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We present a microscopic theory of skyrmions in the monolayer quantum Hall ferromagnet. It is a peculiar
feature of the system that the number density and the spin density are entangled intrinsically as dictated by the
W� algebra. The skyrmion and antiskyrmion states are constructed as W�-rotated states of the hole-excited and
electron-excited states, respectively. They are spin textures accompanied with density modulation that de-
creases the Coulomb energy. We calculate their excitation energy as a function of the Zeeman gap and
compared the result with experimental data.
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I. INTRODUCTION

Quantum coherence in the quantum Hall �QH� system has
proved to be a fascinating subject during the past decade.1,2

Electron spins are spontaneously polarized even in the ab-
sence of the Zeeman effect due to the exchange Coulomb
interaction, leading to the QH ferromagnet. A prominent
characteristic is that a charged excitation is a spin texture
called skyrmion.3 It is a coherent excitation of spins, and its
excitation can be confirmed if the number of flipped spins is
found to be more than that of a hole excitation.4 A conven-
tional way is to measure the increase of the activation energy
by tilting samples,5,6 which is roughly proportional to the
number of flipped spins due to the Zeeman effect.

The skyrmion has been known7 to be a classical solution
to the nonlinear sigma model. Indeed, the concept of skyr-
mion was introduced3 into QH ferromagnets first in this con-
text. Subsequently a microscopic skyrmion state was consid-
ered to carry out a Hartree-Fock approximation.8–11 In this
paper we elaborate this idea and present a microscopic
theory of skyrmions at the filling factor �=1, employing the
framework of noncommutative geometry.12 We also compare
the result with the experimental data.6

The property of electrons becomes very peculiar when
they are confined within the lowest Landau level.13 The elec-
tron position is described solely by the guiding center
X= �X ,Y� subject to the noncommutative relation, �X ,Y�
=−i�B

2 , with �B the magnetic length. This noncommutativity
is related with the so-called W� algebra.14,15 When the spin
degree of freedom is introduced, the algebraic property be-
comes the SU�2� extension of the W� algebra,16 which we
have named the W��2� algebra.12 It implies an intrinsic en-
tanglement of the number density and the spin density of
electrons, which amounts to a spin excitation accompanied
with a density modulation.

This paper is organized as follows: In Sec. II we formu-
late the number density and the spin density of electrons
confined within the lowest Landau level. They form the
W��2� algebra. In Sec. III we address the question whether
there are states having the same electron number but a lower
excitation energy compared with the hole state. In Sec. IV
we propose the skyrmion and antiskyrmion states as

W��2�-rotated states of the hole-excited and electron-excited
states, respectively. They agree with the ansatz8 made in a
Hartree-Fock approximation. Since a W��2� rotation modu-
lates not only the spin density but also the number density, it
decreases the Coulomb energy of the excitation. In Sec. V
we derive the wave function of the skyrmion state. In par-
ticular we examine the case where the wave function is fac-
torizable in the electron coordinates. We call such a skyr-
mion the factorizable skyrmion. In Sec. VI we study the
system governed by the hard-core interaction instead of the
Coulomb interaction, where the factorizable skyrmion is an
eigenstate of the Hamiltonian. However, it is shown that
skyrmion excitations are energetically unfavored once the
Zeeman effect is taken into account. In Sec. VII we study the
realistic system with the Coulomb interaction together with
the Zeeman interaction. The factorizable skyrmion cannot be
physical since its Zeeman energy diverges. We propose a
trial skyrmion which interpolates the hole and the factoriz-
able skyrmion. By minimizing the total energy we determine
the state as well as the excitation energy as a function of the
Zeeman gap. The result is compared successfully with the
experimental data6 in Sec. VIII. In Sec. IX we re-examine
the semiclassical approximation17 in the present context of
the microscopic theory. It is shown that, though strictly
speaking the factorizable skyrmion cannot be physical, it still
presents a reasonable approximation with an appropriate cut-
off of the divergent Zeeman energy. Section X is devoted for
the conclusion.

II. DENSITY OPERATORS

Electrons in a plane perform cyclotron motion under
strong magnetic field B� and create Landau levels. The co-
ordinate x= �x ,y� of the electron is decomposed into the
guiding center X= �X ,Y� and the relative coordinate R
= �Rx ,Ry�, x=X+R, where Rx=−Py /eB� and Ry = Px /eB�

with P= �Px , Py� the covariant momentum. In the symmetric
gauge the decomposition implies

X =
1

2
x − i�B

2 �

�y
, Y =

1

2
y + i�B

2 �

�x
, �2.1�

where �B=�� /eB� is the magnetic length. When the cyclo-
tron energy gap is large, thermal excitations across Landau
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levels are practically suppressed at sufficiently low tempera-
ture. In such a system the electron position is specified solely
by the guiding center subject to the noncommutative relation,

�X,Y� = − i�B
2 . �2.2�

Due to this noncommutative relation an electron cannot be
localized and occupies an area 2��B

2 called the Landau site.
There are N�=S /2��B

2 Landau sites per one Landau level,
where S is the area of the system. It is equal to the number
N�=B�S /�D of flux quanta passing through the system,
where �D=2�� /e is the Dirac flux quantum. One Landau
site may accommodate two electrons with up and down spins
according to the Pauli exclusion principle. The filling factor
is �=N /N�=2��B

2�0, where N is the total number of elec-
trons and �0=N /S is the electron density. The system be-
comes incompressible, leading to the integer QH effect,
when the filling factor � takes an integer value.

In this paper we study the QH system at �=1. Thus all
electrons are assumed to be confined within the lowest Lan-
dau level. We define operators

b =
1

�2�B

�X − iY�, b† =
1

�2�B

�X + iY� �2.3�

with Eq. �2.1�. They obey �b ,b†�=1. The Landau site �n�
may be identified with the holomorphic basis �n�
= �n!�−1/2�b†�n�0�. Its wave function is easily calculable,

�x�n� =� 1

2n+1��B
2n!

zne−r2/4�B
2
, �2.4�

where z= �x+ iy� /�B and r= �x�. We now construct the Fock
space HLLL with the use of the creation operator c�

† �n� on this
Landau site �n�, satisfying 	c��n� ,c�

†�m�
=	��	nm, where �
denotes the spin index, �= ↑ ,↓.

We expand the two-component electron field 

= ��↑ ,�↓� in terms of wave functions,

���x� = �
n

�x�n�c��n� . �2.5�

The physical variables are the number density ��x�
=
†�x�
�x� and the spin density Sa�x�= 1

2
†�x��a
�x� with
the Pauli matrix �a. Substituting Eq. �2.5� into these density
operators, we obtain

��x� = � �m�x��x�n���n,m� , �2.6a�

Sa�x� = � �m�x��x�n�Sa�n,m� �2.6b�

with

��n,m� = �
�

c�
† �m�c��n� , �2.7a�

Sa�n,m� =
1

2�
��

c�
† �m���a���c��n� . �2.7b�

We employ the relation

� d2xe−iqx�m�x��x�n� = e−�B
2q2/4�m�e−iqX�n� , �2.8�

and transform them in the momentum space,

��q� = e−�B
2q2/4�̂�q�, Sa�q� = e−�B

2q2/4Ŝa�q� , �2.9�

where

�̂�q� =
1

2�
�
mn

�m�e−iqX�n���n,m� , �2.10a�

Ŝa�q� =
1

2�
�
mn

�m�e−iqX�n�Sa�n,m� . �2.10b�

We call �̂�q� and Ŝa�q� the bare densities. In the coordinate
space we have the relation

��x� =
1

��B
2 � d2x�e−�x − x��2/�B

2
�̂�x�� �2.11�

between the physical density ��x� and the bare density �̂�x�.
The density operators generate the SU�2� extension of the

W� algebra,

���m,n�,��i, j�� = 	mj��i,n� − 	in��m, j� ,

���m,n�,Sa�i, j�� = 	mjSa�i,n� − 	inSa�m, j� ,

�Sa�m,n�,Sb�i, j�� =
i

2

abc�	mjSc�i,n� + 	inSc�m, j��

+
1

4
	ab�	mj��i,n� − 	in��m, j�� ,

�2.12�

which we have named12 the W��2� algebra. The electron
density and the spin density are intrinsically entangled in the
algebra, as implies that a spin rotation induces a density
modulation.

