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We present a quantum description of a planar microcavity photon mode strongly coupled to a semiconductor
intersubband transition in presence of a two-dimensional electron gas. We show that, in this kind of system, the
vacuum Rabi frequency �R can be a significant fraction of the intersubband transition frequency �12. This
regime of ultrastrong light-matter coupling is enhanced for long-wavelength transitions, because for a given
doping density, effective mass and number of quantum wells, the ratio �R /�12 increases as the square root of
the intersubband emission wavelength. We characterize the quantum properties of the ground state �a two-
mode squeezed vacuum�, which can be tuned in situ by changing the value of �R, e.g., through an electrostatic
gate. We finally point out how the tunability of the polariton quantum vacuum can be exploited to generate
correlated photon pairs out of the vacuum via quantum electrodynamics phenomena reminiscent of the dy-
namical Casimir effect.
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In the last decade, the study of intersubband electronic
transitions1 in semiconductor quantum wells has enjoyed a
considerable success, leading to remarkable optoelectronic
devices, such as the quantum cascade lasers.2–4 In contrast to
the more conventional interband transitions between conduc-
tion and valence bands, the frequency of intersubband tran-
sitions is not determined by the energy gap of the semicon-
ductor material system used, but rather can be chosen via the
thickness of the quantum wells in the active region, provid-
ing tunable sources emitting in the mid and far infrared.

One of the most fascinating aspects of light-matter inter-
action is the so-called strong light-matter coupling regime,
which is achieved when a cavity mode is resonant with an
electronic transition of frequency �12, and the so-called
vacuum Rabi frequency �R exceeds the cavity mode and
electronic transition linewidths. The strong coupling regime
has been observed in the late 1980s using atoms in metallic
cavities,5,6 and, a few years, later in solid-state systems using
excitonic transitions in quantum wells embedded in semicon-
ductor microcavities.7 In this regime, the normal modes of
the system consist of linear superpositions of electronic and
photonic excitations, which, in the case of semiconductor
materials, are the so-called polaritons. In both these systems,
the vacuum Rabi frequency �R does not exceed a very small
fraction of the transition frequency �12.

Recently, Dini et al.8 have reported the first demonstration
of strong coupling regime between a cavity photon mode and
a mid-infrared intersubband transition, in agreement with
earlier semiclassical theoretical predictions by Liu.9 The di-
electric Fabry-Perot structure realized by Dini et al.8 consists
of a modulation-doped multiple quantum well structure em-
bedded in a microcavity, whose mirrors work thanks to the
principle of total internal reflection. The strong coupling re-
gime has been also observed in quantum well infrared
detectors.10 As we will show in detail, an important advan-
tage of using intersubband transitions is the possibility of
exploring a regime where the normal-mode polariton split-

ting is a significant fraction of the intersubband transition �in
the pioneering experiments by Dini et al.,8 2��R=14 meV
compared to ��12=140 meV�. Furthermore, recent experi-
ments have also demonstrated the possibility of a dramatic
tuning of the strong light-matter coupling through applica-
tion of a gate voltage,11 which is able to deplete the density
of the two-dimensional electron gas.

Although the quest for quantum optical squeezing effects
in the emission from atoms strongly coupled to a cavity
mode has been an active field of research,12 all systems re-
alized up to now show a vacuum Rabi frequency �R much
smaller than the frequency of the optical transition. In this
parameter regime, the relative importance of the antiresonant
terms in the light-matter coupling is small and, as far as no
strong driving field is present, they can be safely neglected
under the so-called rotating-wave approximation. In the pres-
ence of a strong driving field, however, antiresonant terms
are known to play a significant role, giving, e.g., the so-
called Bloch-Siegert shift in magnetic resonance
experiments,13 or determining the quantum statistical proper-
ties of the emission from dressed-state lasers.14

A few theoretical studies have pointed out the intrinsic
nonclassical properties of exciton-polaritons in solid-state
systems,15–17 but the small value of the ratio �R /�exc, typi-
cally �0.01, has thus far prevented the observation of quan-
tum effects due to the antiresonant terms of the light-matter
coupling. All the squeezing experiments that have been per-
formed thus far, in fact, required the presence of a strong
coherent optical pump beam in order to inject polaritons and
take advantage of nonlinear polariton parametric
processes.18–22

