
Correlation effects in electronic structure of actinide monochalcogenides

L. V. Pourovskii,1 M. I. Katsnelson,1 and A. I. Lichtenstein2

1Institute for Molecules and Materials, Radboud University of Nijmegen, NL-6525 ED Nijmegen, The Netherlands
2Institut für Theoretische Physik, Universität Hamburg, 20355 Hamburg, Germany

�Received 2 June 2005; published 9 September 2005�

We have implemented a technique for realistic electronic structure calculations of f-electron systems with
moderately strong correlations. The technique is based on the dynamical mean-field theory with a perturbative
treatment of effective quantum impurity problem in a spin-polarized version of the T matrix combined with the
fluctuating exchange approximation �SPTF�. The present many-body approach properly includes the effects of
strong spin-orbit coupling. We have used this technique for the dynamic mean-field theory �DMFT� calcula-
tions of ferromagnetic �USe, UTe� and nonmagnetic �PuSe, PuTe� actinide chalcogenides. In the static limit,
the local-density approximation �LDA�+U method correctly reproduces the ground-state magnetic properties
of these compounds, but fails to describe their spectral properties. Dynamical correlation effects drastically
improve the agreement between theoretical densities of states and experimental photoemission spectra for the
systems under consideration.
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I. INTRODUCTION

Formulating adequate theoretical descriptions of the elec-
tronic structures and magnetism for actinides and their com-
pounds has been a challenging problem for decades �e.g., see
Refs. 1–16�. The 5f electrons states, which are characteristic
for actinides, are sometimes in a crossover regime between
the localized and itinerant behavior. For pure elements, the
first part of the actinide series with purely itinerant 5f states
culminates with Pu;1,5,10 starting with Am �Z=95�, the 5f
states are localized and resemble the 4f states in lanthanides.
For early actinides such as U, Np, and Pu, the 5f electrons
can demonstrate both itinerant and localized behavior in their
compounds. The same problem of coexistence of atomic-like
�localized� and itinerant features exists for 3d transition
metals,17,18 but the importance of both the relativistic effects
�such as strong spin-orbit coupling� and electron-electron
correlations makes the situation much more complicated in
the case of actinides.

Recently, within the dynamical mean-field theory
�DMFT� �for a review see Ref. 19�, the correlation effects
have been incorporated into realistic electronic structure
calculations.20–29 This method has been successfully applied
to a number of classical problems of solid state physics such
as the finite-temperature magnetism of iron-group metals,18

�-� transition in plutonium,10,11 and the electronic structure
of doped Mott insulators.25 In contrast to the standard density
functional �DF� theory,30,31 in this approach known as local-
density approximation �LDA� +DMFT,20,21 the thermody-
namic potential � is considered as a function of the local
Green’s function instead of the density matrix.23,24,26–28 This
allows us, in particular, to describe the angle-resolved pho-
toemission spectra of crystals taking into account essentially
the many-body phenomena such as spectral density transfer,
quasiparticle damping, etc.22,32

In order to calculate the electronic structure of strongly
correlated systems, we have to solve a complicated many-

body problem for a crystal, namely, for the inhomogeneous
gas of interacting electrons in an external periodic potential.
The original problem is split into an effective one-particle
problem for a crystal �in DF approach this is the Kohn-Sham
equation30,31� and into a many-body problem for some appro-
priate auxiliary system �for the LDA this is a homogeneous
electron gas�. The DMFT scheme19 maps the interaction lat-
tice models onto quantum impurity models subject to a self-
consistency condition. This quantum impurity is an atom in a
self-consistent effective medium. In this sense the DMFT
approach is complementary to the LDA and stresses from the
begininng atomic-like features in the electronic structure,
which makes it attractive for applications to f-electron sys-
tems.

Attempts to apply the LDA+DMFT scheme for the ac-
tinides demonstrate its efficiency giving a reasonable de-
scription of the physical properties for the different phases of
Pu.10,11,28 In order to investigate the effects of correlations on
the electronic structures and magnetic properties of actinide
compounds, it is important to develop a simple but reliable
way to solve the effective impurity problem taking into ac-
count both spin polarization and arbitrarily strong spin-orbit
coupling. A computationally efficient analytical solver SPTF
�which is a combination of the spin-polarized T-matrix
approach33,34 and fluctuating exchange approximation35,36�
has been proposed for spin-polarized systems.37 In the
present work, we generalize the SPTF to a generic relativistic
case.