III. HAMILTONIAN

The Hamiltonian of the QH system consists of a four-
fermion interaction term and the Zeeman term, H=HV+HZ
with

HV =
1

2
� d2xd2yV�x − y�	��x�	��y� , �3.1a�

HZ = − �Z� d2xSz�x� , �3.1b�

where 	��x� is the density excitation operator,

	��x� = ��x� − �0, �3.2�

and �Z= �g��BB� is the Zeeman gap with �B the Bohr mag-
neton. In the actual system V�x� is given by the Coulomb
potential, but here we only assume that it represents a repul-
sive interaction.
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Substituting the density operators �2.9� into these we ob-
tain

HV = �
mnij

Vmnij�
��

c�
† �m�c�

†�i�c��j�c��n�

+ �N� + 	N��X − �N� + 2	N��D, �3.3a�

HZ = − �Z�
n

Sz�n,n� , �3.3b�

where

Vmnij =
1

4�
� d2kV�k�e−�B

2k2/2�m�eiXk�n��i�e−iXk�j� ,

�3.4�

with V�k� the Fourier transformation of the potential V�x�.
We have used the notation

	N =� d2x	��x� , �3.5a�

�D = �
j

Vnnjj =
�0

2
� d2xV�x� , �3.5b�

�X = �
j

Vnjjn =
�0

2
�B

2 � d2kV�k�e−�B
2k2/2, �3.5c�

where �D and �X are the direct and exchange energy param-
eters, respectively.

In the QH state at �=1, the number of electrons is equal
to the number of Landau sites. One Landau site contains one
electron due to the repulsive interaction. The system without
the Zeeman effect ��Z=0� is most interesting. An intriguing
feature is that the SU�2� symmetry is spontaneously broken
by the repulsive interaction and all spins are spontaneously
polarized, as demonstrated in Appendix A. Thus the QH sys-
tem is a ferromagnet, where quantum coherence develops
spontaneously.

Without loss of generality we may take

�g� = 

n

c↑
†�n��0� �3.6�

as the ground state. It satisfies

��m,n��g� = 	mn�g�, Sz�m,n��g� = 1
2	mn�g� , �3.7�

and

HV�g� = 0. �3.8�

A hole-excited and electron-excited states are given by

�h� = c↑�0��g�, �e� = c↓
†�0��g� , �3.9�

with their energies

�h�HV�h� = �e�HV�e� = �X. �3.10�

The main question is whether there are states having the
same electron number but a lower excitation energy com-

pared with the hole-excited or the electron-excited state.

IV. MICROSCOPIC SKYRMION STATES

We consider a W��2�-rotated state of the hole-excited
state �h� and the electron-excited state �e�,

�Ssky
− � = eiW−

c↑�0��g� , �4.1a�

�Ssky
+ � = eiW+

c↓
†�0��g� , �4.1b�

where W± are elements of the W��2� algebra �2.12�. The
Coulomb energy of the state depends on W±, since the W��2�
rotation modulates not only the spin texture but also the elec-
tron density around the hole or electron excitation. The ele-
ment W± is to be determined by requiring the excitation en-
ergy to be minimized. As we shall see soon, �Ssky

− � and �Ssky
+ �

describe the skyrmion and antiskyrmion states. We use the
index ��� for the skyrmion and ��� for the antiskyrmion.

Similarly,

�Ssky
− ;k� = eiWc↑�0� ¯ c↑�k − 1��g� , �4.2�

�Ssky
+ ;k� = eiW̃c↓

†�0� ¯ c↓
†�k − 1��g� �4.3�

describe a multiskyrmion and a multiantiskyrmion as
W��2�-rotated states of a multihole state and a multielectron
state.

More generally we may consider a wide class of states
presented by

�S� = eiW�S0� , �4.4�

where �S0� is a state of the form

�S0� = 

�n

�c�
† �n�����n��0� , �4.5�

where ���n� may take the value either 0 or 1 depending
whether the spin state � at a site n is occupied or not. The
class of states �4.4� is quite general though it may not em-
brace all possible ones. Nevertheless all physically relevant
states seem to fall in this category. Indeed, as far as we know,
perturbative excitations are spin waves and nonperturbative
excitations are skyrmions in QH systems. The corresponding
states belong surely to this category.

The electron number of the W��2�-rotated state �4.4� is
easily calculable,

�S�N�S� = �S0�e−iWNe+iW�S0� = �S0�N�S0� , �4.6�

since N=�n��c�
† �n�c��n� is a Casimir operator. We set

	Ncl = �S�N�S� − �g�N�g� . �4.7�

This is the electron number carried by the excitation de-
scribed by the state �S�. It is an integer since the electron
number of the state �S� is the same as that of the state �S0�.

We examine more in detail the state �4.1� with 	Ncl

= �1. A simplest W��2� rotation mixes only neighboring two
sites and is given by the choice of W−=�n=0

� Wn
− with
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iWn
− = �n�c↓

†�n�c↑�n + 1� − c↑
†�n + 1�c↓�n�� , �4.8�

where �n is a real parameter. Note that Wn
− is a Hermitian

operator belonging to the W��2� algebra, and �Wn
− ,Wm

− �=0.
We find

e+iW−
c↑

†�n + 1�e−iW−
= e+iWn

−
c↑

†�n + 1�e−iWn
−

� �†�n� ,

�4.9�

since the spin-up operator c↑
†�n+1� is contained only in Wn

−.
We calculate �†�n� using the standard technique of deriving
the differential equation with respect to �n. Since it satisfies

d2�†�n�
d�n

2 = − �†�n� �4.10�

together with the initial condition d�† /d�n=c↓
†�n� at �n=0,

we integrate it as

�†�n� = u−�n�c↓
†�n� + v−�n�c↑

†�n + 1� , �4.11�

where we have set u−�n�=sin �n and v−�n�=cos �n. Thus the
constraint

u−
2�n� + v−

2�n� = 1 �4.12�

is imposed on u−�n� and v−�n�. We now find

�Ssky
− � = eiW−


n=0
c↑

†�n + 1��0� = 

n=0

�†�n��0� , �4.13�

where we have used �4.9� and e−iWn
−
�0�=0.

Similarly we choose W+=�nWn
+ in Eq. �4.1b� with

iWn
+ = �

n

�n�c↓
†�n + 1�c↑�n� − c↑

†�n�c↓�n + 1�� . �4.14�

We find

�Ssky
+ � = c↓

†�0�

n=0

�†�n��0� , �4.15�

where

�†�n� = u+�n�c↑
†�n� + v+�n�c↓

†�n + 1� �4.16�

together with

u+
2�n� + v+

2�n� = 1, �4.17�

since u+�n�=cos �n and v+�n�=sin �n. The states �4.13� and
�4.15� agree with the skyrmion state and the antiskyrmion
state proposed by Fertig et al.,8 respectively.