In this paper, we show that in the case of intersubband
cavity polaritons, it is instead possible to achieve an unprec-
edented ultrastrong coupling regime, in which the vacuum
Rabi frequency �R is a large fraction of the intersubband
transition frequency �12. To this purpose, transitions in the
far infrared are most favorable, because the ratio �R /�12
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scales as the square root of the intersubband emission wave-
length. Within a second quantization formalism, we charac-
terize the polaritonic normal modes of the system in the
weak excitation limit, in which the density of intersubband
excitations is much smaller than the density of the two-
dimensional electron gas in each quantum well �in this very
dilute limit, the intersubband excitations behave as bosons�.
We point out the nonclassical properties of the ground state,
which consists of a two-mode squeezed vacuum. As its prop-
erties can be modulated by applying an external electrostatic
bias, we suggest the possibility of observing quantum elec-
trodynamics effects, such as the generation of correlated
photon pairs from the initial vacuum state. Such an effect
closely reminds the so-called dynamical Casimir effect,23–25

whose observation is still an open challenge and is actually
the subject of intense effort. Many theoretical works have, in
fact, predicted the generation of photons in an optical cavity
when its properties �e.g., the length or the dielectric permit-
tivity of the cavity spacer material� are modulated in a rapid,
nonadiabatic way.26–28

The present paper is organized as follows. In Sec. I we
describe the system under examination, and in Sec. II we
introduce its Hamiltonian. The scaling of the coupling inten-
sity with the material parameters is discussed in Sec. III,
while Sec. IV is devoted to the diagonalization of the Hamil-
tonian and the discussion of the polaritonic normal modes of
the system in the different regimes. The quantum ground
state is characterized in Sec. V, and its quantum properties
are pointed out. Two possible schemes for the generation of
photon pairs from the initial vacuum by modulating the prop-
erties of the ground state are suggested in Sec. VI. Conclu-
sions are finally drawn in Sec. VII.

I. DESCRIPTION OF THE SYSTEM

In the following, we will consider a planar Fabry-Perot
resonator embedding a sequence of nQW identical quantum
wells �see Fig. 1�a��. Each quantum well is assumed to be
doped with a two-dimensional electron gas density �2DEG�,
N2DEG, which, at low temperatures, populate the first quan-
tum well subband. Because of the presence of the two-
dimensional electron gas, it is possible to have transitions
from the first to the second subband of the quantum well. We
will call ��12 the considered intersubband transition energy.
If we denote with z the growth direction of the multiple
quantum well structure, then the dipole moment of the tran-
sition is aligned along z, i.e., d12=d12ẑ. This property im-
poses the well-known polarization selection rule for intersub-
band transitions in quantum wells, i.e., the electric field must
have a component along the growth direction. We point out
that in the case of a perfect planar structure, the in-plane
wave vector is a conserved quantity, unlike the wave vector
component along the z direction. Therefore, all wave vectors
k will be meant as in-plane wave vectors, unless differently
stated.

In the following, we will consider the fundamental cavity
photon mode, whose frequency dispersion is given by
�cav,k= �c /�����kz

2+k2, where �� is the dielectric constant of
the cavity spacer and kz is the quantized photon wave vector

along the growth direction, which depends on the boundary
conditions imposed by the specific mirror structures. In the
simplest case of metallic mirrors, kz=	 /Lcav, with Lcav the
cavity thickness.

II. SECOND QUANTIZATION HAMILTONIAN

In this section, we introduce the system Hamiltonian in a
second quantization formalism. In the following, we will call
ak

† the creation operator of the fundamental cavity photon
mode with in-plane wave vector k. Note that, in order to
simplify the notation, we will omit the polarization index of
the photon mode, which is meant to be transverse magnetic
�TM�-polarized �also known as p-polarization�. This photon
polarization is necessary to have a finite value of the electric
field component along the growth direction z of the multiple
quantum well structure, direction along which the transition
dipole of the intersubband transition is aligned. bk

† will be
instead the creation operator of the bright intersubband exci-
tation mode of the doped multiple quantum well structure. In
the simplified case of nQW identical quantum wells that are
identically coupled to the cavity photon mode, the only
bright intersubband excitation is the totally symmetric one,
with an oscillator strength nQW times larger than the one of a
single quantum well. The nQW−1 orthogonal excitations are
instead dark and will be neglected in the following. The cre-
ation operator corresponding to the bright intersubband tran-
sition can be written as

FIG. 1. �a� Sketch of the considered planar cavity geometry,
whose growth direction is called z. The cavity spacer of thickness
Lcav embeds a sequence of nQW identical quantum wells. The energy
of the cavity mode depends on the cavity photon propagation angle

. �b� Each quantum well contains a two-dimensional electron gas
in the lowest subband �obtained through doping or electrical injec-
tion�. The transition energy between the first two subbands is ��12.
Only the TM-polarized photon mode is coupled to the intersubband
transition and a finite angle 
 is mandatory to have a finite dipole
coupling. �c� Sketch of the energy dispersion E1�q� and E2�q�
=E1�q�+��12 of the first two subbands as a function of the in-plane
wave vector q. The dispersion of the intersubband transition is neg-
ligible as compared to the one of the cavity mode. For a typical
value of the cavity photon in-plane wave vector k, one has in fact
E2��k+q��−E1�q����12.
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bk
† =

