excitonic WSL state, the photogenerated excitons
largely have dipoles that point in the +z direction and the net
dc component Edc of the induced field opposes the original
external dc field Fo. This induced field depends on the exci-
ton density excited by the ultrafast optical pulse. As the pulse
is absorbed, the total dc field, Fo+Edc, will get smaller and
smaller �because Edc opposes Fo�. Thus, excitons that are
created at later times will be created in a smaller field than
those at earlier times. They will therefore have, on average, a
smaller permanent dipole. In fact, in the limit that the total dc
field is zero, they will have no net dipole in z direction.
Furthermore, if the net field were to reverse, they would have
a net dipole that would add to the external field. Thus it is
clear that in the limit of high density, the induced dc field
should be equal to the negative of the applied field—i.e.,
Edc→−Fo. Thus, regardless of the optical intensity �and
hence generated excitonic density�, the net internal dc field
can approach zero but should never be negative. Therefore
any accurate method for treating ultrafast dynamics in a
BSSL or any other asymmetric structure �such as a biased
quantum well or biased coupled-double quantum wells� must
ensure this limit.

In Fig. 2, we plot the induced dc field Edc as a function of
exciton density for second-order, fourth-order, and nonper-
turbative �infinite order� calculations. The densities 
 given
in all that follows are the peak exciton areal densities per
period. To second order �and to a good approximation to
infinite order as well�, the density is proportional to the op-
tical pulse energy �or peak intensity�. In these calculations,
we take the interband and intraband dephasing times to be
T2inter=0.33 ps and T2intra=0.52 ps, respectively. We see that
in the second-order simulations, Edc decreases linearly with
respect to density. This occurs because there are no exciton-
exciton interactions to second order. Therefore, the total in-
duced dc field Edc is just the sum of dc fields arising from all
of the induced excitons, which are all created in the same net
dc field Fo. Thus, the induced field to second order is exactly
proportional to the density.

The Edc calculated via the fourth-order simulations de-
creases even faster with density than in the second-order

ones and therefore does not guarantee that the net dc field,
Fo+Edc, is greater than zero. In contrast, the Edc calculated in
the nonperturbative simulations indeed approaches the satu-
ration limit of −Fo, as shown in the dash-dotted line in Fig. 2.
The nonperturbative result produces the physically correct
result because the self-induced field Eintra provides negative
feedback in the dynamic equations �Eqs. �10� and �13��. In
contrast, there is no direct feedback in the fourth-order equa-
tions, with the second-order intraband response �Eq. �16��,
for example, being completely independent of the induced
intraband field. We note that the nonperturbative calculations
are not fully converged for carrier density between 1.25
�1010 cm−2 and 10.0�1010 cm−2 for the basis size used.
The reasons for this are discussed in Sec. V. However, results
are converged at high densities where the correct limit is
found. Furthermore, we find that regardless of the basis size
employed, the calculated net internal dc field never goes be-
low zero.

As further evidence of the necessity of employing a non-
perturbative method when we reach moderate to high exciton
densities, we now consider conservation of energy using the
two methods. If the exciton population decay time and all of
the dephasing time constants are set to infinity, then it is clear
from the Hamiltonian that the total energy of the system
should be conserved once the exciting optical pulse has
passed. This energy includes both the single exciton energies
and the exciton-exciton interaction energy.

We plot in Fig. 3 the total energy of the system normal-
ized to the final exciton density as a function of time for
fourth-order and nonperturbative calculations for an exciton
density of 1.0�1010 cm−2. The energy is taken relative to �0,
1� excitonic state �see Fig. 1�. Thus, after the optical pulse
has passed, this quantity is the total energy per exciton rela-
tive to the n=0 1s heavy-hole exciton. In these calculations,
we have set all dephasing and lifetimes to infinity. In the
nonperturbative results, we find that the energy is constant
once the pulse has passed, a result that can easily be proven
analytically from the nonperturbative equations of motion. In
this case, the exciton populations are driven up and down the
WSL by the induced intraband field in such a way that the
resulting change in the noninteracting excitonic energy �first
term in Eq. �1�� exactly balances out the change in the inter-
action energy. In the fourth-order results—the lowest order

FIG. 2. Calculated induced internal dc field Edc as a function of
the exciton areal density 
.