The operators ��m� and ��n� satisfy the standard canonical
anticommutation relations,

	��m�,�†�n�
 = 	mn, 	��m�,��n�
 = 0,

	��m�,�†�n�
 = 	mn, 	��m�,��n�
 = 0, �4.18�

with the use of the constrains �4.12� and �4.17�. Since these
states should approach the ground state asymptotically it is
necessary that

lim
n→�

u−�n� = 0, lim
n→�

v−�n� = 1,

lim
n→�

u+�n� = 1, lim
n→�

v+�n� = 0. �4.19�

For later convenience we define

u−�− 1� = 1, v−�− 1� = 0,

u+�− 1� = 0, v+�− 1� = 1 �4.20�

in accordance with Eqs. �4.12� and �4.17�.
In what follows we calculate explicitly the classical den-

sities

�±cl�m,n� � �Ssky
± ��±�m,n��Ssky

± � , �4.21�

Sa
±cl�m,n� � �Ssky

± �Sa
±�m,n��Ssky

± � . �4.22�

The basic relations for the skyrmion state are

c↑�n��Ssky
− � = v−�n − 1���n − 1��Ssky

− � ,

c↓�n��Ssky
− � = u−�n���n��Ssky

− � . �4.23�

They reduce the action of c operators to that of �, thus al-
lowing to carry out exact calculus. We employ
�Ssky

− ��†�m���n��Ssky
− �=	mn together with �4.23� and its con-

jugate. In this way we come to

�±�n,n� = u±
2�n� + v±

2�n − 1� ,

Sz
±�n,n� = ± 1

2 �u±
2�n� − v±

2�n − 1�� ,

Sx
±�n + 1,n� = Sx

±�n,n + 1� = 1
2u±�n�v±�n� ,

Sy
±�n + 1,n� = − Sy

±�n,n + 1� =
i

2
u±�n�v±�n� . �4.24�

All other components, �±�n ,m�, etc., vanish. Here and here-
after we omit the superscript “cl.” By substituting these into
the physical density �2.6�, we obtain

�±�x�
�0

= e−�z�2/2�
n=0

�u±
2�n� + v±

2�n − 1��� �z�2

2
�n

,

Sz
±�x�
�0

= ±
1

2
e−�z�2/2�

n=0

u±
2�n� − v±

2�n − 1�
n!

� �z�2

2
�n

,

Sx
±�x�
�0

=
x

�2�B

e−�z�2/2�
n=0

u±�n�v±�n�
n!�n + 1

� �z�2

2
�n

,

Sy
±�x�
�0

= ±
y

�2�B

e−�z�2/2�
n=0

u±�n�v±�n�
n!�n + 1

� �z�2

2
�n

. �4.25�

We have calculated the classical densities of the
W��2�-rotated states of a hole-excited and electron-excited
states, which contain infinitely many variables u±�n� and
v±�n�. We estimate the energies of these states and minimize
them in later sections.
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V. N-BODY WAVE FUNCTIONS

We consider the N-electron system over N+1 sites. The
wave function of a many-body state �S� is defined by

S�1�2¯�N
�x� = �0���1

�x1���2
�x2� ¯ ��N

�xN��S� ,

�5.1�

where ���x� is given by Eq. �2.5�, or

���x� = �0
1/2e−�z�2/4�

n=0

N

��n�znc��n� �5.2�

with

��n� =� 1

2nn!
. �5.3�

For the hole-excited state �h�=c↑�0��g� it is easy to see

Sh�x� = 

r

N �zr

0
�SLN�x� , �5.4�

where SLN�x� is the Slater determinant of the one-body
wave functions,

SLN�x� = �0
N/2�

1 z1 ¯ z1
N−1

1 z2 ¯ z2
N−1

] ] � ]

1 zN ¯ zN
N−1
�e−�r=1

N �zr�
2/4. �5.5�

The wave function of the state �h� is factorizable in the elec-
tron coordinates apart from the factor SLN�x�.

We proceed to derive the wave function of the skyrmion
state �4.13�. First we examine the component with all spins
up, to which only the term v−�n�c↑

†�n+1� in �†�n� contributes,

S↑↑¯↑
− �x� = 


n=0

N−1

v−�n��0�

i=1

N

�↑�xi�

n=1

N

c↑
†�n��0� . �5.6�

Apart from the factor 
n=0
N−1v−�n� this is nothing but the wave

function of a hole. Thus

S↑↑¯↑
− �x� = CN


n=1

N

znSLN�x� , �5.7�

where CN=
n=1
N ��n�v−�n−1�. Next we consider the compo-

nent with all spins down, which arises only from the term
u−�n�c↓

†�n� in �†�n�,

S↓↓¯↓
− �x� = 


n=1

N

u−�n��0�

i=1

N

�↓�xi�

n=1

N

c↓
†�n��0�

= CN

n=0

N−1

�nSLN�x� . �5.8�

Here we have set

�n =
��n�u−�n�

��n + 1�v−�n�
=

u−�n�
v−�n�

�2�n + 1� �5.9�

with Eq. �5.3�. Comparing �5.7� and �5.8� we remark that the
wave function S↓↓¯↓

sky �x� is obtained by replacing zn with
�n−1 within the factor 
zn of the wave function S↑↑¯↑�x� for
all n. The wave function with mixed spin components is
similarly derived, where zn is replaced with �n−1 for certain
indices n within the factor 
zn. In general we derive

S�1�2¯�N

− �x�

= CNe−�r=1
N �zr�

2/4

��
� z1

�0
�

�1

z1� z1

�1
�

�1

¯ z1
N−1� z1

�N−1
�

�1

� z2

�0
�

�2

z2� z2

�1
�

�2

¯ z2
N−1� z2

�N−1
�

�2

] ] � ]

�zN

�0
�

�N

zN�zN

�1
�

�N

¯ zN
N−1� zN

�N−1
�

�N

� .

�5.10�

This is the wave function of the skyrmion.
It is notable that, when all �n are equal ��n=�2��, or

u−�n�
v−�n�

�2�n + 1� = �n = �2� , �5.11�

it is reduced to

Ssky
− �x� = 


r

N � zr

�2�
�SLN�x� . �5.12�

The wave function is factorizable as in the case of a hole. We
call such a skyrmion the factorizable skyrmion. As we shall
see in the following section, this is the wave function of the
skyrmion in the hard-core model. It is quite difficult to write
down the wave function of an antiskyrmion in terms of the
analytic variable zr. We discuss it in Appendix B.

VI. HARD-CORE INTERACTION

We first investigate a detailed structure of skyrmions in
the system governed by the hard-core interaction,18

V�x − y� = 	2�x − y� , �6.1�

instead of the Coulomb interaction. The Hamiltonian �3.1a�
reads

Hhc =
1

2
� d2x	��x�	��x� . �6.2�

All previous formulas hold with

Vmnij =
1

8�2 � d2ke−�B
2k2/2�m�eiXk�n��i�e−iXk�j�

=
1

8��B
2

��m + i�!�n + j�!
�m!i!n!j!

	m+i,n+j

�2m+i+n+j
, �6.3�

and
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�D = �X =
1

4��B
2 . �6.4�

We rewrite Eq. �6.2� into the normal ordered form,

Hhc =� d2x�↑
†�x��↓

†�x��↓�x��↑�x� −
1

4��B
2 � d2x	��x� .

�6.5�

The ground state �g� is given by Eq. �3.6� as an eigenstate of
the Hamiltonian, Hhc�g�=0. A hole-excited and electron-
excited states are given by �h�=c↑�0��g� and �e�=c↓

†�0��g�.
We determine the skyrmion and antiskyrmion states by

minimizing the energy of the W��2�-rotated state �4.1�. We
deal with the skyrmion state �4.13� explicitly, but similar
formulas follow also for the antiskyrmion state �4.15�.

We define the state

�S�� = �↓�x��↑�x��Ssky
− � = �

mn

�m�x��n�x�c↓�m�c↑�n��Ssky
− � .

�6.6�

Using Eq. �4.23� we come to

�S�� = �
m=0

�
n=0

�m�x��n+1�x�u−�m�v−�n���m���n��Ssky
− � ,

�6.7�

where we have used v�−1�=0. Hence

� d2x�S��S�� = 2 �
k,l=0

v−�k�u−�l�v−�l�u−�k�Vk+1,k,l,l+1.