1
�nQWN2DEGS

�
j=1

nQW

�
�q��kF

c2,q+k
�j�† c1,q

�j� , �1�

where N2DEG is the density of the two-dimensional electron
gas in each quantum well and S is the sample area. The
fermionic operator c1,q

�j� annihilates an electron belonging to
the first subband and jth quantum well, while c2,q+k

�j�† creates
an electron in the second subband of the same well. kF is the
Fermi wave vector of the two-dimensional electron gas,
whose electronic ground state at low temperature is

�F	 = 

j=1

nQW



�q��kF

c1,q
�j�†�0	cond, �2�

where �0	cond is the empty conduction band state.
In the following, we will consider the situation of a

weakly excited intersubband transition, i.e.,

1

S
�

k
�bk

†bk	 � N2DEG. �3�

In this dilute limit, the intersubband excitation field is ap-
proximately bosonic, namely,

�bk,bk�
† � � �k,k�. �4�

Starting from the coupled light-matter Hamiltonian of the
semiconductor and retaining only the considered cavity pho-
ton mode for the electromagnetic field and the considered
intersubband transition for the electronic polarization field,
one finds a standard Hopfield-like Hamiltonian29

H = H0 + Hres + Hanti, �5�

which consists of three qualitatively different contributions,
namely,

H0 = �
k

��cav,k�ak
†ak +

1

2
 + �

k
��12bk

†bk, �6�

Hres = ��
k

�i�R,k�ak
†bk − akbk

†� + Dk�ak
†ak + akak

†�� , �7�

Hanti = ��
k

�i�R,k�akb−k − ak
†b−k

† � + Dk�aka−k + ak
†a−k

† �� .

�8�

H0 in Eq. �6� describes the energy of the bare cavity photon
and intersubband polarization fields, which depend on the
numbers ak

†ak, bk
†bk of cavity photons and intersubband exci-

tations, respectively.
Hres in Eq. �7� is the resonant part of the light-matter

interaction, depending on the vacuum Rabi energy ��R,k and
on the related coupling constant Dk. The terms proportional
to �R,k describe the creation �annihilation� of one photon and
the annihilation �creation� of an intersubband excitation with
the same in-plane wave vector. In contrast, the term propor-
tional to Dk contains only photon operators because it origi-
nates from the squared electromagnetic vector potential part
of the light-matter interaction. Note that this term in Hres

depends on the photon number operator ak
†ak as the bare

cavity photon term in Eq. �6�. Hence, it gives a mere blue-
shift �Dk0� of the bare cavity photon energy ��cav,k.

Finally, Hanti in Eq. �8� contains the usually neglected an-
tiresonant terms, which correspond to the simultaneous de-
struction or creation of two excitations with opposite in-
plane wave vectors. The terms proportional to �R,k describe
the creation �or destruction� of a cavity photon and an inter-
subband excitation, whereas the terms proportional to Dk de-
scribe the corresponding process involving a pair of cavity
photons.

Before continuing our treatment, we wish to point out that
the considered Hamiltonian in Eq. �5� contains only the en-
ergy associated to the fundamental cavity mode �including
the zero-point energy �k

1
2��cav,k�, the energy associated to

the creation of intersubband excitations and the full light-
matter interaction between the considered modes. The energy
terms associated to the other photon modes, the electronic
energy of the filled electronic bands as well as the electro-
static energy associated to an applied bias have been here
omitted for simplicity, as they do not take part in the dynam-
ics discussed in the remainder of the paper.

III. SCALING OF THE INTERACTION

The specific values of the coupling constants �R,k and Dk
depend on the microscopic parameters of the intersubband
microcavity system.

The so-called vacuum Rabi energy ��R,k is the Rabi en-
ergy obtained with the electric field corresponding to one
photon.5,30 For the system under consideration,8,9 the polar-
iton coupling frequency for the TM-polarized mode31 reads

�R,k = � 2	e2

��m0Lcav
eff N2DEGnQW

eff f12 sin2 
1/2

, �9�

where �� is the dielectric constant of the cavity, Lcav
eff the

effective thickness of the cavity photon mode �which de-
pends nontrivially on the boundary conditions imposed by
the specific mirror structures�, and nQW

eff the effective number
of quantum wells �nQW

eff =nQW in the case of quantum wells,
which are identically coupled to the cavity photon field and
located at the antinodes of the cavity mode electric field�.
The oscillator strength of the considered intersubband tran-
sition reads

f12 = 2m0�12d12
2 /� , �10�

where m0 is the free electron mass and d12 is the electric
dipole moment of the transition. Under the approximation of
a parabolic energy dispersion of the quantum well subbands,
the oscillator strengths of the different intersubband transi-
tions satisfy the f-sum rule32

�
j

f1j = m0/m*, �11�

where m* is the effective electron mass of the conduction
band. In particular, for our case of a deep rectangular well,
the sum rule is almost saturated by the first intersubband
transition, i.e., f12�m0 /m*. Finally, 
 is the propagation
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angle inside the cavity �which is different from the propaga-
tion angle in the substrate�, and is related to the in-plane
wave vector k by k /kz=sin 
 / cos 
.