FIG. 3. Total energy per exciton as a function of time for the
fourth-order, and nonperturbative �infinite order� calculations.
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which includes the exciton-exciton interactions in any way—
the energy is clearly not conserved, even after the optical
pulse has passed, with fluctuations in the energy being as
large as 13 meV, which is larger than the WSL spacing. In
this case there is no such balance and the oscillations in the
interaction energy �essentially due to the BO’s� become
much larger than the oscillations in the bare excitonic ener-
gies. The fourth-order method will only yield even approxi-
mate conservation of energy when the interaction energy is
much less than the total bare exciton energy. In fact, even for
an exciton density as low as 
=0.2�1010 cm−2, the oscilla-
tions in the total energy per exciton are still roughly
1.1 meV ��10% of the WSL spacing�. Thus, it would appear
that the fourth-order results are only valid when the exciton
density is below 
=0.2�1010 cm−2. For such densities, the
induced dc field is less than 5% of the applied dc field.

From the above discussion, it is evident that a nonpertur-
bative formalism is necessary in treating intraband dynamics
in BSSL’s for moderate to high densities. Perturbation meth-
ods cannot guarantee the saturation limit of the self-induced
dc electric field and cannot yield energy conservation. The
perturbation methods are only valid when the excitation den-
sity is very low and thus the internally induced dc field is
negligible. For the system considered here this will be the
case if 
�0.2�1010 cm−2. As we show in the following
sections, the higher-density phenomena of the BO frequency
redshift and coherent PO’s can only be accounted for through
nonperturbative calculations.

IV. BLOCH OSCILLATION REDSHIFT

In this section we present experimental and theoretical
results demonstrating the redshift of the BO frequency with
density. The experiments were performed on the BSSL de-
scribed in the previous section.35 The THz radiation emitted
into free space was detected by electro-optic sampling37 us-
ing a gating pulse with a duration of 70 fs. A 110� cut ZnTe
crystal with a thickness of 250 �m was employed as electro-
optic detector, which has a sharp frequency cutoff at around
4 THz.38 The sample was mounted �tilted by 50°� in a cry-
ostat and held at a temperature of 10 K.35 The THz radiation
emitted in the direction of the transmitted pump beam was
imaged by two pairs of gold-coated off-axis parabolic mir-
rors. At the position of a THz focus �in between the second
and third mirrors� a chopper was placed to modulate the THz
radiation. The signal was detected in a shot-noise-limited
balanced detection scheme.39 The pump beam was the 21-
meV-wide transform-limited Gaussian pulse discussed in the
previous section. In addition to the intense pump beam, a
weak, spectrally broad pulsed monitor beam was also
coupled in, which spatially overlapped with the pump spot
on the sample and arrived at the sample before the pump
beam. The transmission spectrum of the monitor beam was
measured to monitor and control the internal dc field of the
sample present before the pump beam hit the sample. In this
way we are certain that the applied dc field present before the
arrival of the pump beam is the same for all pump intensities.
The excitation density was calculated from the measured la-
ser spot size and the dc photocurrent extracted from the
sample.

The normalized experimental THz emission signals for
two different exciton densities are shown in Fig. 4. In this
figure and all subsequent figures where we refer to normal-
ized results, the emitted THz electric field is divided by the
peak excitonic density; i.e., the normalized signal is the THz
field per exciton. For both densities, the BO’s clearly persist
for at least four oscillations. However, the THz signal emit-
ted in the experiment with the higher exciton density has a
significantly lower frequency. In other words, the frequency
is redshifted as the excitation density is increased. This red-
shift can be seen more clearly in Fig. 5, where we plot the
amplitude of the Fourier transform of the �un-normalized�
experimental THz field for different exciton densities. As the
exciton density is increased, the spectral peak first experi-
ences a redshift, with the BO frequency decreasing almost
linearly with the density. As the density is increased further,
the rate at which the BO peak frequency shifts slows, until it
saturates at a frequency of about 1.89 THz when the density
reaches about 1.5�1010 cm−2. Finally, at higher density still
�2.02�1010 cm−2�, a slight blueshift in the BO frequency
appears.