�6.8�

Using Eq. �6.3� we obtain

� d2x�S��S�� �6.9�

=
1

8��B
2 �

k,l=0

�k + l + 1�!
k!l!2k+l+1 �v−�k�u−�l�

�k + 1
−

v−�l�u−�k�
�l + 1

�2

� 0.

�6.10�

The skyrmion energy �Ssky
− �Hhc�Ssky

− � is minimized when the
equality is achieved, as occurs when the factorizable-
skyrmion condition �5.11� is satisfied, or

u−
2�n� =

�2

n + 1 + �2 , v−
2�n� =

n + 1

n + 1 + �2 �6.11�

due to the normalization �4.12�.
It follows �S��=0 when the equality holds in �6.8�.

Hence, �Ssky
− � is an eigenstate of the Hamiltonian with 	Ncl

=−1,

Hhc�Ssky
− � =

1

4�
� d2x	��x��Ssky

− � = −
1

4�
	Ncl�Ssky

− � .

�6.12�

Similarly, when

u+
2�n� =

n + 1

n + 1 + �2 , v+
2�n� =

�2

n + 1 + �2 �6.13�

the antiskyrmion state is an eigenstate of the Hamiltonian
with 	Ncl=1,

Hhc�Ssky
+ � =

1

4�
� d2x	��x��Ssky

+ � =
1

4�
	Ncl�Ssky

+ � . �6.14�

We may summarize them as Hhc�Ssky
± �=Ehc�Ssky

± � with Ehc
= �	Ncl� /4�. The skyrmion state and the antiskyrmion state
are the lowest energy states possessing the electron numbers
	Ncl=−1 and 	Ncl=1, respectively. In conclusion, we have
determined the W��2�-rotated states �4.1� by minimizing the
energy, though their energy is independent of the scale � and
degenerates with the hole-excited and electron-excited state.

The physical densities can be expressed in terms of the
Kummer function M�a ;b ;x�,

M�a;a + 1;x� = a�
n=0

�
xn

�n + a�n!
, �6.15�

as

	�±�x�
�0

= ± e−�1/2��z�2M��2;�2 + 1; �z�2/2�

�
�2

�2 + 1
e−�1/2�z2

M��2 + 1;�2 + 2; �z�2/2� ,

Sz
±�x�
�0

=
1

2
−

1

2
e−�1/2��z�2M��2;�2 + 1; �z�2/2�

−
1

2

�2

�2 + 1
e−�1/2��z�2M��2 + 1;�2 + 2; �z�2/2� ,

Sx
±�x�
�0

=
1
�2

�x/�B

�2 + 1
e−�1/2��z�2M��2 + 1;�2 + 2; �z�2/2� ,

Sy
±�x�
�0

=
±1
�2

�y/�B

�2 + 1
e−�1/2��z�2M��2 + 1;�2 + 2; �z�2/2� ,

�6.16�

with �z�2=r2 /�B
2 . We have illustrated the density �−�r� for

typical values of the parameters � in Fig. 1.
Using the relations

M�1;b;x� = 1 +
x

b
M�1;b + 1;x� ,

M�a;b;z� = ezM�b − a;b;− z� , �6.17�

we are able to summarize the densities as

	�+�x� = − 	�−�x�, Sa
±�x� = �−�x�Sa

±�x� , �6.18�

with

Sx�x� =
2�x

r2 + �2 , Sy�x� =
�2�y

r2 + �2 ,
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Sz�x� =
r2 − �2

r2 + �2 , �6.19�

and

�−�x� =
r2 + �2

2�B
2 + �2 M�1;�2 + 2;− �z�2/2��0, �6.20�

where we have set �=�2��. It is interesting that the physical
spin densities Sa

±�x� are factorizable into the number density
�−�x� and the normalized spin field Sa

±�x� as in Eq. �6.18�.
The normalized spin field �6.19� agrees with the nonlinear-
sigma-model skyrmion configuration.7

We explore the properties of the density modulation. The
skyrmion is reduced to a hole for �=0, where �−�x� is given
by

�−�x� = �1 − e−r2/2�B
2
��0 �6.21�

and vanishes at r=0. On the other hand, �−�x��0 for all �
�0 with

�−�0� =
�2

�2 + 2�B
2 �0. �6.22�

We can expand �−�x� in a power series of �B
2 as follows. Let

us set

�−�x� = �1 −
2�B

2

�2 + 2�B
2 f�r2���0. �6.23�

By comparing �6.23� with �6.20�, f�x� is found to be the
Kummer function of the form

f�x� = M�2;
�2

2�B
2 + 2;−

x

�B
2 � �6.24�

with x=r2, and satisfies the Kummer equation,

2�B
2x

d2f

dx2 + ��2 + x + 4�B
2�

df

dx
+ 2f = 0. �6.25�

This can be solved by expanding f in a power series of �B
2 ,

f =�n=0fn�B
2n. In particular, the lowest order term is given by

setting �B
2 =0, whose result is

f0�x� =
�4

�x + �2�2 . �6.26�

Hence we have

�−�x� = �1 −
2�2�B

2

�r2 + �2�2 + O��B
4���0, �6.27�

or

	�±�x�
�0

= ±
2�2�B

2

�r2 + �2�2 + O��B
4� , �6.28a�

Sz
±�x�
�0

=
1

2
−

�2

r2 + �2 + O��B
2� . �6.28b�

The densities �±�x� as well as Sz
±�x� approach the ground-

state values only polynomially.
Finally we examine what happens when the Zeeman in-

teraction is taken into account. The number of spins flipped
around a skyrmion is given by

Nspin =� d2x�Sz
cl�x� −

1

2
�0� , �6.29�

which we call the skyrmion spin. Substituting Eq. �6.18� into
this, unless �=0, we find Nspin

sky to diverge logarithmically due
to the asymptotic behavior,

lim
r→�

Sz
cl�x� =

�0

2
�1 − 2

�2

r2 � . �6.30�

The Zeeman energy HZ
sky=−�ZNspin is divergent, except for

the hole, from the infrared contribution however small the
Zeeman effect is. The factorizable skyrmion �6.18� is no
longer valid. There exists a skyrmion state which has a finite
Zeeman energy; see an example of �7.5� we use for the Cou-
lomb interaction. Nevertheless, we can show that the hole
state has the lowest energy. The reason reads as follows. The
factorizable skyrmion is an eigenstate of the hard-core
Hamiltonian, Hhc�Ssky

± �=Ehc�Ssky
± � with Ehc= �	Ncl� /4�, as in

Eq. �6.12�. Accordingly any spin texture �S� possessing the
same electron number 	Ncl has a higher energy, �S�Hhc�S�
�Ehc. Furthermore its Zeeman energy is larger than that of
the hole, �S�HZ�S��

1
2�Z. Hence,

�S��Hhc + HZ��S� � Ehc + 1
2�Z, �6.31�

where the equality holds for the hole state. Consequently
there are no skyrmions in the presence of the Zeeman inter-
action in the system with the hard-core interaction.

VII. COULOMB INTERACTION

We next investigate the realistic system �3.1a� governed
by the Coulomb Hamiltonian HC with the potential

FIG. 1. The density modulation ��− /�0� accompanied with the
skyrmion excitation is plotted as a function of the radius �r /�B�.
The heavy curve �t=1� is for the hard-core model based on Eq.
�6.16� for the choice of �=0.25,0.5,1 ,2, while the heavy curve
�t=0� represents the density of a hole. The thin curves represent the
interpolating formula �7.8� for t=0.50,0.75, where the parameter t
is defined by Eq. �7.5�.
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V�x − y� =
e2

4�
�x − y�
, �7.1�

for which the exchange energy parameter reads

�X =
�2�

4
�C �7.2�

with �C=e2 /4�
�B the Coulomb energy unit. It is hard to
construct the skyrmion state explicitly as an eigenstate. We
are satisfied to estimate the excitation energy of a skyrmion
by minimizing the expectation value of the Hamiltonian.