As we will see in Sec. IV, the relevant parameter quanti-
fying the importance of the quantum effects considered in
this paper is the dimensionless ratio �R,kres

/�12, where kres is
the resonance in-plane wave vector, such as ��cav,kres

=��12.
In the system studied by Dini et al.,8 this ratio is already
significant, namely, �R,k /�12=0.05. Here, we show that the
ratio �R,k /�12 can be largely increased designing structures
in the far infrared, by increasing the number of quantum
wells and by choosing semiconductors with smaller effective
mass.

Let be 
res the cavity propagation angle corresponding to
kres. From the relation

kres =
�12

c
��� sin 
res, �12�

we get that for metallic mirrors

Lcav =
�12

2��� cos 
res

, �13�

where 2	 /�12=�12/c. Under these conditions, the light-
matter coupling ratio at the resonance angle is

�R,kres

�12
= ���12, �14�

with

� =�e2f12 sin2 
res cos 
resN2DEGnQW

	m0c2���

. �15�

Note that the prefactor given in Eq. �15� has a weak depen-
dence on �12. In fact, in the limit case of a rectangular quan-
tum well with high potential barriers, f12=0.96m0 /m� and
does not depend at all on �12. More refined calculations,32

including the nonparabolicity of the semiconductor band and
the finite depth of the potential well, show that f12 has a
moderate dependence on the emission wavelength �12 �it ac-
tually increases with �12�. Hence, the normalized vacuum
Rabi frequency �R,kres

/�12 increases at least as ��12. The
predictions of Eqs. �14� and �15� are reported in Fig. 2 for a
system of 50 GaAs quantum wells and a doping density
N2DEG=5�1011 cm−2. For an intersubband emission wave-
length of 100 �m, the ratio �R /�12 can be as high as 0.2.
The values in Fig. 2 can be significantly increased using
semiconductors with smaller effective mass, such as
InGaAs/AlInAs-on-InP.33

To complete our description, we need to provide the ex-
plicit expression for the coefficient Dk, which quantifies the
effect of the squared electromagnetic vector potential in the
light-matter interaction. Generalizing Hopfield’s procedure29

to the case of intersubband transitions, we find that all the
intersubband transitions give a contribution to Dk, namely,

Dk =
� j

f1j

f12

�R,k
2

�12
. �16�

However, as the oscillator strength of a deep rectangular well
is concentrated in the lowest transition at �12, the effect of
the higher transitions is a minor correction, namely,

Dk � 1.04
�R,k

2

�12
�

�R,k
2

�12
. �17�

Note that for a quantum well with a parabolic confinement
potential V�z�= �1/2�m*�12

2 z2, the expression Dk=�R,k
2 /�12

would be exact, since in this case all the intersubband oscil-
lator strength is exactly concentrated in the lowest transition
�12.

IV. INTERSUBBAND POLARITONS

As all the terms in the Hamiltonian H=H0+Hres+Hanti are
bilinear in the field operators, H can be exactly diagonalized
through a Bogoliubov transformation. Following the pioneer-
ing work by Hopfield,29 we introduce the lower polariton
�LP� and upper polariton �UP� annihilation operators

pj,k = wj,kak + xj,kbk + yj,ka−k
† + zj,kb−k

† , �18�

where j� �LP,UP�. The Hamiltonian of the system can be
cast in the diagonal form

H = EG + �
j��LP,UP�

�
k

�� j,kpj,k
† pj,k, �19�

where the constant term EG will be given explicitly later. The
Hamiltonian form in Eq. �19� is obtained, provided that the
vectors

FIG. 2. Coupling ratio �R,k /�12 as a function of the intersub-
band emission wavelength �12 ��m�. Parameters: f12=12.9 �GaAs

quantum well�, cavity spacer refraction index ���=3, nQW
eff =50,

N2DEG=5�1011 cm−2 and 
=60°. The Fabry-Perot resonator is a
� /2 microcavity. Results obtained from the analytical expressions
in Eqs. �14� and �15�.
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v� j,k = �wj,k,xj,k,yj,k,zj,k�T �20�

satisfy the eigenvalues equation

Mkv� j,k = � j,kv� j,k �21�

with � j,k0. The Bose commutation rule

�pj,k,pj�,k�
† � = � j,j��k,k� �22�

imposes the normalization condition

wj,k
* wj�,k + xj,k

* xj�,k − yj,k
* yj�,k − zj,k

* zj�,k = � j,j�. �23�

The Hopfield-like matrix for our system reads

Mk =�
�cav,k + 2Dk − i�R,k − 2Dk − i�R,k

i�R,k �12 − i�R,k 0

2Dk − i�R,k − �cav,k − 2Dk − i�R,k

− i�R,k 0 i�R,k − �12

� .

