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We report on a theoretical study of quantum transport in carbon nanotubes in the presence of two different
sources of scattering: a static short-range random potential that simulates lattice defects, superimposed onto a
long-range time-dependent perturbation that mimics the phonon-induced real-space atomic displacements. In
the weak-localization regime, fluctuations of the coherent length scales are shown to be driven by band-
structure features, whereas the phonon-induced delocalization effect occurs in the stronger-localization regime.
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The theory of localization in disordered mesoscopic sys-
tems is a long-standing issue, based on the quantum interfer-
ence effects �QIE’s� on charge transport.1,2 These QIE’s be-
tween clockwise and counterclockwise backscattering paths
develop in the so-called coherent regime and yield an in-
crease of the probability of return to the origin for propagat-
ing wave packets. The contribution of QIE’s is usually re-
duced by several inelastic scatttering sources that produce
decoherence of the wave-packet phase. At low temperature
the main decoherence mechanisms are electron-phonon and
electron-electron couplings. Within the framework of weak-
localization theory, it has been possible to derive perturba-
tively the relation between the measured conductance G�E�,
its quantum correction �G�E�, and the coherence length L�

that fixes the scale beyond which QIE’s are destroyed. Esti-
mation of the coherence lengths is a central issue in mesos-
copic physics, and weak localization provides an elegant
framework to extract the behavior of L�, which mainly de-
pends on the dimensionality of charge transport.3,4 Nowa-
days, an important issue concerns the decoherence phenom-
enon at very low temperature in disordered metallic
systems.1 The observation of the saturation of the coherence
time ��,5 despite a vanishing contribution of inelastic back-
scattering, is challenging the intimate nature of localization
in low dimensionality.1

Within this context, a theoretical characterization of co-
herence length scales in realistic systems, based on a micro-
scopical modeling of both elastic scatters and a physically
sounding long-range time-dependent dephasing perturbation,
is missing.

Carbon nanotubes6 offer, on the other hand, remarkable
opportunities to investigate quantum transport in low-
dimensional materials. Weak localization in carbon nano-
tubes has been the subject of intense research during recent
years. At first, large-diameter nanotubes were shown to
manifest a negative magnetoresistance effect �decreasing of
the resistance upon switching on an external magnetic field�
as well as Aharonov-Bohm oscillations with a half-quantum-
flux period.7 Recently weak localization was also observed in
small-diameter double-walled nanotubes with external diam-
eter of only �3 nm.8 The nature of intrinsic lattice defects is,

however, difficult to analyze experimentally, but the use of
the so-called Anderson-type random potential has allowed a
reasonable interpretation of experiments.8 Finally, Stojetz
and co-workers9 have recently succeeded in measuring some
energy dependence of the coherence length scale by using an
efficient back-gate electrode able to move the Fermi-level
position and explore the physics of different subbands. Their
measurements show a systematic decrease of L� near the
onsets of new subbands �van Hove singularity positions�.

In this paper, we study quantum transport in weakly dis-
ordered carbon nanotubes in the presence of electron-
phonon coupling. Our numerical approach consists in com-
puting the time-dependent quantum dynamics of electronic
wave packets �for � electrons�, under the action of a time-
dependent Hamiltonian that mimics the vibrational modes in
real space as well as the strength of the electron-phonon
coupling. For selected phonon modes �acoustic and optical�,
the time-dependent Schrödinger equation is solved in real
space10 and the Kubo conductance3 as well as coherence
length scales are investigated in the weak-localization
regime.4 Remarkably, for strong static disorder, long-range
vibrations are shown to limit localization effects.

The starting Hamiltonian is the � effective model

Ĥ = �
i

�i��i���i� + �
i,�=1,3

��ri,i+�����i���i+�� + H.c.	 ,

where the on-site energies �i are taken at random within the
interval �−W /2 ,W /2	 �with uniform probability, while W is
in �0=2.7 eV units� to simulate lattice defects �Anderson-
type disorder potential�,11 whereas the integral overlaps be-
tween nearest-neighbor orbitals ��i� and ��i+�� are constant
��i,i+�=�0� in the absence of phonon vibrations. The effect of
the electron-phonon interaction is introduced by modulating
the integral overlap intensity ��ri,i+�� according to the time-
dependent displacements of the bond lengths ri,i+� between
one ��i� orbital located at atomic position �i� and its nearest
neighbors located at �i+�� ��� �1,3	�. The bond-length-
dependent Hamiltonian matrix element � is computed by us-
ing the analytical expression given by Porezag et al.12 The