Before so doing, it is instructive to estimate the Coulomb
energy by using the factorizable skyrmion �6.18� obtained in
the hard-core model. The result is very different from the one
in the hard-core model. The Coulomb energy is a monoto-
nously decreasing function of the scale parameter �, and

lim
�→�

�HC� = ± 8�Js �7.3�

with

Js =
1

16�2�
�C. �7.4�

Consequently, an infinitely large skyrmion is necessarily ex-
cited. However, when the Zeeman interaction is introduced,
the Zeeman energy of the factorizable skyrmion diverges due
to the asymptotic behavior �6.30�. Namely the factorizable
skyrmion cannot be a quasiparticle in the realistic Coulomb
system.

It is necessary to consider a skyrmion not factorizable as
in �6.18�. Making a slight generalization of the parametriza-
tion �6.11� we search for a skyrmion possessing a finite en-
ergy even in the presence of the Zeeman effect. We propose
an ansatz,

u−
2�n� = v+

2�n� =
�2t2n+2

n + 1 + �2 . �7.5�

The parameter t presents a smooth interpolation between the
hole �t=0� and the factorizable skyrmion �t=1�. This anzats
automatically satisfies the condition �4.20� for n=−1.

Substituting �7.5� into �4.25� we obtain

	�±�x�
�0

= ± e−�1/2��z�2M��2;�2 + 1;
t�z�2

2
�

�
t2�2

�2 + 1
e−�1/2��z�2M��2 + 1;�2 + 2;

t�z�2

2
� ,

Sz
±�x�
�0

=
1

2
−

1

2
e−�1/2��z�2M��2;�2 + 1;

t�z�2

2
�

−
1

2

t2�2

�2 + 1
e−�1/2��z�2M��2 + 1;�2 + 2;

t�z�2

2
� ,

Sx
±�x�
�0

=
t�x/�B

�2
e−�1/2��z�2�

n

1

n!

�n�w,t�
n + 1 + �2� t�z�2

2
�n

,

Sy
±�x�
�0

=
±t�y/�B

�2
e−�1/2��z�2�

n

1

n!

�n�w,t�
n + 1 + �2� t�z�2

2
�n

,

�7.6�

where

�n�w,t� =�1 +
1 − t2n+2

n + 1
�2. �7.7�

It is easy to see that various densities approach the ground-
state values exponentially fast for all t�1. Using Eq. �6.17�,
we can rewrite these as

	�±�x�
�0

= ± e−�1/2��1−t2��z�2M�1;�2 + 1;− t2�z�2/2�

�
t2�2

�2 + 1
e−�1/2��1−t2��z�2M�1;�2 + 2;− t2�z�2/2� ,

Sz
±�x�
�0

=
1

2
−

1

2
e−�1/2��1−t2��z�2M�1;�2 + 1;− t2�z�2/2�

−
1

2

t2�2

�2 + 1
e−�1/2��1−t2��z�2M�1;�2 + 2;− t2�z�2/2� .

�7.8�

We have illustrated the density �−�r� for typical values of the
parameters � and t in Fig. 1.

It is instructive to expand them in power series of �B
2 .

Setting

�1 − t2��z�2 = �1 − t2�r2/�B
2 = r2/��2 + �B

2� , �7.9�

and writing down similar equations to �6.25�, we obtain the
lowest order term as

	�±�x�
�0

= ± � 2�2�B
2

�r2 + �2�2 +
2�2�B

2

�r2 + �2��2 + O��B
4��e−r2/�2

,

�7.10a�

Sz
±�x�
�0

=
1

2
− � �2

r2 + �2 + O��B
2��e−r2/�2

. �7.10b�

The Zeeman energy remains finite due to a rapid decrease to
the ground-state value.

In calculating the expectation value of the Coulomb
Hamiltonian we appeal to the decomposition formula,

�HC� = HD
cl + HX

cl, �7.11�

dictating that the Coulomb energy consists of the direct en-
ergy HD

cl and the exchange energy HX
cl. We have already used

it on a case-by-case basis in our previous papers.12,19,20 In
Appendix C we derive the formula for the class of states
�4.4�. Here the direct and exchange energies read

HD
cl = �� d2kV�k�e−�1/2��B

2k2
	�̂cl�− k�	�̂cl�k� ,

�7.12a�
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HX
cl = �� d2k	VX�k��Ŝa

cl�− k�Ŝa
cl�k� + 1

4 �̂cl�− k��̂cl�k�� ,

�7.12b�

in terms of the bare densities, where 	VX�k�=VX�0�−VX�k�
with

VX�k� �
�B

2

�
� d2ke−i�B

2k∧k�e−�1/2��B
2k�2

V�k��

= 4
X�B
2e−�1/4��B

2k2
I0� k2

4
� , �7.13�

and I0�z� is the modified Bessel function.
We are able to determine the parameters � and t so as to

minimize the sum of the Coulomb and Zeeman energies,
�H�sky= �HC�sky+ �HZ�sky, as a function of the Zeeman gap �Z.
Calculating numerically �H�sky as a function of � and t for a
given value of �Z, we determine the values of � and t which
minimizes �H�sky. In this way we obtain the skyrmion exci-
tation energy �H�sky as a function of �Z. We have plotted the
excitation energy �H�sky as a function of the normalized Zee-
man gap g̃=�Z /�C in Fig. 2, where �C is the Coulomb unit.

VIII. EXPERIMENTAL DATA

A skyrmion excitation is characterized by a coherent ex-
citation of spins. Hence an evidence of the skyrmion excita-
tion is given if Nspin�1/2, where Nspin=1/2 for a hole or an
electron excitation. It is a remarkable fact that skyrmions
have already been observed experimentally in QH
systems.4–6

Let us show the number of flipped spins is given by

Nspin =
d�H�sky

d�Z
. �8.1�

The excitation energy Esky= �H�sky is the sum of the Coulomb
energy EC= �HC�sky and Zeeman energy �ZNspin, which de-
pend on a set of parameters �t ,�� denoted collectively by t
for simplicity. The quantity to minimize with respect to t is

Esky�t� = EC�t� + �ZNspin�t� . �8.2�

At the minimum we obtain

�EC

�t
+ �Z

�Nspin

�t
= 0, �8.3�

from which we solve out t= t0��Z� and substituting it back
into Eq. �8.2�,

Esky��Z� = EC�t0��Z�� + �ZNspin�t0��Z�� , �8.4a�

Nspin��Z� = N�t0��Z�� . �8.4b�

Using Eq. �8.3� it is easy to verify that

Nspin��Z� =
dEsky��Z�

d�Z
, �8.5�

which is Eq. �8.1�.
To compare our theoretical result with experimental data,

it is necessary to take into account two points so far ne-
glected.

First, what we observe experimentally is the thermal ac-
tivation energy of a skyrmion-antiskyrmion pair. But this ac-
tivation takes place in the presence of charged impurities.
The existence of charged impurities reduces the activation
energy considerably. We include an offset parameter �offset to
treat this effect phenomenologically.21

Second, we have so far assumed an ideal two-dimensional
space for electrons. This is not the case. Electrons are con-
fined within a quantum well of a finite width. This modifies
the Coulomb energy considerably. The Coulomb energy be-
comes smaller than what we have assumed. It is quite diffi-
cult to make a rigorous analysis of the Coulomb energy in an
actual quantum well. We simulate the effect by including the
reduction factor �.