�24�

The four eigenvalues of Mk are �±�LP,k , ±�UP,k�. Under the
approximation Dk=�R,k

2 /�12 �i.e., all the oscillator strength
concentrated on the �12 transition�, det Mk= ��cav,k�12�2, giv-
ing the simple relation

�LP,k�UP,k = �12�cav,k, �25�

i.e., the geometric mean of the energies of the two polariton
branches is equal to the geometric mean of the bare intersub-
band and cavity mode energies. The dependence of the exact
polariton eigenvalues as a function of �R,k /�12 is reported in
Fig. 3, for the resonant case �cav,k=�12.

A. Ordinary properties in the limit �R,k /�12™1

In the standard case �R,k /�12�1, the polariton operator
can be approximated as

pj,k � wj,kak + xj,kbk, �26�

with �wj,k�2+ �xj,k�2�1. This means that the annihilation op-
erator for a polariton mode with in-plane wave vector k is
given by a linear superposition of the photon and intersub-
band excitation annihilation operators with the same in-plane
wave vector, whereas mixing with the creation operators
�represented by the coefficients yj,k and zj,k� is instead negli-
gible �see Fig. 4�. In this limit, the geometric mean can be
approximated by the arithmetic mean and Eq. �25� can be
written in the more usual form:

�LP,k + �UP,k � �cav,k + �12. �27�

For the specific resonant wave vector kres such that �cav,kres
=�12, the polariton eigenvalues are

�LP�UP�,kres
� �12 � �R,kres

�28�

and the mixing fractions are �wLP,kres
�2��xLP,kres

�2�1/2.

B. Ultrastrong coupling regime

When the ratio �R,k /�12 is not negligible compared to 1,
then the anomalous features due to the antiresonant terms of
the light-matter coupling becomes truly relevant.

In the resonant �cav,kres
=�12 case and under the approxi-

mation Dk=�R,k
2 /�12, the polariton frequencies are given by

�LP�UP�,kres
= ��12

2 + ��R,kres
�2 � �R,kres

, �29�

which, as it is apparent in Fig. 3, corresponds to a strongly
asymmetric anticrossing as a function of �R,kres

/�12. This is

FIG. 3. Normalized polariton frequencies �LP,k /�12 and
�UP,k /�12 as a function of �R,k /�12 for Dk=�R,k

2 /�12. The calcu-
lation has been performed with �cav,k=�12. Note that for a given
microcavity system, �R,k /�12 can be tuned in situ by an electro-
static bias, which is able to change the density of the two-
dimensional electron gas.

FIG. 4. Mixing fractions for the lower polariton �LP� mode as a
function of �R,k /�12 �see Eq. �18� in the text�. The calculation has
been performed for the resonant case �cav,k=�12, as in the previous
figure. Panel �a�: �wLP,k�2 �thin solid line�, �xLP,k�2 �thick solid line�.
Note that for �R,k /�12�1, �wLP,k�2��xLP,k�2�1/2. Panel �b�:
�yLP,k�2 �thin dashed line�, �zLP,k�2 �thick dashed line�. For
�R,k /�12�1, �yLP,k�2��zLP,k�2�0. The upper polariton �UP� frac-
tions �not shown� are simply �wUP,k�2= �xLP,k�2, �xUP,k�2= �wLP,k�2,
�yUP,k�2= �zLP,k�2, �zUP,k�2= �yLP,k�2.
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because of the combined effect of the blueshift of the cavity
mode frequency due to the terms proportional to Dk in Eq.
�7� and of the anomalous coupling terms in Eq. �8�.

These same effects contribute to the nontrivial evolution
of the Hopfield coefficients shown in Fig. 4. The anomalous
Hopfield fractions �yLP,k�2 and �zLP,k�2 significantly increase
because of the anomalous coupling and eventually become
of the same order as the normal ones �xLP,k�2 and �wLP,k�2.
Because of the normalization condition

�wj,k�2 + �xj,k�2 − �yj,k�2 − �zj,k�2 = 1, �30�

this affects the ordinary fractions �wLP,k�2, �xLP,k�2 as well.
Owing to the blueshift of the cavity photon frequency in-
duced by the light-matter coupling, at the resonance wave
vector k=kres the lower polariton becomes more matterlike
�i.e., �xLP,kres

�2 �wLP,kres
�2 and �zLP,kres

�2 �yLP,kres
�2�, whereas

the upper polariton more photonlike. In this resonant case,
the UP Hopfield coefficients �not shown� are simply related
to the LP ones by �wUP,kres

�2= �xLP,kres
�2, �xUP,kres

�2= �wLP,kres
�2,

�yUP,kres
�2= �zLP,kres

�2, �zUP,kres
�2= �yLP,kres

�2.