C-C bond length is therefore ri,i+�= �̂ · �Ri+�−Ri�, with �̂ the
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bond direction. The atomic position for the phonon mode
with wave vector q and frequency �q is given by Ri=Ri

0

+Aqei�q�cos�q ·Ri+�qt�, where Ri
0 give the equilibrium

atomic positions, whereas A and e are the phonon amplitude
and eigenvector. The phonon amplitude is given by Aq
=
	nq /2M�q, where M is the carbon mass, while nq is the
phonon occupation number. For thermal equilibrium, nq is
the Bose-Einstein occupation factor, nq=1/ �e
�−1� for pho-
non absorption and nq=1/ �e
�−1�+1 for phonon emission
with 
=kBT and � phonon energy.13 Hereafter we will con-
centrate on the longitudinal acoustic �LA� phonon mode and
longitudinal optical �LO� mode, with the oscillation ampli-
tude defined by A0.

The resolution of the time-dependent Schrödinger equa-

tion is made by expanding the evolution operator e−iĤt as a

product of short-time evolution steps e−iĤ�T, for a total evo-
lution time t=n�T. Typically �T is one-tenth of the oscilla-
tion period of the considered phonon mode. During each
elapsed time �T, the Hamiltonian energetics is fixed by the
static part of the Anderson potential, whereas the time-
dependent part, due to long-range vibrational modes, varies
following the real space modulations of the overlap integrals.
A similar treatment of dephasing has been implemented ei-
ther by defining an artificial oscillating behavior of off-
diagonal electronic couplings14 or through an on-site time-
dependent perturbation.15 In Ref. 14, scaling properties of
the quantum conductance were analyzed in the weak-
localization regime, whereas the metal-insulator transition
was investigated in Ref. 15.

The Kubo conductance is related to the diffusion coeffi-

cient Tr���E−Ĥ��X̂�t�− X̂�0�	2� /Tr���E−Ĥ�	, where ��E
−Ĥ� is the spectral measure operator, whose trace gives the

total density of states, while X̂�t� is the position operator in
the Heisenberg representation. From the time dependence of

L2�E , t�= �
�0���X̂�t�− X̂�0�	2�
�0��, one derives the scaling
properties of the conductance,10 together with the conduction
regime. The presence of lattice defects produces elastic scat-
tering of the � electrons and leads to a transition of the
quantum spreading from a ballistic like to a diffusive regime,
at which the diffusion coefficient will first saturate. This al-
lows us to estimate the intrinsic elastic mean free path from
L2�E , t� / t→�ev�E� for a given disorder strength.

In the top panel of Fig. 1, the elastic mean free path is
shown for three amplitudes of the disorder potential W
= �0.07,0.1,0.5��0. Close to the charge neutrality point,
�e�E=0� can be derived analytically within the Fermi golden
rule �FGR�. The use of the Fermi golden rule gives �e
=vF�e, with vF=3acc�0 /2	 the Fermi velocity �acc

=1.44 Å�, whereas �e is the elastic scattering time. For the
Anderson disorder potential, an analytical derivation gives11

�e =
18acc�0

2

W2

n2 + m2 + nm . �1�

The obtained values for �e at the charge neutrality point
are given by �e�E=0,W=0.05�0�=2800 nm, �e�E=0,W
=0.1�0�=800 nm, and �e�E=0,W=0.5�0�=37 nm. Note that

in Fig. 1, �e�W=0.5�0�→8�e�E=0,W=0.5�0�, for the sake
of clarity. One thus finds that �e�W=0.05� /�e�W=0.1�
3.5,
whereas �e�W=0.05� /�e�W=0.5�
80, in good agreement
with the 1/W2 scaling given by Eq. �1�. At higher energies,
�e decreases significantly with some modulations at the on-
sets of new subbands.

By defining ��L� the time at which L2�t�=L2, the conduc-
tance at such a scale is defined by G
e2n�E�L(��L�) /��L�.10

In Fig. 1 �bottom panel�, the quantum conductance is shown
for the same parameters for the random potential but with
superimposition of the additional time-dependent part encod-
ing the LA mode. At W=0.0 the effect of phonon vibrations
is negligible in most of the spectrum except at some particu-
lar energies ±0.2 eV, which correspond to a particular
phonon-induced symmetry breaking effect.16,17 For disorder
W= �0.07,0.1��0, the conductance takes values much smaller
than in the ballistic case �W=0 and G�E�=N�G0, with N�

the number of available channels, G0=2e2 /h	, and the super-
imposed effect of phonons remains weak. In contrast, for a
sufficiently large potential strength �W=0.5�0�, a remarkable
increase of the conductance due to phonon-induced atomic
displacements is seen for all the spectrum �Fig. 1, bottom
panel, inset�. Such a dephasing-assisted limitation of local-
ization effects has already been discussed in other models,18

but it is here disclosed for realistic quasi-one-dimensional
�quasi-1D� systems and physical modeling of the time-
dependent perturbation that mimics a real phenomenon �lat-
tice vibrations�.