We consider the excitation energy of a skyrmion-
antiskyrmion pair since it is an observable quantity. It is
simply twice of the skyrmion excitation energy. Taking into
account these two points, instead of Eq. �8.2� we set the
activation energy as

�gap�t� = 2�EC�t� + 2�ZN�t� − �offset, �8.6�

where 0���1. Repeating the same steps as for Eq. �8.4�
we come to

E���Z� = �Esky��Z

�
� − �offset, �8.7a�

FIG. 2. The skyrmion excitation energy is plotted as a function
of the normalized Zeeman gap g̃=�Z /�C. The heavy solid curve is
obtained by the numerical analysis based on the density formulas
�7.6�. The thin line is the hole excitation energy. It is seen that a
skyrmion is excited for g̃�0.045 but a hole is practically excited
for g̃�0.045. We have also given the excitation energy calculated
analytically based on the simplified formula �9.14�, which is repre-
sented by the dotted curve. The two curves are practically identical
for g̃�0.038. The inset is an enlargement of the figure near g̃
=0.04, where three curves meet.
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N���Z� = Nspin��Z

�
� =

�E���Z�
��Z

, �8.7b�

with the use of Esky��Z� and Nspin��Z� derived in Eq. �8.4�.
Experimental data6 were obtained in three samples �Fig.

3�: a single heterointerface �SI1� and two GaSa single quan-
tum wells �QW1 and QW2� with widths of 20 nm and
14 nm. The sample SI1 has a much wider thickness of the
two-dimensional sheet. In Fig. 3, from top to bottom the
sample mobilities are 3.4, 0.52, 0.18, and 0.16�106 cm−2,
respectively. We have compared our theoretical result �8.6�
successfully with the experimental data by making appropri-
ate choices of the reduction factor � and the offset parameter
�offset in Fig. 3. We have used �=0.6 for all samples. It
would imply the thickness independence of the excitation
energy, suggesting that a skyrmion has a certain fixed size in
the third direction. However this problem is yet to be ex-
plored. On the other hand we have used different values of
�offset for each. We have set �offset=0.4 for sample SI1, and
have found that �offset increases as the mobility decreases.

This is reasonable since both the mobility and the offset
�offset represent impurity effects.

IX. SEMICLASSICAL APPROXIMATION

The formulas we have used to estimate the skyrmion ex-
citation energy are quite complicated. The modulations of the
electron density and the spin density, being expressed only in
infinite power series as in Eq. �7.6�, are very difficult to
handle with. Skyrmion excitations have been observed also
in bilayer QH systems,22–24 where it is practically impossible
to repeat the calculations carried out here because too many
dynamical variables are involved. We have already applied a
semiclassical approximation to those systems.19 In this sec-
tion we compare the semiclassical result with the micro-
scopic result.

In the semiclassical approximation we can make the spin-
charge separation of the electron field based on the
composite-boson picture,17

���x� = ��x�n��x� , �9.1�

where the U�1� filed ��x� carries the electric charge while
the CP1 field n��x� carries the spin. It leads to the factoriza-
tion of the spin field Sa�x� into the number density ��x� and
the normalized spin field Sa�x�,

Sa�x� = ��x�Sa�x� �9.2�

with

Sa�x� = 1
2n�

† �x���a���n��x� . �9.3�

The CP1 field of the skyrmion is given by17

n��x� =
1

��z�2 + �2� z

�
� �9.4�

together with the normalized spin field �6.19�, and the wave
function is factorizable as in �5.12�. We may also derive the
soliton equation17

1

4�
�2 ln �cl�x� − �cl�x� + �0 =

2�2�B
2

�r2 + �2�2�0, �9.5�

which determines the density modulation around the charge
excitation.

We evaluate the excitation energy in the lowest order of
�B

2 by assuming a large-scale skyrmion. It corresponds to the
commutative limit in the microscopic scheme.

The Coulomb energy is given by Eq. �7.12�. To calculate
the direct energy �7.12a� we take the leading term in the
solution of the soliton equation �9.5�,

	�cl�x� �
2�2�B

2

�r2 + �2�2�0, �9.6�

which agrees with the leading term in the density modulation
�6.28a� in the microscopic theory. The direct Coulomb en-
ergy �7.12a� reads

FIG. 3. A theoretical result on the activation energy �gap of a
skyrmion-antiskyrmion pair is compared with experimental data at
�=1. The data are taken from Schmeller et al. �Ref. 6�. The theo-
retical curve is based on the formula �8.6� with �=0.56. We have
taken �offset=0.41 for sample SI1. The offset �offset increases as the
mobility decreases. The skyrmion spin is one half of the slope of the
activation-energy curve, Nspin= 1

2��gap/�g̃, where �gap is taken in
units of �C. The number Nspin depends sensitively on the normalized
Zeeman gap g̃ for small g̃. The thin line is for the hole excitation
energy. It is seen that a hole is practically excited for g̃�0.03.
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HD
cl = �� d2kV�k�e−�B

2k2/2	�cl�− k�	�cl�k� =
3�2

128 
�C,

�9.7�

where  =� /2�B.
In calculating the exchange energy �7.12b�, since the ex-

change potential VX�x� is short-ranged, we make the deriva-
tive expansion and take the lowest order term. It is to make
an approximation in Eq. �7.12b�,

	VX�k� � −
2Js

��0
2k2 �9.8�

with Eq. �7.4�. Furthermore we approximate �cl�x���0 in
the exchange energy in the lowest order of �B

2 . Then the
exchange energy turns out to be the nonlinear sigma model,

HX
cl =

Js

2 �
a
� d2x��kSa

cl�x��2. �9.9�

This is bounded from below,

HX
cl � ± 8�JsQsky. �9.10�

The lower bound, HX
cl=8�Js, is saturated by the skyrmion

configuration �6.19�. We note that the Hamiltonian HX
cl de-

scribes a spin wave. The coherence length � is given by

�2 =
2Js

�0�Z
=

�2�

8g̃
�B

2 �9.11�

in the presence of the Zeeman effect.
We cut off the divergence of the Zeeman energy. First, the

skyrmion excitation occurs within the coherent domain with
the coherence length �. Second, the skyrmion size is propor-
tional to the scale parameter  . The Zeeman energy is ap-
proximated as

�HZ�sky =
�2g̃

2�B
2 ln��2�2

4�B
2 + 1� , �9.12�

where we have cut off the upper limit of the integration at
r=� � with a phenomenological parameter �.

Substituting these into Eq. �9.7�, we obtain

�H�sky = �1

4
��

2
� +

3�2

128 
+ 2 2g̃ ln��2

�2�

32g̃
+ 1���C,

�9.13�

where we have introduced another phenomenological param-
eter � to reduce the exchange energy, since the true exchange
energy is smaller than 8�Js. Minimizing this with respect to
 analytically we obtain

�H�sky ��1

4
��

2
� +

9�2

256 
��C, �9.14�

with

 �
1

2
�3�2

64
�1/3�g̃ ln��2

�2�

32g̃
+ 1��−1/3

. �9.15�

We have plotted the result in Fig. 2. It reproduces excellently
the previous numerical result for g̃�0.038 with the choice of
�=1.4 and �=0.9. We may practically use it even in the
region where a hole is excited. We have thus confirmed the
validity of the semiclassical approximation.