V. QUANTUM GROUND STATE

A. Normal vacuum state �0‹ for �R,k=0

In the case �R=0 �negligible light-matter interaction�, the
quantum ground state �G	 of the considered system is the
ordinary vacuum �0	 for the cavity photon and intersubband
excitation fields. Such ordinary vacuum satisfies the relation

ak�0	 = bk�0	 = 0, �31�

which means a vanishing number of photons and intersub-
band excitations

�0�ak
†ak�0	 = �0�bk

†bk�0	 = �0�ak
†bk�0	 = 0 �32�

and no anomalous correlations, i.e.,

�0�akak��0	 = �0�bkbk��0	 = �0�akbk��0	 = 0. �33�

B. Squeezed vacuum state

With a finite �R,k, the ground state of the system �G	 is no
longer the ordinary vacuum �0	 such that

ak�0	 = bk�0	 = 0, �34�

but rather the vacuum of polariton excitations

pj,k�G	 = 0. �35�

As the polariton annihilation operators are linear superposi-
tions of annihilation and creation operators for the photon
and the intersubband excitation modes, the ground state �G	
is, in quantum optical terms, a squeezed state.34,35 By invert-
ing Eq. �18�, one gets

�
ak

bk

a−k
†

b−k
†
� =�

wLP,k
* wUP,k

* − yLP,k − yUP,k

xLP,k
* xUP,k

* − zLP,k − zUP,k

− yLP,k
* − yUP,k

* wLP,k wUP,k

− zLP,k
* − zUP,k

* xLP,k xUP,k

��
pLP,k

pUP,k

pLP,−k
†

pUP,−k
†

� ,

�36�

from which, using Eq. �35� and the boson commutation
rules, we obtain that the ground state contains a finite num-
ber �per mode� of cavity photons and intersubband excita-
tions

�G�ak
†ak�G	 = �yLP,k�2 + �yUP,k�2 �37�

�G�bk
†bk�G	 = �zLP,k�2 + �zUP,k�2, �38�

as well as some correlation between the photon and intersub-
band fields

�G�ak
†bk�G	 = yLP,k

* zLP,k + yUP,k
* zUP,k. �39�

Moreover, significant anomalous correlation exist between
opposite momentum components of the fields

�G�aka−k�G	 = − wLP,k
* yLP,k − wUP,k

* yUP,k �40�

�G�bkb−k�G	 = − xLP,k
* zLP,k − xUP,k

* zUP,k �41�

�G�bka−k�G	 = − xLP,k
* yLP,k − xUP,k

* yUP,k. �42�

Note that the finite photonic population, which is present in
the ground state �G	 of our system, is composed of “virtual”
photons. In the absence of any perturbation or modulation of
the parameters of the quantum Hamiltonian, these virtual
photons cannot escape from the cavity and therefore do not
result in any observable emitted radiation �indeed, energy
would not be conserved in such a process�.

As it has been shown in Fig. 4, the Hopfield coefficients
xj,k ,yj,k ,wj,k ,zj,k as well as the ground state �G	 of the system
strongly depend on the vacuum Rabi energy �R,k, which in
our case can be dramatically modulated in situ �e.g., by
changing the electron density N2DEG via a time-dependent
external electrostatic bias�. In particular, we shall discuss
how this remarkable tunability of the system can be used to
“unbind” the virtual photons by modulating the parameters
of the system in a time-dependent way, and generate some
radiation that can be actually detected outside the cavity.
These issues will be the subject of Sec. VI.

C. Ground-state energy

Also the energy EG of the quantum ground state has a
significant dependence on the coupling �R,k. Defining E0 as
the ground state energy of the uncoupled ��R,k=0� system,
we have that

EG − E0 = �
k
��Dk − �

j��LP,UP�
�� j,k��yj,k�2 + �zj,k�2�� .