We now present our nonperturbative and fourth-order the-
oretical results for the above experiments and show that the
observed experimental phenomena are only well accounted
for via the nonperturbative model. In these and all subse-
quent calculations, the interband and intraband dephasing

FIG. 4. The experimentally obtained emitted THz signal per
exciton as a function of time for two different exciton densities.

FIG. 5. The amplitude of the Fourier transform of the �un-
normalized� experimental THz electric fields for different exciton
areal densities.
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times are taken to be T2inter=0.33 ps and T2intra=0.52 ps, re-
spectively, to agree with those estimated from the experi-
mental results. The exciton population life time is taken to be
T1ex=1 ps. As defined in Eq. �13�, the exciton lifetime here
refers to the time that an exciton remains in a particular
excitonic eigenstate; it is not the recombination time for an
exciton, which is much longer. Because there is no ground
state for an exciton in a BSSL, these times can be consider-
ably shorter than the recombination lifetime. There is no
simple way of determining this lifetime unless we include
the microscopic treatment for exciton-exciton and exciton-
phonon scattering. Fortunately, we find that the precise
choice of this lifetime does not qualitatively affect the results
as long as it is larger than the intraband dephasing time. We
have found that even we choose the lifetime to be infinite,
the final results are not qualitatively changed. The particular
choice of T1ex=1 ps was made because it is consistent with
experimental results in the literature and it results in good
computational convergence.

Figure 6 shows the BO peak frequency as a function of
density for the experimental results and fourth-order and
nonperturbative calculations. The second-order result is not
shown because its frequency is density independent. The
fourth-order and nonperturbative calculations give the same
results as that of second-order calculations when the excita-
tion density is very low. However, as the excitation density is
increased, the results of second- and fourth-order calcula-
tions differ greatly from the nonperturbative results. As
shown in Fig. 6, although there is a redshift in the fourth-
order calculations, the size of the shift is very small com-
pared to the experimentally obtained shift. The nonperturba-
tive calculations, however, are in quite good agreement with
experiment over the range of densities for which we have
performed calculations. The differences between the peak
shifts found in the experimental and theoretical results likely
arise largely from uncertainties in a number of experimental
parameters such as the carrier density, the dc electric field,
and the exciton lifetimes. Given these uncertainties, we feel
that the agreement is quite satisfactory.

There are two main contributing factors to the redshift in
the BO frequency. The first is the ultrafast creation of a dc
field arising from the photoexcitation of excitons with per-

manent intraband dipole moments, as discussed in the previ-
ous section. This induced dc field changes the energy sepa-
ration of the excitonic WSL states and hence changes the BO
frequency observed in the emitted THz radiation. Because
the induced dc field opposes the applied field, the net field
decreases with increasing density and the BO frequency red-
shifts. This effect alone results in the almost linear depen-
dence of the BO frequency on density that is seen in experi-
ment and nonperturbative results at low density. A more
recent experiment40 reported a similar effect in strongly bi-
ased single quantum wells. However, to our knowledge, our
work presents the first measurement of the effect of an
density-dependent ultrafast dc field on the coherent evolution
of a photoexcited wave packet and is the first quantitative
theory presented for this evolution.

The second potential mechanism affecting the BO fre-
quency is the dynamic screening of the applied dc field. Pre-
vious experimental work has investigated the THz frequency
chirping due to the dynamic screening.41 It has also been
shown both theoretically42,43 and experimentally44 that the
response time for ultrafast dynamic screening is given ap-
proximately by the inverse of the plasma frequency. By ex-
trapolating the results presented in the next section to low
densities, we find that this response time is roughly 3.6 ps for
densities of 
=2�109 cm−2 and decreases as the square root
of the density to roughly 1.2 ps for the highest density of 