X. CONCLUSION

In this paper we have presented a microscopic theory of
skyrmions in QH ferromagnets. We have shown that the
skyrmion is a W��2�-rotated state of a hole-excited state.
Because of an intrinsic entanglement between the electron
density and the spin density implied by the W��2� algebra, a
W��2� rotation modulates not only the spin configuration but
also the electron density around a hole, thus decreasing the
Coulomb energy. Similarly, the antiskyrmion is a
W��2�-rotated state of an electron-excited state. There is a
simple type of skyrmion state characterized by the fact that
its wave function is factorizable in the electron coordinates.
We call it the factorizable skyrmion. It corresponds to the
nonlinear-sigma-model skyrmion previously derived in the
semiclassical approximation. We have analyzed the skyrmion
state in the realistic Coulomb system with the Zeeman inter-
action. By minimizing the excitation energy we have esti-
mated the activation energy of a skyrmion-antiskyrmion pair.
The result is found to explain the experimental data6 remark-
ably well.
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APPENDIX A: SPONTANEOUS SYMMETRY
BREAKING

We analyze the problem of spontaneous symmetry break-
ing due to a repulsive interaction between electrons in the
�=1 QH system. We assume that every Landau site is occu-
pied by one electron. The problem is to show that the spin
polarized state is the lowest-energy state though the Hamil-
tonian �3.1a� involves no spin variables.

We start with a proof, which makes the physical mecha-
nism of spontaneous symmetry breaking clear. According to
the decomposition formula �7.11� the energy of the four-
fermion interaction Hamiltonian �3.1a� is a sum of the direct
and exchange energies �7.12�, or �S�HV�S�=HD

cl+HX
cl with

HD
cl = �� d2kV�k�e−�1/2��B

2k2
�	�̂cl�k��2, �A1a�
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HX
cl = �� d2k	VX�k���Ŝa

cl�k��2 + 1
4 ��̂cl�k��2� , �A1b�

where V�k��0 and 	VX�k��0 for a repulsive interaction.

Here, �̂cl�k�= �S��̂�k��S� and Ŝa
cl�k�= �S�Ŝa�k��S�. The key

observation is that, though the Hamiltonian �3.1a� involves
no spin variables, the energy of a state does. It is important
that both the energies are positive semidefinite. The direct
energy HD

cl is insensitive to spin orientations, and it vanishes
for the homogeneous electron distribution since 	�̂cl�k�=0.
The exchange energy HX

cl depends on spin orientations. The
spin texture is homogeneous when the spin is completely

polarized, where Ŝa
cl�k�!	�k�. Furthermore, �̂cl�k�!	�k� due

to the homogeneous electron distribution. For such a spin
orientation the exchange energy also vanishes since 	VX�k�
=VX�0�−VX�k�=0 in Eq. �A1a�. On the other hand, HX

cl�0 if

the spin is not polarized completely since Ŝa
cl�k� contains

nonzero momentum components. Consequently the spin-
polarized state has the lowest energy, which is zero. Hence
the exchange interaction is the driving force of spontaneous
symmetry breaking.

We may present another proof, which is mathematically
more formal. First of all, the state

�g� = 

n

c↑
†�n��0� �A2�

is an eigenstate of the Hamiltonian �3.1a� with the zero en-
ergy, HV�g�=0. It is one of the ground states. We shall prove
the following: �a� any globally W��2�-rotated state is degen-
erate with �g�; �b� any locally W��2�-rotated state has a posi-
tive energy.

A spin rotated state of �g� is �"�=e−i"�g� with

" = �
a

�
mn

�a�m,n�Sa�n,m� , �A3�

where �a�m ,n� is a Hermitian matrix, ��a�m ,n��*=�a�n ,m�.
We calculate how the rotation ei" affects the polarized spin
for an infinitesimal parameter �a. Using

2�g�Sa�m,n��g� = 	az	mn, �A4�

we get

2�"�Sa�m,n��"� = 	az	mn + �
bc

�abc	cz�b�m,n� . �A5�

Only relevant transformations are generated by �x�m ,n� and
�y�m ,n�, since �z�m ,n� does not affect the spin polarization.
Besides we are interested in transformations rotating spins
without moving electrons from site to site. Then the param-
eter is reduced to �a�m ,n�=�a�m�	mn.

The energy induced by an infinitesimal transformation is

2�"�HV�"� = �
a=x,y

�
mn

��X	mn − Vmnnm��a�m��a�n� ,

�A6�

where we have set �g�HV�g�=0. The question is the positive
definiteness of the quantity

E��� = �
X	kn − Vkn��k�n, �A7�

where Vkn�Vknnk is the symmetric matrix.
Without loss of generality we assume the site index to run

up to a finite value N�, which will eventually be taken to
infinity. The analysis of Eq. �A7� is reduced to the analysis of
the eigenvalues of Vkn. Introducing the complex valued func-
tion

��x,y;�� = �
k

�k�k
*�x��k�y� , �A8�

we write

�
kn

Vkn�k�n =
1

2
� d2xd2yV�x − y����x,y;���2 � 0.

�A9�

Hence, Vkn is positive definite, and all of its eigenvalues are
positive.

Now we refer to Gerschgorin’s theorem,25 which origi-
nally deals with complex matrices. Formulating for a real
matrix with positive elements akn�0 the theorem reads as
follows. Let #k be the numbers defined as

#k = �
n�k

akn � 0. �A10�

Then all of the eigenvalues of akn lie in the union of the
segments �akk−#k ,akk+#k�.

In our case we have

#k = �
n�k

Vkn = �
n

Vkn − Vkk = 
X − Vkk �A11�

so that the segments appear as �2Vkk−
X ,
X�. On the other
hand, we have shown that the eigenvalues of Vkn are positive.
Consequently, irrespective of the value of 2Vkk−
X, we con-
clude that they lie within the segment �0,
X�, meaning that
the eigenvalues Ek of the quadratic form �A7� satisfy the
condition

0 $ Ek $ 
X. �A12�

The eigenstate of the lowest eigenvalue E=0 is given by �k
=�,

�
n

�
X	kn − Vkn��n = ��
n

�
X	kn − Vkn� = 0, �A13�

which corresponds to a global rotation of electron spins,
while for an arbitrary local rotation we have E����0. It im-
plies the degeneracy of the ground states only under a global
rotation, leading to a spontaneous symmetry breaking of the
rotational symmetry.

APPENDIX B: ANTISKYRMIONS

An antiskyrmion is a W��2�-rotated state of the electron-
excited state. We consider the antiskyrmion state �4.15�,

�Ssky
+ � = c↓,0

† �u0
+c↑,0

† + v0
+c↓,1

† ��u1
+c↑,1

† + v1
+c↓,2

† �

¯ �uN−1
+ c↑,N−1

† + vN−1
+ c↓,N

† �c↑,N
† �0� �B1�

with �un
+�2+ �vn

+�2=1. We note that the state comprises N+2
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electrons over N+1 sites. Here and hereafter, for notational
simplicity, we set c�n�c��n�, un

+�u+�n�, and so on.
In contrast with the skyrmion state �4.13�, the antiskyr-

mion state �Ssky
+ � does not lead to a wave function with any

reasonable structure like �5.10�. The expression for general N
is technically difficult to write down. As an example we
present the one for N=2. Up to multiplicative factors it ap-
pears as

S↑↑↑↑
+ = 0, �B2a�

S↓↑↑↑
+ = �z2 − z3��z2 − z4��z3 − z4� , �B2b�

S↓↓↑↑
+ = �z1 − z2��z3 − z4� � �z3z4 − �z1 + z2��z3 + z4�� ,

�B2c�

S↓↓↓↑
+ = �z1 − z2��z1 − z3��z2 − z3�z4

2, �B2d�

S↓↓↓↓
+ = 0, �B2e�

where no reasonable order is seen.
In this respect skyrmions and antiskyrmions might be re-

garded to possess rather different properties. Actually, this is
not so since the above scheme of dealing with antiskyrmions
is not quite satisfactory because of the following observation.