�43�

Note that this energy difference includes only the contribu-
tion of the zero-point �ZP� fluctuations of the intersubband
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polariton field and does not take into account the other con-
tributions coming, e.g., from the change of the electrostatic
energy of the system �which is imposed by an applied bias�,
as already discussed at the end of Sec. II. The �always posi-
tive� term Dk in Eq. �43� is the zero-point energy change due
to the mere blueshift of the bare cavity mode frequency and
does not correspond to any squeezing effect. The second
term is instead due to the mixing of creation and annihilation
operators into the polaritonic operators as described in Eq.
�18� and is proportional to the number of virtual photons and
intersubband excitations present in the ground state �G	 of
the system according to Eqs. �37� and �38�. As it is usual for
a correlation contribution, it tends to lower the ground-state
energy. It is interesting to study the differential “zero-point”
energy per mode ���ZP�k�, whose sum over all the k-modes
gives the quantum ground-state energy difference EG−E0.
The differential zero-point frequency reads

��ZP�k� = Dk + ��ZP
corr�k� , �44�

where the �negative� correlation contribution reads

��ZP
corr�k� = − �

j��LP,UP�
� j,k��yj,k�2 + �zj,k�2� . �45�

These quantities �normalized to �12� are plotted in Fig. 5 as
a function of �R,k /�12 for the resonant case �cav,k=�12. Al-
though it is the diagonal blueshift that gives the dominant
contribution to the ground-state energy shift, the negative
contribution due to the correlation effects is important, being
as large as −0.13��12 already for �R,k /�12=0.5.

VI. TUNING THE QUANTUM VACUUM: QUANTUM
RADIATION EFFECTS

The possibility of tuning in a dramatic way the properties
�energy and squeezing� of the ground state of the system, as

well as the significant number of �virtual� excitations already
present in the ground state suggests that the present system
could be a potential laboratory to study quantum electrody-
namics �QED� phenomena, which are reminiscent of the dy-
namic Casimir effects.23–25 In particular, we shall discuss
how a time-modulation of the ground-state properties of the
system can parametrically produce real excitations above the
ground state of our cavity, which then escape from the cavity
as photons and propagate in the external free space.

In the typical arrangement for the observation of the dy-
namical Casimir effect, one has to modulate in time the prop-
erties of an optical cavity and, in particular, its resonance
frequencies. Several proposals have appeared in order to do
this: in the simplest ones, one has to periodically move the
mirrors so as to modify the boundary conditions of the
field.25,26 Other proposals27 deal with a time-dependence of
the refractive index of a dielectric medium placed inside the
cavity. A recent work proposes to vary the effective length of
the cavity by changing the reflectivity of a composite
mirror.28

The main peculiarity of our system as compared to previ-
ous proposals is due to the possibility of modulating the
properties of the ground state in a much stronger way be-
cause of the ultrastrong and tunable light-matter coupling.

In Sec. VI A, we give a detailed analysis of a simple
gedanken experiment, where the vacuum Rabi frequency is
assumed to be switched off in an instantaneous way. This
scheme has the merit of allowing one to grasp the essential
physics of the problem, providing quantitative estimates
without the need of embarking in complicated calculations.

A complete and quantitative calculation of the spectral
shape and intensity of the emitted radiation for the most
relevant case of a periodic modulation of �R,k is beyond the
scope of the present paper, as it would require a careful
analysis of the coupling of the cavity system to the extra-
cavity field as well as of the other nonradiative loss mecha-
nisms of the electronic system.36 This is work actually in
progress, and here we shall restrict ourselves to a very quali-
tative discussion of its main features.

A. Abrupt switch-off of the vacuum Rabi energy

Let us suppose that the considered intersubband cavity
system is in the ground state �G	. As we have already dis-
cussed, the squeezed vacuum �G	 contains a finite number of
cavity photons and intersubband excitations because of the
correlations due to the anomalous coupling terms in Eq. �8�.

If one switches off the vacuum Rabi frequency �R,k of the
system in an abrupt, nonadiabatic way by suddenly depleting
the electron gas, then the photon mode does not have the
time to respond to the perturbation and will remain in the
same squeezed vacuum state as before. As this state is now
an excited state of the Hamiltonian for �R,k=0, the system
will relax toward its ground state, which now corresponds to
the standard vacuum, by emitting the extra photons as propa-
gating radiation.

One possible way to collect this quantum vacuum radia-
tion is through the setup sketched in Fig. 6, which allows one
to collect the photons that are emitted with internal propaga-

FIG. 5. Solid line: normalized differential zero-point �ZP� en-
ergy �per mode� ��ZP�k� /�12 as a function of �R,k /�12. Dashed
line: Dk /�12. Dotted line: normalized correlation contribution
��ZP

corr�k� /�12. The calculation has been performed with �cav,k

=�12.
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tion angle 
 around the resonance value 
res. If one neglects
the losses due to the background absorption by the dielectric
material forming the microcavity, an estimate of the number
of emitted photons can be obtained as follows. The number
of photon states �per unit area� in the 2D momentum volume
d2k is simply d2k / �2	�2. Hence, the differential density of
photons �per unit area� in the 2D momentum volume d2k is

d�phot =
d2k

�2	�2 �G�ak
†ak�G	 , �46�

where the photon number �G�ak
†ak�G	 in the quantum ground

state is given by Eq. �37�. Now, all the expectation values
depend only on �k� and, hence, we can rewrite the momen-
tum volume as d2k=2	kdk. Knowing that the in-plane wave
vector k is given by the relationship k=kz tan�
� and using
Eq. �12�, we find the final result

d�phot

d

�
res� =

1

2	

�12
2

c2 �� tan�
res��G�ak
†ak�G	 . �47�

To give a numerical application of Eq. �47�, let us con-
sider an intersubband cavity system with ��12=140 meV,
resonance angle 
res=65° and ��R,kres

=7 meV �these are ap-
proximately the values in the sample measured by Dini et
al.8�. For these parameters, Eq. �47� gives the differential
photon density d�phot /d
�1�105 cm−2 rad−1.

