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We discuss the exact bond-ordered ground states of the one-dimensional half-filled generalized Hubbard
model including three- and four-body terms, by decomposing the Hamiltonian into positive semidefinite parts.
The obtained exact ground states are interpreted as Néel ordered states on the bond-located electrons. We
determine parameter regions of the exact ground states. We also calculate elementary excitation energies as
variational approach based on the matrix-product formalism.
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I. INTRODUCTION

The Hubbard model is one of the generic models to de-
scribe interacting electrons in narrow-band systems.1 This
model has played central roles to study magnetism and su-
perconductivity. In spite of its simplicity, however, it is dif-
ficult to solve this model exactly except for one dimension.
On the other hand, many extensions of the Hubbard model
have been considered. The on-site repulsion of this model is
due to the matrix elements of the Coulomb interaction cor-
responding to the on-site Wannier states, and the other matrix
elements are neglected. Therefore, we consider effects of
these neglected terms as site-off-diagonal interactions.2,3 Fur-
thermore we may also extend the Hubbard model including
three- and four-body terms. Especially, the three-body part is
justified as an effective interaction of the three-band mode.4

For these generalized Hubbard models �see below �1��, exact
results for ferromagnetism and superconducting states have
been discussed.5–12

A few years ago Itoh et al. discussed a different type of
exact ground state in a one-dimensional �1D� system, “bond
Néel” �BN� state which is interpreted as a Néel ordered state
of the bond-located electrons.13 On the other hand, from the
bosonization theory, it was suggested the existence of the
fixed point of the “bond-spin-density-wave” state in 1D sys-
tems with the SU�2� symmetry, which is a spin-density-wave
state of the bond-located spins.14 The BN state is regarded as
the anisotropic version of this BSDW state in the analogy of
the relation between the spin-fluid state and the Néel state of
the spin-1 /2 XXZ chain. Therefore, the exact result has a role
to clarify the physical picture of the predicted bond-ordered
state. This situation is similar to the Majumder-Gohsh
model15 and the Affleck-Kennedy-Lieb-Tasaki model16 in
quantum spin systems.

The technique to construct the model for this exact
ground state is to decompose the Hamiltonian into the sum
of products of the projection operators for two sectors.17 In
this way, each of the terms becomes positive semidefinite
operators, due to the staggered dimer structure of the BN
state.

However, in the preceding works,13,18 the model is limited
in the two-body interactions �X�= P=Q=0�. Although some
extensions to the three-body terms have been done,19 strat-

egy to construct the general model �1� has not been estab-
lished. It has also been insufficient to describe the ferromag-
netic state and the phase-separated state that appear in the
neighboring regions of the BN state. In this paper, therefore,
we extend the projection operator method for the BN and
other states to the general bond Hamiltonians. Moreover, we
discuss the elementally excited states of the BN state.

This paper is organized as follows: In Sec. II, we discuss
the method to construct the Hamiltonian for the exact BN
ground state, and obtain the phase diagram including the
ferromagnetic state and the phase-separated state. In Sec. III,
we calculate correlation functions of the BN state based on
the matrix-product method. Here we point out the impor-
tance of the anticommutation relation of the fermions in the
finite-size systems which was not taken into account in the
preceding work.13 In Sec. IV, we calculate elementally the
excitation spectrum of the BN state as a variational ap-
proach. Finally, we give a summary and a discussion of the
results.

II. EXACT GROUND STATE

We consider the generalized Hubbard chain including
three- and four-body terms at half-filling and zero-magnetic
field, given by H=�i�hi,i+1,� with the local bond
Hamiltonian,12

hij� = − t Tij� −
�

2
�ni� + nj�� +

U

4
�ni�ni�̄ + nj�nj�̄� + V�ni�nj�

+ V�ni�nj�̄ + XTij��ni�̄ + nj�̄� + X�Tij�ni�̄nj�̄

+ �
��

�W

2
Tij�Tij�� +

P

2
�ni�ni�̄nj�� + ni��nj�nj�̄��

+
Q

2
ni�ni�̄nj�nj�̄, �1�

with the hopping and the density operators,

Tij� = ci�
† cj� + H . c . , �2�
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ni� = ci�
† ci�, �3�

where ci,�
† and ci,� are electron creation and annihilation op-

erators on a 1D lattice with periodic boundary conditions, i
and � label position and spin of the electrons on the chain. �̄
denotes the opposite spin of �. The spin-SU�2� symmetry is
broken for V��V�. Note that the bond-bond interaction �W�
term can be rewritten as

− 2W�Si · S j + �i · � j − 1
4� . �4�

Here Si
�= 1

2ci�
† ����

� ci�� with �� being the Pauli matrices are
the usual spin operators, and �i denotes the �-pseudospin
operator whose components are defined by

� j
+ = �− 1� jcj↑

† cj↓
† , � j

− = �− 1� jcj↓cj↑, � j
z = 1

2 �nj − 1� .