=1.25�1010 cm−2. Given that the Bloch oscillations only
persist for times on the order of 1.2 ps, it would appear that
dynamic screening effects should only start to be evident at
densities on the order of 
5�109 cm−2. This is evident in
the slightly nonlinear response of the density dependence of
the BO frequency in the nonperturbative results and in ex-
periment. We are not certain why the calculated results seem
to be redshifting superlinearly in this density range, while the
experimental results are redshifting sublinearly. However, it
is likely that better agreement would only be achieved if the
phenomenological dephasing and relaxation were replaced
by microscopic scattering mechanisms. However, as we dis-
cuss in the following section, our theoretical results at higher
densities indicate that the BO frequency will eventually satu-
rate and will finally blueshift as the density is increased.
Thus, even these effects are qualitatively accounted for in
our theory.

We have not presented the calculated the THz emission
for densities larger than 1.25�1010 cm−2 because we find
that the nonperturbative results do not converge for densities
in the range 1.25�1010 cm−2�
�10�1010 cm−2. That is,
over this range of densities, the results depend significantly
on the basis size. The reason for this lack of convergence
will be discussed in Sec. V. As a result, we are not able to
directly reproduce the saturation of the redshift and subse-
quent small blueshift found in the experimental results at
moderate densities. However, as we shall show in the next
section, our nonperturbative formalism at very high densities
shows that there must be a redshift saturation followed by a
blueshift due to plasma oscillations, in qualitative agreement
with experiment.

To further examine the density dependence of the emitted
THz radiation, we plot in Fig. 7 the normalized THz power
spectra for different densities for experiment and theory. In

FIG. 6. The peak THz frequency as a function of the exciton
density for the experimental results, and the fourth-order and non-
perturbative �infinite order� calculations.
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all of these, we are plotting the power spectrum of the nor-
malized emitted THz field—i.e., the emitted THz power
spectrum divided by the square of the density. In Fig. 7�a�,
we plot the experimental spectra for different densities. We
see that the total normalized THz energy generally decreases
as the density increases. The decrease is monotonic, except
for the density of 
=0.358�1010 cm−2, which seems to have
an anomalously low power. We are not certain of the reason
for this, but we have sometimes found similar results in our
nonperturbative simulations under different conditions.

In Figs. 7�b� and 7�c�, we plot the normalized power spec-
tra calculated using the fourth-order and nonperturbative
methods. The nonperturbative results are in good agreement
with the experimental results, with the normalized THz en-
ergy decreasing roughly linearly with density. In the fourth-
order results, however, the normalized spectral peaks height
are increasing with exciton density, which is in complete
contradiction to the experimental results.

In Fig. 8 we plot the integration of the normalized THz
spectral density �Fig. 7� as a function of density for experi-
ment and theory. This gives the THz energy emitted divided
by the square of the density. The experimental and theoreti-
cal energies are set equal at low density to facilitate compari-
son. We have also included the second-order results, for
which the normalized energy does not change with density.
This is as expected, because for a set of identical coherent
radiators, the radiated power should increase with the square
of the density. This is essentially the phenomena of Dicke
superradiance. As can be seen, the nonperturbative results
agree very well with the experimental ones, whereas the
fourth-order results predict the opposite trend. Note that the
fourth-order results for the emitted energy are even worse
than the second-order ones. This is just like the situation
when one attempts to expand an expression in a power series

when it is outside its radius of convergence: the higher-order
expansion will often give even worse result than that of low-
order expansions. This is yet another indication that we are
well beyond the perturbative regime for this structure.

In summary, we find that the nonperturbative formalism
gives results that are in good agreement with experiment,
while the fourth-order calculations not only underestimate
the frequency redshift in the low-density limit, but also
greatly overestimate the emitted THz radiation power. The
perturbation method is valid only when the excited exciton
densities is well below its corresponding critical value. Oth-
erwise, higher-order perturbation methods will give even
worse results than lower-order perturbation ones. We find
that for our structure, the critical value for exciton density is
roughly 
=0.2�1010 cm−2. In next section, we will show
that in addition to accounting for the redshift in the low-
density limit, the nonperturbative formalism also predicts
blueshift in the high-density limit where collective excita-
tions �coherent plasma oscillations� occur due to dynamic
exciton-exciton interactions.