We apply the LDA+DMFT technique in conjunction with
the developed spin-orbit SPTF quantum impurity solver to
calculate magnetic and spectral properties of the NaCl-
structure uranium and plutonium monochalcogenides USe,
UTe, PuSe, and PuTe. The plutonium monochalcogenides
PuSe and PuTe are paramagnetic semiconductors with nar-
row energy gaps of the order of 10 meV and temperature-
independent magnetic susceptibility.38 Note that for tempera-
tures higher than the energy gap, the gap is irrelevant and
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these systems can be considered as highly correlated metals.
Recent photoemission studies reveal the so-called three-peak
manifold,39,40 which is formed by 5f electrons in the range
between −1.5 eV and the Fermi level. The similar features
have been observed in �-Pu as well as in Pu thin films and
PuN.41 The nature of the three-peak manifold remains un-
clear; however, it has been suggested that sharp peaks in the
vicinity of the Fermi level are due to many-body states,
analogous to the Kondo resonance.39 The relativistic local
spin-density approximation �LSDA� calculations of Oppe-
neer et al.7 reproduced the paramagnetic ground state at an
experimental volume. However, at a slightly smaller theoret-
ical lattice parameter, a ferromagnetic phase with the total Pu
moment of the order of 2�B has almost 40 mRy lower en-
ergy than the nonmagnetic solution; thus, a stability of the
paramagnetic phase in LSDA is questionable. The LSDA
self-interaction-corrected �SIC� calculations of Petit et al.8

predicted the ferromagnetic ground state of both PuSe and
PuTe with the total moments of 0.48�B and 0.46�B, respec-
tively. Both the LSDA �Ref. 7� and LSDA-SIC �Ref. 8� cal-
culations place the occupied part of the Pu 5f band in the
vicinity of the Fermi level; however, the characteristic three-
peak manifold seen on the experimental spectra is not repro-
duced.

The uranium monochalcogenides USe and UTe are
strongly ferromagnetic with the U orbital moment more than
twice larger than the spin moment.42 In spite of their highly
symmetrical crystal structure, the uranium monochalco-
genides have very large magnetic anisotropy, and the ura-
nium moments are aligned along the �111� direction. The
LSDA calculations2,6 overestimate the value of the U spin
moment and underestimate the value of the orbital one,
which results in the twice smaller LSDA total magnetic mo-
ment than its experimental value. The photoemission study
in Ref. 40 reveals a broader feature near −1 eV and a rather
small peak at the Fermi level.

In the present paper, we show that both static and dy-
namic correlations due to the on-site Coulomb interaction
between the 5f electrons are important for coherent descrip-
tion of magnetic properties and photoelectron spectroscopy
data of actinide monochalcogenides. The paper is organized
as follows. In Sec. II, we present the spin-orbit T-matrix
fluctuation-exchange approximation �FLEX� technique
�SPTF+SO� and discuss some technical problems of SPTF
+SO implementation; namely, we describe our approach to
the evaluation of Fourier transforms between imaginary time
and frequency domains. In Sec. III, we present and compare
our results for the electronic structures and magnetic proper-
ties of the uranium and plutonium monochalcogenides ob-
tained within the LDA, LDA+U, and LDA+DMFT ap-
proaches.

II. COMPUTATIONAL APPROACH

A. Spin-orbit T-matrix FLEX approach „SPTF+SO…

We start with the general many-body Hamiltonian in the
LDA+U scheme43 with the spin-orbit interaction included

H = Ht + HU,

Ht = �
���

t���c�
+c��,

HU = 1
2 �

�1�2�1��2�

��1�2�u��1��2��c�1

+ c�2

+ c�2�
c�1�

, �1�

where �= im� is a combined index for the site number �i�,
the orbital �m�, and spin ��� quantum numbers; c+ and c are
the fermionic creation and annihilation operators; Ht is the
effective single-particle Hamiltonian obtained within LDA;
and HU is the interaction part in the Hamiltonian. The four-
index Coulomb matrix elements in �1� are given in accor-
dance with the standard definition

��1�2�u��3�4� =	 drdr���1

* �r���2

* �r��u�r − r����3
�r���4

�r�� .