�5�

Now, we introduce the following bond operators:

Aij�
† =

1
	2

�ci�
† + cj�

† �, Bij�
† =

1
	2

�ci�
† − cj�

† � . �6�

These operators on the same bond satisfy the anticommuta-
tion relations


Aij�,Aij��
† � = 
Bij�,Bij��

† � = ����, otherwise = 0.

Using these operators, two electron states are described as

Bij�
† Aij�

† = ci�
† cj�

† . �7�

Then the density operators for the bond operators and the
original fermions are given by

nA� � Aij�
† Aij� = 1

2 �ni� + nj� + Tij�� , �8�

nB� � Bij�
† Bij� = 1

2 �ni� + nj� − Tij�� , �9�

nA�nB� = ni�nj�, �10�

ni� = 1
2 �nA� + nB� + TAB�� , �11�

nj� = 1
2 �nA� + nB� − TAB�� , �12�

where TAB��Aij�
† Bij�+H.c. Since we restrict our attention

only on the neighboring two sites i, j, we drop these indices
from the operators defined above. Using these relations, the
local Hamiltonian �1� is rewritten by the bond operators as
follows:

hij = − t�
�

�nA� − nB�� −
�

2 �
�

�nA� + nB�� +
U

4
�nA↑nA↓ + nB↑nB↓ + nA↑nB↓ + nB↑nA↓ + TAB↑TAB↓� + V��

�

nA�nB�

+
V�

2
�nA↑nA↓ + nB↑nB↓ + nA↑nB↓ + nB↑nA↓ − TAB↑TAB↓� + W�nA↑nA↓ + nB↑nB↓ − nA↑nB↓ − nB↑nA↓�

+
W

2 �
�

�nA� + nB� − 2nA�nB�� + 2X�nA↑nA↓ − nB↑nB↓� + X��
�

�nA� − nB��nA�̄nB�̄

+ P�
�

�nA� + nB��nA�̄nB�̄ + QnA↑nB↑nA↓nB↓. �13�

In order to discuss exact ground states, the local Hamiltonian
must be brought to the following form:

hij − ��0 − �� = �
��

	��Q�↑Q�↓, �14�

where �0 is the ground state energy per site. Q�� is a positive
semidefinite projection operator, and the coefficients 	�� are
real and symmetric 	��=	�� reflecting the spin-reversal

symmetry. The left-hand side of Eq. �14� is also positive
semidefinite when 	��
0. Since there exist four states in
each bond for each spin sector, we introduce four projection
operators as summarized in Table I, satisfying ��=1

4 Q��=1.
Therefore, the number of independent projection operators
for the state A�� are three for each sector, so that there are
six free parameters. On the other hand, in the preceding
paper,13,18 a Hamiltonian �1� with X�= P=Q=0 has been

TABLE I. Projection operators used in this paper Qi�. To project
out the BN state, the minimum set of the operators are Q1�, Q3�,
and Q4�. R1� and R2� are projection operators used in Refs. 13 and
18. The number of free parameters become six in the former case,
while three in the latter case.

0� A�� B�� B�A��

Q1� �1−nA���1−nB�� 1 0 0 0

Q2� nA��1−nB�� 0 1 0 0

Q3� �1−nA��nB� 0 0 1 0

Q4� nA�nB� 0 0 0 1

R1� 1−nA� 1 0 1 0

R2� nB� 0 0 1 1
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constructed by two projection operators 1−nA� and nB�,
however, this choice is not sufficient to treat arbitrary bond
Hamiltonians, because the number of free parameters are
three.

Here we mention relations between projection operators
and some unitary transformations. It is well known that roles
of the spin operators and the � operators �5� are interchanged
by the following canonical transformation:

cj↑ → cj↑, cj↓ → �− 1� jcj↓
† . �15�

This charge-spin transformation �15� gives Q1↓↔Q4↓, so
that this transformation partly exchanges diagonal and off-
diagonal elements of 	��. Moreover the particle-hole trans-
formation and the staggered phase transformation,

cj� ↔ �− 1� jcj�
† , �16�

cj� ↔ �− 1� jcj�, �17�

give Q1�↔Q4� and Q2�↔Q3�, respectively.