V. PLASMA OSCILLATIONS

In this section, we examine the THz emission at the very
high densities �
10�1010 cm−2�, where our calculations
are again convergent. As we shall show, our nonperturbative
formalism predicts the appearance of coherent PO’s at these
high exciton densities.45–47

As has been pointed out by previous authors,45 when the
density is high enough, such that the plasma frequency in the
superlattice is comparable to the BO frequency, we expect
the BO’s to evolve into PO’s. This is accounted for in our
theory via the ac portion of the self-induced internal field
Eintra in Eq. �13�, which provides a restoring force when the
electrons and holes are pulled apart. At low densities, PO’s
are not evident because the restoring force is too small to
have a significant effect on the BO’s. However, at high den-
sities the restoring force causes the electrons to return to the
holes before they have a chance to perform even a single BO.
In other words, once this restoring force dominates over the
net effect of the applied dc field and the periodic superlattice

FIG. 7. The normalized THz power spectra �power spectra di-
vided by the square of the density� for different exciton areal den-
sities from �a� experiment, �b� fourth-order calculation, and �c� non-
perturbative calculations.

FIG. 8. The normalized THz energy emitted �integrated THz
power divided by the square of the density� for the experimental
and theoretical results as a function of the areal density.

DENSITY-DEPENDENT TERAHERTZ EMISSION IN… PHYSICAL REVIEW B 72, 115313 �2005�

115313-9



potential, the nonperturbative formalism predicts PO’s.
Now we turn to the details of the transition process from

BO’s to coherent PO’s. As mentioned in previous sections,
the nonperturbative formalism presented in this work does
not converge for intermediate exciton densities. We find,
however, that in both the low- and high-exciton-density lim-
its our formalism gives results that do not depend signifi-
cantly on the basis size used �i.e., the results are converged�
once we employ a basis that includes two-well states with
along-axis electron-hole separation up to 8d �and hence al-
lows for the calculation of excitonic WSL states with �n�
�8�. The reason for the lack of convergence at intermediate
densities can be understood by considering exciton dynamics
in ac and dc fields. In the nonperturbative formalism, BO’s
are driven by the self-induced internal field Eintra, which has
both dc and ac components �see Eq. �13��. In these combined
fields, it has been shown that the exciton population is driven
to the superlattice boundaries corresponding to higher single-
particle WSL ladder indices �n� due to the Shapiro effect.10,17

This driving of the population is essentially due to the ab-
sorption and/or emission of THz photons, which cause tran-
sitions among the WSL states. Thus, there is a rapid driving
apart of the electrons and holes, moving them to the bound-
aries of superlattice. Our formalism assumes that the super-
lattice is infinite, with the maximum electron-hole separation
in the z direction determined by the size of the calculation
basis employed �maximum electron-hole separation in two-
well exciton states employed�. If a basis of infinite size is
used, the carriers are driven until dephasing and population
decay finally stops the process. However, at intermediate
densities this requires a prohibitively large basis set, which in
fact represents a superlattice that has more periods than the
one being experimentally investigated �50�. Therefore, we
are unable to achieve converged results at these intermediate
densities.

At very high densities, the problem of population driving
is greatly mitigated and essentially disappears when the in-
duced internal dc field Edc becomes very large and ap-
proaches its natural limit: Edc→−Fo. As can be seen from
Fig. 2, this limit is reached when 
�10�1010 cm−2 �see
Fig. 2�. In this case, the self-induced internal dc field cancels
the external dc field completely40 and thus there is essentially
no longer a WSL in the BSSL. Thus excitons are not driven
to the superlattice boundaries anymore and the nonperturba-
tive formalism leads to converged results in the high-density
limit. We also note that because the net dc field is very small
at high densities, the PO’s exhibited are not competing with
Wannier-Stark localization and so the dynamics are much
like one would expect in an unbiased superlattice. The initial
perturbation to the electron-hole gas is provided by the initial
conditions given by the optical pulse, which generates elec-
trons and holes that are initially separated and subsequently
undergo PO’s.