�2�

In contrast with the nonrelativistic case,37 the wave functions
and, consequently, the interaction matrix elements are depen-
dent on both orbital and spin indexes.

Similar to the nonrelativistic treatment,22,37 we first take
into account the ladder �T-matrix� renormalization of the ef-
fective dynamical interaction. One may introduce the bare
particle-particle �PP� susceptibility

	1234
�PP��
� = G13�
�G24�
� , �3�

where 1 … 4 is the shorthand notation for �1 . . .�4, Gij�
� is
the Green’s function �GF� depending on the imaginary time

. Then the T matrix on an imaginary energy axis can be
obtained as the solution of the matrix equation

T�i�� = U − U � 	�PP��i�� � T�i�� , �4�

where �=2n�T are the bosonic Matsubara frequencies for
temperature �−1�n=0, ±1, . . . �; T, 	�PP�, and U are four-
index matrices; and � means the matrix multiplication
�A�B�ijkl=�mn�ij�A�mn��mn�B�kl�.

Following Ref. 37, we write the self-energy 
 as a sum of
three contributions


 = 
�TH� + 
�TF� + 
�PH�, �5�

where 
�TH� and 
�TF� are the Hartree and Fock diagrams
with the bare interaction replaced by the T matrix and 
�PH�

is the particle-hole contribution. The T-matrix Hartree and
Fock terms can be written by analogy with the nonrelativistic
case37


12
�TH��i�� =

1

�
�
�

�
34

�13�T�i���24�G43�i� − i�� ,


12
�TF��i�� = −

1

�
�
�

�
34

�14�T�i���32�G34�i� − i�� . �6�

Here 
�TH�+
�TF� contains the first-order Hartree and Fock
contributions as well as all the second-order contributions;
�= �2n+1��T are the fermionic Matsubara frequencies. In
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the particle-hole channel, we replace the bare interaction
with the static limit of the T matrix T�i�=0�.37

In the nonrelativistic treatment,22,37 the particle-hole con-
tribution was separated into the density, magnetic longitudi-
nal, and magnetic transverse channels. Such separation
makes no sense in the relativistic case, where the off-
diagonals in the spin elements of the Green’s function G���

lead to coupling between different channels. Therefore, we
include only a single contribution from the particle-hole
�PH� channel. All possible permutations of “direct” and “ex-
change” vertices should be taken into account in order to
obtain correct diagrammatic expressions for the PH channel.
In order to achieve this, we introduce an “antisymmetric”
vertex44

�12�U�A��34� = �12�T�i� = 0��34� − �12�T�i� = 0��43� .

�7�

Then in accordance with the Baym45 approach, we introduce
a generating functional ��G� �Fig. 1� and the particle-hole
contribution to the self-energy can be calculated as a deriva-
tive of ��G� over G, U�A� being considered as a bare poten-
tial for the PH channel. The resulting contribution to the
self-energy is


12
�PH��
� = �

34
�13�W�
��42�G34�
� . �8�

Here W�
� is the particle-hole fluctuation potential matrix,
which can be obtained from the bare particle-hole “empty
loop” susceptibility

	1234
�PH��
� = − G41�− 
�G23�
� �9�

by means of the random-phase approximation �RPA� type
summation

W�i�� = U�A� � 
	�PH��i�� � �I − U�A� � 	�PH��i���−1

− 	�PH��i��� � U�A�. �10�

Here I is the unit matrix. Subtraction of 	�PH� in the right-
hand side of �10� is necessary to cancel the second-order

contribution to 
�PH� because this contribution has been al-
ready included in the particle-particle �PP� channel.

B. Evaluation of the Fourier transforms

By comparing the expressions �3� and �9� with �4� and
�10�, one may note that the bare PH and PP susceptibilities
have a “local form” in the imaginary time space, while RPA-
like sums can be more easily calculated in the Matsubara
frequency space. Following Refs. 22, 35, and 37, we em-
ployed the fast Fourier transform �FFT� technique to trans-
form a quantity back and forth between imaginary time and
Matsubara spaces.