A. Bond Néel state

We consider the bond Néel wave function given by

BN�� � �
m=1

L/2

A2m−1,2m,�
† A2m,2m+1,�̄

† 0� , �18�

where 0� denotes a vacuum. In order to have the above state
as the exact ground state, the Hamiltonian should be decom-
posed as in Eq. �14� with the parameters satisfying the fol-
lowing conditions:

	11,	33,	44,	13,	14,	34 � 0, otherwise = 0. �19�

Due to the staggered dimer structure of the BN state as
shown in Fig. 1�a�, the positive semidefinite operator �14�
gives 0. Therefore, Eq. �18� gives the exact ground state.
Note that the projection operator for A�� state 1−Q2� is not
needed, because it depends on the other three operators.
Then one can find relations among the parameters of the
model as

V� =
U

2
, V� = W − X� − P, X = t − W ,

�0 =
U

2
, � = 2t + U − W , �20�

and the coefficients are identified as

	11 = 2t +
U

2
− W , �21�

	33 = 4W , �22�

	44 = − 2t +
U

2
+ 3W − 2X� + 2P + Q , �23�

	13 = 2t , �24�

	14 = −
U

2
+ W − X� − P , �25�

	34 = − 2t + 4W − 2X�. �26�

Therefore, the parameter space of the exact BN ground state
is given by the following six conditions:

t � 0, W � 0, W �
t

2
+

X�

2
,

W � 2t +
U

2
, W �

U

2
+ X� + P ,

W �
2

3
t −

U

6
+

2

3
X� −

2

3
P −

1

3
Q . �27�

Thus we determine the BN regime in the U / t-W / t parameter
space as is shown in Fig. 2. The lines surrounding the shaded
regions do not necessarily mean the phase boundary. The
three conditions of the BN state obtained in Refs. 13 and 18
for X�= P=Q=0 are identical with the last three conditions
in Eqs. �27�, while the first three conditions are implicit ones.
However, these hidden conditions play essential roles to de-
termine the regions of the ferromagnetic and the phase-
separated states discussed below and the BN regions for fi-
nite X�, P, Q. Especially at X� / t=−1 and U=W= P=Q=0
�	33=	34=	44=0�, the local Hamiltonian becomes

− t�
�

Tij��1 − ni�̄��1 − nj�̄� , �28�

which has the same eigenstates of the Hubbard model at
U=. Therefore, the BN ground state is highly degenerated.

We should also consider the possibility of the dual BN
�DBN� ground state which is given by replacing Aij� by Bij�
in the BN wave function,

FIG. 1. Three states at half-filling described by the present pro-
jection operator method, �a� bond-Néel �BN�, �b� ferromagnetic
�FM�, and �c� phase separated �PS� states.
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DBN�� � �
m=1

L/2

B2m−1,2m,�
† B2m,2m+1,�̄

† 0� . �29�

The corresponding decomposed Hamiltonian of the DBN
ground state is that of the BN state replacing the projection
operators as Q2�↔Q3�. Then the condition of the DBN state
is obtained by the phase transformation �17� which gives
A↔B, t→−t, X→−X, X�→−X�. Therefore, there is one-to-
one correspondence between the BN state for t
0 and the
DBN state for t�0, so that we only consider the parameter
space with t
0. This situation is the same as that for the
transformation of the exchange interactions in the Heisen-
berg model.

B. Ferromagnetism

We consider the fully polarized ferromagnetic �FM�
ground state,

FM�� � �
j=1

L

cj�
† 0� = �

m=1

L/2

B2m−1,2m,�
† A2m−1,2m,�

† 0�

= �
m=1

L/2

B2m,2m+1,�
† A2m,2m+1,�

† 0� . �30�

The corresponding decomposed Hamiltonian is given by the
same as that of the BN state �14� with �19�, but the one
condition is changed as

	14 � 0 → 	14 � 0. �31�

Due to the structure of the FM state as shown in Fig. 1�b�,
the operator �14� takes the lowest eigenvalue for �30�. There-
fore, a first-order transition between the BN state and the FM
state takes place at 	14=0.

When 	14=0, the spin degrees of freedom recover the
SU�2� symmetry, V� =V�. Then the total spin operators,
Stot

� =�iSi
� ��= + ,−,z�, commute with the Hamiltonian.