In Fig. 9, we plot the THz oscillation frequency as a func-
tion of exciton density for a wide range of densities. The
experimental results and the simulations using both nonper-
turbative and fourth-order calculations are all presented in
the same figure for clear comparison. In the low-density
limit, the intraband dynamics are dominated by BO’s and
we can see a good agreement between experimental results

and the nonperturbative calculations �also shown in Fig. 6�.
For intermediate densities, there is no convergence for
the nonperturbative calculations. However, when 
	10
�1010 cm−2, the nonperturbative results converge, and it is
these results that we present. As discussed above, these re-
sults essentially describe the coherent PO’s arising from the
many-body interactions among excitons. As we have ne-
glected PSF effects, it is expected that these high-density
results will only be qualitatively correct. However, as we
discuss in the Conclusion, it is reasonable to expect that such
effects will only have a large effect on the initial conditions
�e.g., through absorption saturation�, but not on the basic
effect of PO’s.

The usual expression for the plasma frequency is

�pl =	e2n0

�mpl
* , �23�

where n0=
d is the volume density and mpl
* is the reduced

effective plasma mass for the electron-hole pairs. Taking the
plasma mass to be a fitting parameter, we find that we obtain
an excellent fit to the nonperturbative results using Eq. �23�
with a plasma mass of mpl

* =0.125 mo, where mo is the free-
electron mass �see Fig. 9�. Now, the expected plasma effec-
tive mass can be estimated to be the reduced electron-hole
miniband effective mass in the BSSL at band bottom. In the
nearest-neighbor tight-binding approximation this mass is
given by

1

mpl
* =

�d2

2�2 , �24�

where ��43 meV is the combined electron-hole miniband
width. Thus for our BSSL, we obtain

mpl
* � 0.050mo. �25�

We note that this miniband effective mass is about half that
used in Eq. �23� to fit the nonperturbative results in Fig. 9.
This discrepancy is largely due to the fact that the effective
mass in Eq. �24� is obtained by setting k=0. However, in our
nonperturbative calculations, the electrons and holes are op-

FIG. 9. Peak THz frequency as a function of the exciton areal
density for the experimental results, fourth-order calculations, non-
perturbative �infinite order� calculations, and the expression from
standard plasma theory �Eq. �23��.
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tically excited into states that contain components with k far
from k=0.10 Thus it is not appropriate to simply use the
effective mass at miniband minimum to determine the
plasma effective mass, and we expect the plasma mass to be
considerably larger than that given by Eq. �25�. In fact we
find �not shown� that the best-fit plasma effective mass de-
pends considerably on the initial conditions. This is consis-
tent with the above argument, since the k-space distribution
is different for different initial conditions.10 However, we
note that the PO’s do not change much.

We also present the fourth-order calculations in Fig. 9. We
note that the fourth-order calculation converges over the full
density range. However, as seen in Fig. 9, the fourth-order
simulation initially gives only a tiny redshift and then ap-
proaches a constant frequency as exciton density increases.
Thus, it fails to account correctly for the redshift at low
densities and the PO’s at high densities.

The generation of PO’s in our nonperturbative calcula-
tions demonstrates that our formalism inherently includes
dynamic screening as discussed above. Recent theoretical
and experimental results suggest that the dynamic response
time of the carriers is given approximately by the inverse of
the PO frequency.42–44 Thus, as is discussed in the previous
section, if we extrapolate the PO frequency given by Eq. �23�
down to the lower densities, we expect that dynamic screen-
ing will start to significantly affect the THz emission for
densities larger than or on the order of 
=5�109 cm−2.

From the results presented in Fig. 9, we can now under-
stand the origin of the saturation of the frequency redshift
seen in the experimental results �Figs. 5, 6, and 9�: at densi-
ties of about 
=2�1010 cm−2, the BO’s are starting to trans-
form into plasma oscillations. This transformation is not seen
directly in our calculations because our nonperturbative cal-
culations do not converge for densities in the range 1.25
�1010 cm−2�
�10�1010 cm−2. However, from the results
of our converged low- and high-density calculations, we can
infer that there must be a frequency region where the oscil-
lation frequency saturates and eventually blueshifts. This,
therefore, provides a qualitative explanation of the experi-
mental results at the higher densities and points to the pos-
sibility of experimentally observing pure PO’s at higher den-
sities still.