We start with the Green’s function defined on the fermi-
onic Matsubara points up to a certain cutoff frequency �max.
It is transformed into the 
 space, where the bare suscepti-
bilities are then computed. Those are transformed back to the
Matsubara space, where the RPA summations in Eqs. �4� and
�10� are carried out. Finally, the obtained T�i�� and W�i��
are transformed into the the 
 space, where the correspond-
ing contributions into the self-energy are computed in accor-
dance with �6� and �8�.

The direct application of the FFT to GF as in Refs. 22 and
37 introduces periodic boundary conditions at the cutoff fre-
quency, therefore, neglecting the asymptotic tail �1/ �i�� of
the diagonal elements of the GF Gmm at higher frequencies.
That leads to an unphysical behavior of the resulting self-
energy at high frequencies approaching the cutoff, where in-
stead of decaying asymptotically the self-energy exhibits a
hump.

In order to avoid this problem and to improve the conver-
gence, we follow the approach of Deisz et al.47,48 and sepa-
rate the diagonal elements of the GF on fermionic Matsubara
frequencies into the numerical and analytical parts, where the
analytical part contains the exact high-frequency asymptotics

G�i�� = Gnum�i�� + Gan�i�� = 
G�i�� −
1

i� − �
� +

1

i� − �
,

�11�

where G is the diagonal element of the GF, site-spin-orbital
indexes being omitted. Then the Fourier transform of
Gnum�i�� is calculated by the usual FFT technique including
frequencies up to the cutoff, while the Fourier transform of
Gan�i�� is evaluated analytically over all Matsubara frequen-
cies as44

1

i� − �
↔ −

e−
�

1 + e−�� . �12�

Gan�
� contains the discontinuity at 
=0

Gan�
 = 0+� − Gan�
 = 0−� = − 1,

while Gnum�
� is continuous everywhere.
For the Fourier transform from 
 to � we use linear inter-

polation between consecutive values of G on the 
 mesh.46

Introducing the “tent-shaped” function

FIG. 1. �a� Antisymmetric vertex �7�. �b� The particle-hole con-
tribution to the generating functional.
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t�
� = ��� − �
��
1 −
�
�
�
� ,

���x�0�=1,��x�0�=0�; as well as its right r�
�
= t�
���
� and left l�
�= t�
���−
� halves, one may write
G�
� in the interval �−� ,��

G�
� = �
k=0

N−1

G�
k�t�
 − 
k� + �G�0−� − G�0+��l�
�

+ G��−�l�
 − �� , �13�

where �=2� /N, 
k are N points of the mesh, 
k=k� for k
=0. . .N /2−1 and 
k=k�−2� for k=N /2 . . .N. The second
term in Eq. �13� corrects for the discontinuity of G at 
=0
and the third one adds the first point of the interval G�−��.
After performing the Fourier transform of the expression
�13�, one obtains the following result:46

G�i�n� = �FFT�G�i�n��W�n� + 2��G�0−� − G�0+��L�n� ,

�14�

where �n is nth fermionic Matsubara frequency,
FFT�G�i�n�� is the usual �discrete� FFT, and the functions
W�n� and L�n� are defined as

W�n� =
1

N

 sin �n

�n
�2

, �15�

L�n� =
1

N

1 − 2i�n − e−2i�n

��n�2 � , �16�

where �n=n� /N.
Following approach by Deisz et al.,48 we choose the pa-

rameter � in Eq. �11� in such a way that Gnum�
=0�=0. The
advantage of this choice is that it allows us to separate ana-
lytical and numerical contributions to the bare PP and PH
susceptibilities. Because of Gnum�
=0�=0 all cross-terms
GnumGan in �3� and �9� are zero at 
=0, hence the disconti-
nuity at 
=0 �as well as the asymptotic �1/ �i�� tail on the
Matsubaras� in a bare susceptibility is given just by the cor-
responding products of the analytical parts of the diagonal
elements of the GF. The analytical part of the bare PP sus-
ceptibility in the 
 space is Gan�
�Gan� �
� and its Fourier
transform in the � space is given by

1

i� − � − ��

e−��+���� − 1

�e−�� + 1��e−��� + 1�
, �17�

where � and �� are the corresponding � parameters for Gan
and Gan� , respectively, and i� runs over the bosonic Matsub-
ara frequencies.