In this case, the BN state, and the states given by
�Stot

± �nBN�� �0�n�L /2� and their linear combinations are
degenerate. Therefore, this is a multicritical line where the
ground state is highly degenerate.

C. Phase separation

We also consider the phase-separated �PS� state which has
large degeneracy with order L,

PS� �
1
	L

�
j=1

L

PS� j ,

PS� j � �
m=j/2

j/2+L/4−1

�
�=↑,↓

B2m,2m+1,�
† A2m,2m+1,�

† 0� . �32�

In 1D systems, the surface energy for PS states is considered
sufficiently small, so that we neglect the surface energy.
Then the corresponding decomposed Hamiltonian is given
by the same as that of the BN state �14� with �19�, except for
the following two conditions:

	11,	44 � 0 → 	11 + 	44 � 0. �33�

Then due to the structure of the PS state as shown in Fig.
1�c�, the operator �14� takes the lowest eigenvalue for �32�.

The line of 	11+	44=0 is related to the BN-FM boundary
by the charge-spin transformation �15�, which interchanges
the projection operators as Q1↓↔Q4↓. On the other hand, it
follows from Eq. �16� that the conditions

	11 = 	44, 	13 = 	34, �34�

which give W=X� /2+ t with 2P+Q=0 denote the particle-
hole symmetry. The crossing point of the particle-hole sym-
metric line and the line of 	11+	44=0 corresponds to the
SU�2� symmetry of the �-pseudospin operators. At this
point, the �-pairing operator �tot

� ��i�i
� commutes with the

Hamiltonian. Therefore, similar to the 	14=0 line, the states
��tot

± �nBN�� �0�n�L /2� which includes the �-pairing
state, and their linear combinations are degenerate with the

FIG. 2. Phase diagrams of the generalized Hubbard chain �1�
with P=Q=0, in the U / t-W / t parameter space with t
0. The other
parameters are set as X= t−W, V� =W−X�− P, and V�=U /2. BN,
FM, and PS denote bond-Néel, ferromagnetic, and phase-separated
states, respectively. 	14=0 corresponds to the spin SU�2� symmetry.
Intersection of the particle-hole symmetric line �	11=	44, 	13=	34�
and the line for the PS state �	11+	44=0� gives the SU�2� symmet-
ric point of the �-pseudospin. The three phases do not appear in the
negative-W regions due to the condition 	33
0.
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ground states. Therefore, the intersection of these two lines is
a multicritical point where the ground state is highly degen-
erate.

As shown in Fig. 2, the FM and the PS states appear in
the U / t-W / t parameter space with W / t
0 almost symmetri-
cally in the positive- and in the negative-U regions, respec-
tively. This is consistent with the fact that the W term is the
ferromagnetic exchange interactions of the spins and the
pseudospins �4�, and the PS state is regarded as the FM state
of the pseudospin space.

III. CORRELATION FUNCTIONS

We calculate the correlation functions in the bond-Néel
state using the matrix product method.20,21 This method has
been applied to spin ladder systems22,23 and electron
systems.24–26 The present bond-Néel state is described as

BN�� = 2−L/2 Tr��zg1,�g2,�̄ ¯ gL−1,�gL,�̄� , �35�

where

gi� � �ci,�
† ci,�

† ci,�̄
†

1 ci,�̄
† �0�i. �36�

Since the matrix product gi,�gj,�̄ creates the bond Aij�
† be-

tween ith and jth sites, �hi,j − ��0−���gi,�gj,�̄=0 is satisfied.
Note that the Pauli matrix �z in �35� plays a role to cancel an
additional negative sign reflecting the anticommutation rela-
tion of the fermions.27 We also introduce 4�4 transfer ma-
trices G����gi�

†
� gi��. Here the tensor product � relates

the matrix elements as �G����l1l2
= ��gi��n1n2

�†�gi���m1m2
,

where lk= �nk ,mk� and the indices correspond as lk

=1,2 ,3 ,4↔ �nk ,mk�= �1,1�, �1, 2�, �2, 1�, �2, 2�, respec-
tively.

First, we calculate the overlap integral of the wave func-
tions �BN� BN���. For �=��, the transfer matrix G�G�� is
calculated as

G =�
1 0 0 1

0 0 0 0

0 0 0 0

1 0 0 1
� , �37�

and ��zg1��† � ��zg1��=G. Since GL=2L−1G, the norm of the
BN wave function becomes 1,

�BN�BN�� = 2−L Tr GL = 1. �38�

On the other hand, for ��= �̄, we need the following transfer
matrices:

G↑↓ =�
0 0 0 − 1

0 1 0 0

0 0 1 0

1 0 0 0
� , �39�

and ��zg↑�† � ��zg↓�=−�G↑↓�3, �G↑↓�4= I, where I is the iden-
tity matrix. We should note that a negative sign of �G↑↓�14

stems from the anticommutation relation of the fermions.