Although we have presented experimental evidence of the
transition from BO’s to PO’s, we were unable to experimen-
tally access the high carrier densities �
�1011 cm−2� needed
to observe pure PO’s in our BSSL. There were two factors
limiting the maximum densities that we could achieve. In
general photogenerated carriers travel to the contacts and
partially screen the applied dc field by collecting on the su-
perlattice barrier layers. We generally can compensate for
this screening voltage by simply increasing the applied ex-
ternal voltage. However, for high densities, the required ex-
ternal voltages are so large that the back-biased Schottky
contact at the surface of our samples breaks down. This was
one major factor limiting the maximum density at which we
could operate. The second factor was excitation-induced
dephasing �EID�. At high densities, the linewidths of the in-
terband transitions increase strongly due to EID. This line
broadening made it very difficult to keep the internal field
constant by monitoring the weak-pulse absorption spectrum,

as the transitions were barely detectable at very high
densities.

If the technical difficulties in experimentally achieving
the high densities required to see pure PO’s could be over-
come, it still is not entirely clear if pure PO’s would be
observed. There are two factors that might affect the theoret-
ical predictions at high densities: the neglect of PSF
effects18,27 and EID. PSF effects are proportional to 
 /
0,
where 
0 is the inverse of the single 1s exciton area. In this
work, at the density of 
=10�1010 cm−2 at which pure PO’s
begin to appear, 
 /
0�0.5. This indicates that the PSF ef-
fects will likely be important in the case of pure PO’s. How-
ever, as PO’s are clearly seen in much higher-density sys-
tems, it is expected that the main effect of PSF will be to
alter the excitation conditions �initial condition�; it should
not affect the existence of PO’s themselves. Thus, we expect
that PO’s will survive in the presence of PSF effects, as is
indirectly evidenced by recent theory and experiments.42–44

The effect of EID on intraband dephasing times is another
factor that could affect the observation of pure PO’s. Al-
though EID seems to have a large effect on the decay of the
interband polarization when the densities reach 
=2
�1010 cm−2 �see above�, its effect on the intraband polariza-
tion dephasing seems to be considerably less: the intraband
dephasing time did not change much for densities up to at
least 
=2�1010 cm−2 �see Fig. 5�. Furthermore, recent the-
oretical and experimental results48,49 indicate that the EID
rate should only increase as 
1/3 at high densities. Thus, we
are hopeful that pure PO’s will eventually be seen at high
densities in BSSL’s.

VI. CONCLUSIONS

We have presented theoretical and experimental results
for the emitted THz radiation from biased semiconductor su-
perlattices excited via an ultrashort optical pulse. We have
demonstrated, by comparing the perturbative and nonpertur-
bative optical responses, that a formalism that is nonpertur-
bative in the optical field is necessary to explain the experi-
mental results. Perturbation theory is only valid when the
exciting optical intensity is very low �
�0.2�1010 cm−2 for
our system�. The source of the nonlinearity leading to the
frequency shifts is the strong exciton-exciton interaction in
the BSSL, which arises from the broken symmetry induced
by the external dc field. We found both experimentally and
by using the nonperturbative formalism that the THz fre-
quency is strongly dependent on exciton density: as the den-
sity increases, the frequency first redshifts; then, the redshift
saturates and finally undergoes a blueshift. We attribute the
saturation and final blueshift to the evolution of Bloch oscil-
lations into plasma oscillations. Two features are crucial to
theoretically account for the experimental phenomena in a
tractable way. First, by using an exciton basis, second-order
Coulomb correlations were approximately included under
the framework of a first-order cluster expansion. Second, the
dynamics were treated nonperturbatively in the optical field
so as to self-consistently include the self-generated local
fields that can considerably renormalize the original eigen-
states and thus dynamics in intense optical excitations.
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