The skyrmion state �4.13� comprises N electrons, and the
wave function �5.10� describes these electrons in terms of its
N complex arguments. On the other hand, the antiskyrmion
wave function comprises N+2 complex arguments, which at
first sight seems to match the number of electrons in the
corresponding Fock state. However, since two electrons out
of those N+2 are fixed at n=0 and n=N, they cannot be
transferred to the neighboring sites. Therefore, though con-
structed of N+2 electrons, the antiskyrmion configuration
comprises only N−1 site-transferrable electrons, which is ex-
actly the same as in the skyrmion state. In other word, the
skyrmion and antiskyrmion Fock states comprise the equal
number of the degrees of freedom, since the two fixed elec-
trons carry no degrees of freedom at all. Nevertheless, the
antiskyrmion wave function involves N+2 complex argu-
ments, which does not match the number of site-transferable
electrons. There is nothing wrong there, and the answer to
this mismatch is that the components of antiskyrmion wave

function are not independent, but subject to certain func-
tional relations. The most transparent manifestation of this
statement are the relations �B2a� and �B2e�.

Though the scheme is not wrong by itself, it is inconve-
nient to work with. All these difficulties disappear if we de-
velop a dual picture based on the electron-hole symmetry. So
far the antiskyrmion Fock state is built up via creating elec-
trons in the vacuum state. The dual picture deals with the
same state via removing electrons from the completely filled
system of N+1 sites. Namely, up to the overall sign, the state
�B1� can be rewritten as

�Ssky
+ � = �v0

+c↑,0 − u0
+c↓,1��v1

+c↑,1 − u1
+c↓,2�

¯ �vN−1
+ c↑,N−1 − uN−1

+ c↓,N�

�n

c�n
† �0� . �B3�

We now introduce the hole annihilation operators c̃�n and the

hole vacuum �0̃�,

c̃↑↓,n = c↓↑,n
† �0̃� = 


�n

c�n
† �0�

with c̃�n�0̃�=0 and 	c̃�m , c̃�n
† 
=	��	mn.

Now the antiskyrmion Fock state can be presented as

�Ssky
+ � = �v0

+c̃↓,0
† − u0

+c̃↑,1
† ��v1

+c̃↓,1
† − u1

+c̃↑,2
† �

¯ �vN−1
+ c̃↓,N−1

† − uN−1
+ c̃↑,N

† ��0̃� , �B4�

where the analogy with the skyrmion state is manifest.
In the same way we introduce the hole field operator as

�̃↑↓�r�=�↓↑
† �r�, or equivalently

�̃��x� = �0
1/2e−�z̄�2/4�

n=0
��n�z̄nc̃��n� �B5�

where z̄= �x− iy� /�B.
Now the wave function of the antiskyrmion state compris-

ing N+2 electrons contains N variables z̄1 , . . . , z̄N. So the
unphysical degrees of freedom associated with two nontrans-
ferable electrons of Eq. �B1� do not appear at all, since those

two electrons are accounted within the ground state �0̃�.
Using the analogy with �5.10� it is straightforward to

write down the N-body wave function of antiskyrmion con-
figuration. We obtain

S�1�2¯�N

+ �x� = CNe−�r=1
N−1�zr�

2/4 � �
z̄1

0� z̄1

 ̃0
�

�1

z̄1
1� z̄1

 ̃1
�

�1

¯ z̄1
N−1� z̄1

 ̃N−1
�

�1

z̄2
0� z̄2

 ̃0
�

�2

z̄2
1� z̄2

 ̃1
�

�2

¯ z̄2
N−1� z̄2

 ̃N−1
�

�2

] ] � ]

z̄N
0� z̄N

 ̃0
�

�N

z̄N
1� z̄N

 ̃1
�

�N

¯ z̄N
N−1� z̄N

 ̃N−1
�

�N

� �B6�

as in Eq. �5.10�.
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APPENDIX C: DECOMPOSITION FORMULA

We prove the decomposition formula �7.11�, according to
which the four-fermion interaction energy consists of the di-
rect energy and the exchange energy. We evaluate the energy
of a state �S� in the class of states �4.4�,

�HV� = �S�HV�S� , �C1�

where the Hamiltonian is given by Eq. �3.1a�. We assume
that the electron field carries the SU�Nf� isospin index, �
=1,2 , . . . ,Nf. For the sake of accuracy we first consider a
system with a finite number of Landau sites �m
=0,1 , . . . ,N�−1� and take the limit N�→� in final expres-
sions. It is convenient to combine the isospin and site indices
into a multi-index M ��� ,m�, where the multi-index runs
over the values M =1,2 , . . . ,NfN�.

The W��Nf� algebra is identical to the algebra U�NfN�� in
the limit N�→�, and the transformation rules for the fer-
mion operators appear as

e−iWcMeiW = �U�MM�cM�,

e−iWcM
† eiW = cM�

† �U†�M�M , �C2�

where U is an �NfN��� �NfN�� unitary matrix, UU†=U†U
= I�NfN����NfN��. Here and hereafter the repeated index im-
plies the summation over it.

We first calculate the two-point averages by the state
�S�=eiW�S0� in Eq. �4.4�. Using Eq. �C2� we get

�S�cM
† cN�S� = �U†�KM�U�NL�S0�cK

† cL�S0� . �C3�

For the state �S0� given by Eq. �4.5� we have

�S0�cK
† cL�S0� = �K	KL, �C4�

which eventually leads to

�S�cM
† cN�S� = �K�U�NK�U†�KM . �C5�

Carrying out analogous manipulations in four-point averages
we get

�S�cM
† cS

†cTcN�S� = �U†�KM�U†�IS�U�TJ�U�NL

� �S0�cK
† cI

†cJcL�S0� . �C6�

We can use

�S0�cK
† cI

†cJcL�S0� = �J�L�	IJ	KL − 	IL	KJ� �C7�

for the state �S0�. Substituting �C7� into �C6� and accounting
�C5� we summarize as

�S�cM
† cS

†cTcN�S� = �S�cM
† cN�S��S�cS

†cT�S� − �S�cM
† cT�S�

��S�cS
†cN�S� , �C8�

where the direct and exchange terms are easily recognized.
Here, we have

�S�c�
† �m�c��n��S� =

	��

Nf
�cl�n,m� + ��A���SA

cl�n,m� ,

�C9�

in terms of decoupled spin and site indices, where �cl�m ,n�
and SA

cl�m ,n� are defined by �4.21� with �A the Gell-Mann
matrix, A=1, . . . ,Nf

2−1.
In this way we achieve at the decomposition formula,

�HV� = HD
cl + HX

cl, �C10�

where the direct and the exchange parts are given by

HD
cl = Vmnij�

cl�n,m��cl�j,i� − �N� + 2�N��D, �C11�

HX
cl = − 2VmnijSA

cl�j,m�SA
cl�n,i� −

1

Nf
Vmnij�

cl�j,m��cl�n,i�

+ �N� + 	N��X. �C12�

They read �A1� in the momentum representation.
In deriving the formula for HX

cl we have accounted
VX�0�=4�2�X and also the relation

N� + 	N

4��B
2 =

1

4��B
2 � d2x�̂cl�x� =� d2k�ŜA

cl�− k�ŜA
cl�k�

+
1

2Nf
�̂cl�− k��̂cl�k�� . �C13�

This relation is derived as follows. We deal with the quantity

�S�cM
† cK�S��S�cK

† cN�S� = �K�U�NK�U†�KM , �C14�

where we have used �C5� and �K
2 =�K since �K=0 or 1. Com-

paring this with �C5� we conclude

�S�cM
† cK�S��S�cK

† cN�S� = �S�cM
† cN�S� , �C15�

which is

�S�c�
† �m�c �k��S��S�c 

†�k�c��n��S� = �S�c�
† �m�c��n��S� .

�C16�

Substituting Eq. �C9� into this we find

ŜA
cl�n,k�ŜA

cl�k,m� +
1

4Nf
�̂cl�n,k��̂cl�k,m� =

1

2
�̂cl�n,m� .

�C17�

This amounts to Eq. �C13� in the momentum space.
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