Expanding the T matrix �4� in powers of U�	�PP��i��,
one may note that the second-order and higher-order terms in
	�PP� do not contain �1/ �i�� asymptotical tails. Therefore,
the asymptotical tail of the T matrix is given by the first-
order term in 	�PP�

Tan�i�� = − U � 	an
�PP��i�� � U , �18�

and its Fourier transform in the 
 space is −U�	an
�PP��
��U.

The analytical part of the particle-hole fluctuation poten-
tial matrix W �Eq. �10�� can be derived in the same manner.
However, since the first-order contribution in 	�PH� is not
included into Eq. �10�, the potential matrix W does not con-
tain an �1/ �i�� asymptotical tail; therefore, it is continuous
at 
=0. Thus, the discontinuity of diagonal elements of 
�
�
at 
=0 can then be written as


ii�0+� − 
ii�0−� = �
jk

���ij�T�0+��ik� − �ij�T�0+��ki�� � Gkj�0+�

− ��ij�T�0−��ik� − �ij�T�0−��ki�� � Gkj�0−�

− � jk�ij�W�0��ji�� , �19�

and the transform of 
 from 
→� is then obtained in accor-
dance with Eq. �14�.

We show an example of 
�i�� in Fig. 2 calculated with
and without proper treatment of the asymptotical tail for the
two-band half-filled model on the Bethe lattice.19 One can
see that the procedure described here improves drastically
the behavior of the calculated self-energy at large frequen-
cies.

C. The LDA+DMFT scheme

We used the spin-orbit SPTF method for a quantum im-
purity solver in the framework of the dynamical mean-field
theory to find the best local approximation for the self-
energy. We start with conventional LDA �or LDA+U� calcu-
lations within the relativistic full-potential linear MT-orbitals
�FPLMTO� method49 and obtain the LDA Hamiltonian Ht�k�
and the overlap matrix S�k�. The Hamiltonian in the orthogo-
nal representation is obtained by the Löwdin
transformation.50 The local Green’s function on the fermi-
onic Matsubara frequencies is obtained by the Brillouin zone
�BZ� integration

FIG. 2. The imaginary part of 
�i�� calculated with �solid line�
and without �dashed line� the asymptotical tail for a two-band
model on the Bethe lattice for �= 1

64, U=2, and bandwidth W=2 �in
arbitrary units�.
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G�i�� = �
k

��i� + ��1 − Ht�k� − 
̃�i���−1, �20�

where � is the chemical potential and 
̃�i�� is the local
self-energy with a “double counting” term 
dc�i�� sub-
tracted. Following Ref. 37, we suppose that the static part of
the correlation effects is already included in Ht�k� for a stan-
dard LDA calculations, and we use the static part of the
self-energy 
�0� as the “double counting” correction,


̃�i��=
�i��−
�0�. In the cases when we start with the
LDA+U calculations, we suppose that Hartree-Fock terms
are already included in the LDA+U Hamiltonian; therefore,
in that case, we use the Hartee-Fock self-energy as the

double counting correction, 
̃=
−
HF. Both choices lead to
rather similar results.

We calculate the Weiss field function G�i�� from the local
G�i�� �20� in accordance with the DMFT theory19

G−1�i�� = G−1�i�� + 
̃�i�� �21�

and then use G instead of G in all expressions of the SPTF
+SO method. After each DMFT iteration new self-energy is
mixed with the old one and then the new chemical potential
� is found. We continue the DMFT iterations until conver-
gence is reached in both � and 
. In order to find the density
of states �DOS�, we use the Pade approximant method51 for
the analytical continuation of the self-energy from the Mat-
subara frequencies to the real axis; the Green’s function on
the real axis is then obtained by the BZ integration �20�.