Due to this negative sign, the overlap integral in finite-size
systems shows different properties for L=4n and for
L=4n+2 with n being an integer,

�BN�BN�̄� = �− 2−L Tr�G↑↓�2 = 0 �L = 4n� ,

− 2−L Tr I = − 22−L �L = 4n + 2� .
�

�40�

In the thermodynamic limit, however, these two states are
always orthogonal. This means that the BN ground state has
twofold degeneracy due to the spontaneous breaking of the
translational symmetry.

Next, we calculate the correlation functions as follows:28

�OiOj� = 2−L Tr�gi�
†

� Oigi��Gj−i−1�gj�
†

� Ojgj��GL−j+i−1.

�41�

The charge-charge correlation function Oi=ni�ni↑+ni↓ is
obtained as

�nini+1� = 3
4 . �42�

For i− j�2, �ninj�=1 and �ni�=1, so that we obtain

�ninj� − �ni��nj� = 0. �43�

The spin-spin correlation functions are

�Si
zSi+1

z � = − 1
16 , �44�

�Si
±Si+1

� � = 0. �45�

For i− j�2, we obtain

�Si
zSj

z� = 0. �46�

These results indicate that there is a finite energy gap be-
tween the ground state and the excited states with respect to
site-located charges and spins.

The bond-bond correlation function is given by

�Ti,i+1,�Tj,j+1,���

= 2−L Tr��gi,�gi+1,�̄�†
� Ti,i+1,�gi,�gi+1,�̄�Gj−i−2

���gj,�gj+1,�̄�†
� Tj,j+1,��gj,�gj+1,�̄�

�GL−j+i−2 =
1 ± �− 1�j−i

2
,

where the upper and the lower signs denote the cases for
��=� and ��=−�, respectively. The order parameter of the
bond-spin-density wave �BSDW� is defined by

Oi
� �

1

2
�− 1�i �

�,��

�ci,�
† ��,��

� ci+1,�� + ci+1,�
† ��,��

� ci,��� .

�47�

We calculate the correlation function of the z component of
the BSDW operator as

�Oi
zOj

z� = 1
64 . �48�

The z component of the BSDW order parameter is obtained
as
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�Oi
z� = ± 1

2 , �49�

so that the system shows the BN long range order. The
BSDW-z order corresponds to the Néel order of the bond-
located spins.

IV. ELEMENTARY EXCITATIONS

In this section, we consider elementary excited states as
variational wave functions with a soliton pair in the bond-
Néel state following the approach for spin ladder systems by
Kolezhuk and Mikeska.23 We consider the variational states
as the matrix product state where defects are inserted. To
describe these excitations, we introduce a variational param-
eter � and momentum p ���0,���. Now we consider the
following two cases as shown in Fig. 3.

Type 1: The BN state with even number of sites 2N where
a defect is inserted in one spin sector,

�1,�� � �
n=2

N−1

eip�2n+1�n� ,

n� = ��
i=1

n−1

g2i−1
� g2i

�̄����g2n−1
� g2n

�̄ + �g2n−1
� ��g2n

�̄ �

�� �
i=n+1

N

g2i−1
� g2i

�̄� , �50�

where ��=�z, �+, �− corresponding to insertion of defects,
�1/	2��ci�

† −cj�
† �, ci�

† cj�
† , and 1, respectively.

Type 2: The BN state with odd number of sites 2N+1
where a defect connecting different spin sectors is inserted,

�2,�� � �
n=1

N−1

eip�2n+1�n� ,

n� = ��
i=1

n

g2i−1
� g2i

�̄����g2n+1
�̄ + �g2n+1

� ���� �
i=n+1

N

g2i
� g2i+1

�̄ � ,

�51�

where ��=�0, �z, �+, �− corresponding to insertion of defects,
�ci�

† +cj�̄
† � /	2, �ci�

† −cj�̄
† � /	2, ci�

† cj�̄
† , and 1, respectively. �0 is

the 2�2 identity matrix.
Since the bond-Néel ground state has two-site periodicity

due to the spontaneous breaking of the translational symme-
try, we need a linear combination of two terms with a varia-
tional parameter �= ±1. Note that we only consider one of
the two degenerate states due to the orthogonality in the
thermodynamic limit �40�. We should also note that, for the
type 2, we need two solitons to satisfy the consistency with
the periodic boundary conditions.