Note that the emission corresponding to the k mode is
correlated to the emission corresponding to the mode with
opposite in-plane wave vector, as shown in Eq. �40�. Indeed,
the “quantum vacuum radiation” described here consists in
the emission of correlated photon pairs.37

B. Periodic modulation of �R,k

The requirement of a abrupt, nonadiabatic, switch-off of
the Rabi coupling �R,k imposes very stringent limits on the
time scale �sw over which the electrostatic bias has to be
applied. In particular, we expect that in order to maximize

the quantum vacuum radiation generation, �sw cannot be too
much longer that the oscillation period of the lower polari-
tonic mode.

It is then perhaps more accessible from an experimental
point of view to try to detect the vacuum radiation by peri-
odically modulating the vacuum Rabi frequency at an angu-
lar frequency �mod

�R,k�t� = �̄R,k + ��R,k sin��modt� . �48�

Note that, in principle, this kind of modulation can be ob-
tained not only through a gate-induced depletion of the two-
dimensional electron gas,11 but also by modulating the dipole
moment of the intersubband transition or, alternatively, the
reflectivity of the mirrors. As all the relevant physical quan-
tities in the present problem �polariton energies, Hopfield
coefficients, ground-state energy� depend in a nonlinear way
on the vacuum Rabi frequency ��R,k, we expect that for
large modulation amplitudes high-order harmonics of the
fundamental modulation frequency �mod will play a signifi-
cant role in the parametric process that is responsible for the
vacuum radiation generation.25 In particular, emission will be
enhanced if

� j,k + � j�,−k = r�mod, �49�

with r being a generic positive integer number, and j , j�
� �LP,UP�. This is the phase-matching condition for the
parametric generation of two polaritons with opposite mo-
mentum. As usual, the narrower the polaritonic resonance,
the stronger the resonant enhancement.

As it is generally the case for parametric processes in a
cavity, the number of photons which are generated in the
cavity and then emitted as radiation is determined by a dy-
namical equilibrium between the parametric processes gen-
erating them and the losses, the radiative as well as the non-
radiative ones.36 For a complete and quantitative treatment of
these issues, further investigations are in progress.

VII. CONCLUSIONS

In conclusion, we have shown that in the intersubband
cavity polariton system, a regime of ultrastrong coupling can
be achieved, where the vacuum Rabi frequency �R is a large
fraction of the intersubband transition frequency �12. This
scenario appears to be easier to achieve in the far infrared,
since the ratio �R /�12 scales as the square root of the inter-
subband transition wavelength. In the ultrastrong coupling
regime, the usually neglected antiresonant terms of the light-
matter coupling start playing an important role. In particular,
the ground state of system is no longer the ordinary vacuum
of photons and electronic excitations, but rather a two-mode
squeezed vacuum, whose properties strongly depend on the
ratio �R /�12. As this quantity can be dramatically tuned by
applying an electrostatic bias, we have pointed out the pos-
sibility of observing interesting quantum electrodynamic ef-
fects reminiscent of the dynamical Casimir effect, i.e., the
generation of correlated photon pairs out of the initial polar-
iton vacuum state. A quantitative estimate of the number of

FIG. 6. Sketch of a possible setup for the generation of corre-
lated photon pairs in the intersubband cavity system. The vacuum
Rabi frequency of the intersubband cavity system can be modulated
through an electric gate, which changes the density of the two-
dimensional electron gas or, alternatively, the dipole moment of the
intersubband transition. A modulation of the bias is expected to
induce the emission of correlated photon pairs with opposite in-
plane wave vectors. This kind of radiation can be optimally guided
out of the cavity through wedged lateral facets, with inclination
equal to the resonance angle 
res.
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emitted photons has been given for the simplest case of an
instantaneous switch-off of the light-matter coupling, and the
results look promising in view of experimental observations.
Work is actually in progress in the direction of extending the
analysis to the case of a periodic modulation of �R,k, a case
in which one should be able to enhance the emitted intensity
via parametric resonance effects. From the theoretical point
of view, this study requires a complete treatment of losses in
order to describe the dynamical equilibrium between the
parametric process generating the quantum radiation and the
dissipation.
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