III. RESULTS

A. Self-consistent band structure calculations

We made standard self-consistent calculations for PuX
and UX �X=Se,Te� using the full-potential linear MT-
orbitals �FPLMTO� method.49 All calculations were done for
experimental lattice parameters of the NaCl-type structure
�5.793 Å, 6.183 Å, 5.740 Å, and 6.155 Å for PuSe, PuTe,
USe, and UTe, respectively�. We employed the generalized
gradient approximation �GGA� by Perdew et al.52 for the
exchange and correlation potential and energy. The spin-orbit
interaction was included in a second variation procedure. We
started always from a ferromagnetic state; in the Pu monoch-
alcogenides, the spin magnetic moment was aligned along
the �001� direction. In the U monochalcogenides, the spin
magnetic moment was aligned along the �111� direction,

which is the experimental magnetic easy axis. For the BZ
integration, we used 242 and 294 k points in 1

8 and 1
6 of the

cubic and hexagonal BZ for the Pu and U monochalco-
genides, respectively.

The obtained spin, orbital, and total moments are listed in
the first column of Table I. Magnetic moments on chalcogen
atoms are very small and magnetic properties of the com-
pounds are defined solely by actinides. First, in contradiction
with the experiment, we have found both PuSe and PuTe to
be strongly magnetic with the spin moment about 5�B and
the orbital moment −2�B. Our results are also different from
those obtained by Oppeneer et al.,7 where paramagnetic so-
lution was predicted to be stable in PuTe at an experimental
volume. However, at slightly smaller volumes ��6.15 Å�
Oppeneer et al. obtained the ferromagnetic ground state with
total energy about 40 mRy lower than that of the paramag-
netic one and the spin and orbital moments similar to those
calculated by us. In Ref. 7, a pressure-induced magnetic
phase transition was proposed to explain sudden onset of
ferromagnetic order. However, the large difference between
energies of the ferromagnetic and paramagnetic phases
makes this transition quite unlikely. There is no hint of
pressure-driven magnetic transition in the NaCl structure of
PuTe being observed in high-pressure resistivity study of
Ichas et al.53

For USe and UTe, our calculated magnetic moments agree
well with a previous study by Brooks2 and they are about
20% larger than reported by Kraft et al.,6 the difference may
be due to different calculational approaches. All the usual
DMFT calculations overestimate the value of the spin mo-
ment and underestimate the value of the orbital moment in U
monochalcogenides; therefore, the theoretical total moment
comes out more than 50% smaller in comparison with the
experiment.42

Hence the usual LDA�GGA�-based calculations fail to
provide the correct description of the magnetic properties of
the U and Pu monochalcogenides. We tried to improve an
agreement with the experimental data by including on-site
Coulomb interaction between 5f electrons by means of the
LDA+U method. We have employed the so-called “around
mean-field” formulation of the LDA+U method.54,55 This
version of the LDA+U method was recently successfully
used to explain the nonmagnetic ground state of the Pu �
phase.16 We choose U=2 and 3 eV for uranium and pluto-
nium atoms, respectively, exchange interaction J=0.55 eV
for the both elements. These values of U and J are in the
range of commonly accepted values for U and Pu.

TABLE I. Spin ms, orbital ml, and total mtot magnetic moments �in �B� calculated within LDA, LDA+U, and LDA+DMFT. The
experimental moments for USe and UTe are from Ref. 42, PuSe and PuTe are nonmagnetic �Ref. 38�.

Compound

LDA LDA+U DMFT+SPTF-SO Experiment

ms ml mtot ms ml mtot ms ml mtot ms ml mtot

USe −2.47 3.61 1.14 −0.89 3.02 2.13 −0.70 2.44 1.73 −1.40 3.19 1.79

UTe −2.74 4.02 1.28 −0.93 3.39 2.46 −0.73 2.80 2.07 −1.34 3.22 1.87

PuSe 5.02 −1.90 3.12 0 0 0 0 0 0 0 0 0

PuTe 5.11 −1.99 3.12 0 0 0 0 0 0 0 0 0
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Magnetic moments obtained in the LDA+U method are
given in Table I. One may see that including the local Cou-
lomb interaction leads to the collapse of magnetic moments
in the Pu chalcogenides. The filling of the f shell on Pu
atoms in PuSe and PuTe increases from about 5.4 obtained in
the GGA calculations to about 5.8, with the f5/2 states almost
completely filled and the f7/2 empty. This picture is similar to
one observed in the Pu � phase.16,41

In uranium chalcogenides, the local Coulomb interaction
reduces spin magnetic moments of uranium atoms by half.
The obtained orbital moments are also smaller than those
calculated within LDA�GGA�; however, the difference is not
so drastic as in the case of spin moments. As a result, the
total moments increase and they are about 20% larger than
the ones observed experimentally. It is obvious that by tuning
U and J values, one may further reduce the error; however,
even with the “first guess” parameters, the local Coulomb
interaction leads to sharp reduction in spin magnetic mo-
ments of uranium, hence improving overall agreement with
experimental observation.