The excitation energy ��,��p� is expressed as

��,��p� =
���,� � �hi,i+1 − �0 + ����,��

���,���,��
. �52�

We consider the case X�= P=Q=0 for simplicity. After long
but straightforward calculations, we obtain the following re-
sults:

�1,z�p� = 2W , �53�

�1,±�p� = 1
2 �3W − t � �t − W�� , �54�

�2,0�p� =
8W − U

120
�8 cos 2p + 17� − ��t − W�

7 − 2 cos 2p

30
,

�55�

�2,z�p� =
8W − U

120
�8 cos 2p + 17� + ��t − W�

cos 2p + 1

3
,

�56�

�2,±�p� =

U + 8W + ��W ± �W − t����17 − 8 cos 2p� � 2�t − W��4 + 5���4 cos 2p − 1�

24�5 + 2��1 + cos 2p��
, �57�

FIG. 3. Variational states for the elementary excited states in
even and odd site systems.
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where the parameter � is determined according to the varia-
tional principle. We should choose �=sign�t−W� for Eq.
�55�, and �=−sign�t−W� for Eq. �56�. The excitation spectra
of type 1 turn out to be dispersionless. For simplicity, we
consider the particle-hole symmetric case W= t. Then �2,0�p�
and �2,z�p� are degenerate, and other two independent disper-
sion relations are �2,±�p� / t with �= +1 and �2,±�p� / t with
�=−1.

Furthermore, we consider two-soliton excited states as-
suming that two defects do not interact,

E�p,q� = �2,���p + q�/2� + �2,����p − q�/2� . �58�

Here, p���0,��� and q���0,��� are the total and the rela-
tive momenta, respectively. Due to the conservation of the
electron number, we consider states ��,+ and ��,− as a set.
When W= t, the flat dispersion relations �1,z and �1,++�1,−
are degenerate, and they are not the lowest ones. We show
the numerical data of excitations �58� for �� ,���= �±, � �
and for �0,0� at U / t=0.5 and at 1.5 in Fig. 4. The lower one
of these dispersion relations gives the upper bound of the
bottom of the continuum. In this region, we do not consider
�2,±�p� / t with �=−1, because this gives always higher ener-
gies than that with �= +1. The two dispersions cross depend-
ing on U / t. As is discussed in Sec. II, there are many degen-
erated states with the BN ground state near the BN-FM phase
boundary or the charge SU�2� point. Therefore, we should
also consider other excited states in these regions.

V. SUMMARY AND DISCUSSION

We have discussed an exact bond-ordered ground state of
the generalized Hubbard chain including the site-off-
diagonal interactions using the projection operator method.
This state is regarded as a Néel ordering of bond-located
spins, so that we call this bond Néel state. By changing the

choice of the projection operators, we have extended the ar-
gument in Refs. 13 and 18, and constructed the models in-
cluding three- and four-body terms. These ground states have
twofold degeneracy, but the uniqueness has not been proven
yet. This approach enables us to determine not only the BN
region but also the ferromagnetic and the phase-separated
regions. It is also useful to clarify the symmetry properties of
the system. Moreover, we have calculated the excitation
spectra as a variational approach based on the matrix product
formalism.

The present BN state in the generalized Hubbard model
corresponds to the staggered dimer state in the spin-1

2 two-
leg ladder model with four spin exchanges.23 In Refs. 23 and
26, the Hamiltonian is constructed based on more general
argument. Comparing with the way to decompose the Hamil-
tonian to the projection operators in this approach, the
present argument is quite simple. This is because the present
BN state is given by direct product of bond operator for
different spin sectors, and the model does not include hop-
ping terms between different spin sectors.

This simplicity of the method is useful when we construct
the Hamiltonian in higher dimensional systems. As is pointed
out and demonstrated in the preceding works,13,18 we can
extend the present discussion to the Kagomé and the Check-
erbord lattices in two dimensions and the Pyrochlore lattice
in three dimensions, if we replace the bonds of this argument
by plaquettes. These states are regarded as Néel ordered
states on the dual lattices.
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FIG. 4. Dispersion curves which give the upper bound of the bottom of the continuum �lower one of these two lines at each p� at W
= t for �a� U / t=0.5, �b� U / t=1.5. The solid and dashed lines are Eq. �58� for �� ,���= �±, � �, and for �0,0�, respectively.
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