In order to evaluate the accuracy of the LDA+U calcula-
tions further, we have compared the LDA+U densities of
state �DOS� with experimental photoemission spectra. The
total and partial DOS are shown in Fig. 3 together with the
experimental photoemission spectra for PuSe,39 PuTe, and
UTe.40 The chalcogen p band is located in the range between
−7 and −3 eV in UX and between −6 and −2.5 eV in PuX. In
the LDA+U DOS the actinide f band is split in a localized
occupied part �located at about −1 and −2 eV in PuX and
UX, respectively� and a broader unoccupied one, with almost
no f-electron DOS in the vicinity of the Fermi level. This
picture is in clear contradiction with the spectral density ob-
served in the photoemission experiments, where in the case
of PuX the large part of the f-electron spectral weight is
concentrated in a narrow peak near the Fermi level. There is
also a prominent peak at about 1 eV as well as a much
smaller feature in between. This three-peak structure is also
observed in the Pu � phase; hence, it represents a character-

istic feature of the Pu f band, which is largely independent
on a particular crystal environment. In the case of UTe, the
photoemission spectra demonstrate also a rather broader oc-
cupied part of the f band located between −2 eV and EF.
Therefore, the LDA+U method overestimates f-band local-
ization, and while it provides good description of the
monochalcogenides’ magnetic properties, it cannot reproduce
features seen in the photoemission experiments.

B. The DMFT SPTF+SO calculations

We started the DMFT calculations with the one-particle
Hamiltonian Ht�k� obtained from the LDA+U calculations
described above. The Hamiltonian includes the spdf orbitals
of an actinide atom and the spd orbitals of a chalcogen atom
with only the actinide f states being treated as correlated.
The values of parameters U and J for uranium and plutonium
are the same as used in the LDA+U calculations. For the
SPTF+SO quantum impurity solver, we employed 1024
Matsubara frequencies and temperature 470 K. It is impor-
tant to notice that with our choice of the double counting
term �see Sec. II C�, the Hartree-Fock contribution is already
included into the LDA+U one-particle Hamiltonian, there-
fore, making magnetization almost temperature independent.
We carried out DMFT iterations until the convergence of
both the chemical potential and self energy was achieved
with accuracy of 10−4.

In the third column of Table I, we list the spin, orbital, and
total magnetic moments obtained by the DMFT calculations.
The plutonium monochalcogenides stay nonmagnetic;
whereas, in the uranium monochalcogenides, orbital mo-
ments are substantially reduced in comparison with the
LDA+U. As a result, both the spin and orbital moments are
smaller than those measured in the experiment; however, the
total moments are in almost perfect agreement with the ex-
periment. The total f-band filling nf obtained within the

FIG. 3. �Color online� The total DOS �solid line� as well as the
partial DOS for actinide �dashed line� and chalcogen �dot-dashed
line� atoms obtained by the LDA+U method. The thick solid line is
the experimental photoemission spectra �in arbitrary units� for UTe,
PuTe �Ref. 40�, and PuSe �Ref. 39�.

FIG. 4. �Color online� The total DOS �solid line� as well as the
partial DOS for actinide �dashed line� and chalcogen �dot-dashed
line� atoms obtained by the DMFT calculations with the SPTF
+SO quantum impurity solver. The thick solid line is the experi-
mental photoemission spectra �in arbitrary units� for �U,Pu�Te �Ref.
40� and PuSe �Ref. 39�.
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DMFT remains almost unchanged in comparison with the
LDA+U results in all four compounds.

The values calculated within the DMFT DOS are dis-
played in Fig. 4. There one may see that the occupied part of
the f band, which was located in the narrow peak at −1 eV in
the LDA+U DOS, is now split into a larger wider peak
located at −0.3 eV in PuSe �−0.4 eV in PuTe� and a smaller
narrow feature at −1 eV. This picture is very similar to the
experimental spectra; however, the f-electron features on the
theoretical spectra are shifted by �0.2 eV relative to their
experimental positions. Also the experimental wide peak at
−2 eV in PuSe �not so clearly seen in PuTe�, which is inter-
preted as a manifold of localized f-electron states, is missing
from the theoretical spectra.

The DMFT calculation for USe and UTe result in shifting
the occupied part of the f band toward EF as compared to the
LDA+U accompanied by its substantial widening. The the-
oretical DOS is quite similar to experimental photoemission,
apart from the small shift of �0.5 eV.

IV. DISCUSSION AND CONCLUSIONS

On the basis of the DMFT calculations, we can propose
interpretations of features seen on the experimental photo-
emission spectra of the Pu monochalcogenides. The large
peak in the vicinity of EF is a quasiparticle resonance, while
the smaller peak at −1 eV is rather the lower Hubbard band,
its weight is strongly reduced in comparison with the LDA
+U DOS. In Ref. 39, the broad feature in the experimental
spectra at −2 eV was interpreted as a multiplet of localized
5f states. That feature is missing in our DMFT DOS of PuSe,
this may be due to perturbative nature of the SPTF+SO
solver. Another possible explanation is that the broad peak at
−2 eV is characteristic for the PuSe thin films studied in Ref.
39. The PuTe experimental photoemission spectra was mea-
sured on a single crystal sample,40 and there the −2 eV fea-
ture is much less pronounced. Therefore, the agreement be-
tween the experimental photoemission spectra and our
DMFT DOS of PuTe is better.

Our calculations do not reproduce a narrow energy gap
observed in PuSe and PuTe.38 This is beyond the accuracy of
our calculations due to use of the Matsubara Green’s func-
tions with relatively high temperatures �larger than the value
of the energy gap�. It is not clear whether such a small gap
can be reproduced in the framework of the LDA+DMFT
even in the case of exact ground-state calculations. This gap
is a characteristic property of most of the intermediate va-

lence systems. Most probably, it is caused by the excitonic
effects related to the formation of the bound state of f-hole
and d-conduction electrons.56 The narrow-gap state and its
optical properties can be described successfully in a BCS-
like theory with a condensate of these d-f excitons.56 To
describe this condensation properly, the effects of the so-
called Falicov d-f Coulomb interaction should be taken into
account.56–58 This interaction is not included into the present
LDA+U Hamiltonian �but a corresponding first-principles
scheme has been proposed recently57�. Thus, the difference
between a narrow-gap semiconductor and strongly correlated
metal is probably beyond the LDA+DMFT approach basing
on the LDA+U Hamiltonian. This problem requires further
investigations.

The main modifications of the U monochalcogenides’
DOS due to dynamical correlations consist in broadening of
the narrow occupied-5f band and shifting it toward the Fermi
level. These effects can be explained by the usual Fermi
liquid behavior of 
�E� around EF with Re��
�E��� having
linear dependence on energy with a negative slope and
Im��
�E��� having a parabolic shape �−�E−EF�2.

Our computational results confirm a decisive role of dy-
namic correlations for the electronic structure of actinide
compounds. Whereas magnetic moments in actinide chalco-
genides can be successfully described in the LDA+U ap-
proach, the LDA+U photoemission spectra are in drastic
contradiction with the experimental data. The dynamical cor-
relation effects in the DMFT formalism improve agreement
between theoretical and experimental results.

Our choice of the solver for the quantum impurity prob-
lem in the DMFT allows us to take into account the strong
spin-orbit interaction effects. It is important to stress that we
work with a complete four-index interaction matrix and the
full spinor Green’s function, in contrast with the multiband
quantum Monte Carlo approach.23 Another advantage of the
SPTF solver is that the analytical continuation of the self-
energy from the imaginary energy axis to the real energy axis
can be easily carried out using the Pade approximant. Thus,
the SPTF+SO approach may be a suitable tool for the cal-
culation of correlation effects in 5f-electron systems.
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