To extract the information about the energy dependence
of the coherence length scales, we proceed as follows. In the
weak-localization regime, the quantum correction of the

FIG. 1. Top panel: elastic mean free path for a metallic �10,10�
disordered nanotube as a function of energy of charge carriers and
for several values of the Anderson random potential W given in �0

units. Note that �e�W=0.5� has been rescaled by a factor of 8. The
rescaled density of states �dotted line� is also shown. Bottom panel:
corresponding conductance �main frame� with elastic disorder and
electron-phonon time-dependent dephasing. The staircase gives the
exact number of quantum channels, N�. Inset: conductance for a
larger value of the disorder potential W=0.5�0 with �dotted line� or
without �bold line� LA-mode displacements.
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Drude conductance is computed by solving the so-called
Cooperon equation.4 Assuming a quasi-1D geometry of the
system, it has been shown that decoherence due either to
electron-phonon or electron-electron scattering is described
by the same approach19,20 and that the conductance reads

G�E� =
2e2

h
�N��E�

�e�E�
L�E,t�

− �G�E�� , �2�

where L�E , t� is the length scale that is energy dependent due
to velocity v�E� and scales as L�E , t�=
v�E��et, in the dif-
fusive regime, whereas the term �G�E� gives the contribu-
tion of QIE’s beyond the scale of �e. Within the weak-
localization theory and for quasi-1D systems, this
contribution is shown to be related to the coherence length
L��E� as �G�E�=L��E� /L�E , t�, whereas ���E�=L�

2 �E� /
v�E��e. Therefore, by studying the scaling behavior of
�G�E�, one can access relevant physical information about
the fluctuations of the coherence length scales in the weak-
localization regime.

Figure 2 �top panel� shows the conductance computed
at two different evolution times t=3500	 /�0 and t
=35 000	 /�0
8 ps �dashed curves�. One clearly sees a
downscaling of the conductance with time, which comes
from the classical linear downsizing in the diffusive regime
�e�E� /L�E , t�, together with the QIE contribution of �G�E , t�,
which increases with time, since interferences are allowed to
develop on a larger scale. In the same figure, one also reports
the classical term Gclass�E�=N��E�G0�e�E� /L�E , t� �bold
curve�, along with the quantum interference term �G�E , t�
=G�E , t�−Gclass�E� �dotted curve�, at t=35 000	 /�0. These
results are obtained for W=0.07�0 and no phonon dephasing.

Figure 2 �bottom panel� gives L��E� deduced from Eq. �2�
for W= �0.07,0.1��0, with �dashed and dotted curves� and
without �bold curve� phonon dephasing. The values range
within �10 nm, 1000 nm	 in the considered energy window.
One notes that for energies �0.9 eV and within the consid-
ered evolution time, the quantum correction �G�E�
0, so
that no meaningful information about the coherence length
can be deduced in the weak-localization regime. In Fig. 3,
stronger static disorder potentials are considered. The results
show the important decrease of the coherence length with
elastic disorder. In contrast, the coherence time ���E� �inset�
shows reversed behavior, owing to the strong decrease of �e.

FIG. 4. Main frame: conductance of disordered �10,10� nano-
tubes in the presence of the superimposed phonon-dephasing term
due to the LO phonon mode. A drawing gives the relative atomic
displacements between first neighbors. Inset: L��E� for the same
parameters at t=35 000	 /�0.

FIG. 2. Top panel: conductance for the disordered �10,10� tube
with W=0.07�0, taken at evolution times t=3500	 /�0 and t
=35 000	 /�0 �dashed curves�. The bold curve gives the classical
part Gclass�E�=G0N��e�E� /L�E , t�, whereas the dotted curve gives
the quantum correction �G�E� �t=35 000	 /�0�. Bottom panel: co-
herence lengths deduced from �G�E�=L��E� /L�E� computed at t
=35000	 /�0 and for several values of the disorder potential. The
dotted region is not addressed since �G�E�
0 at t=35 000	 /�0.

FIG. 3. Main frame: coherence length as a function of energy
for random potential of W=0.1�0 �bold curve�, W=0.2�0 �dotted
curve�, and W=0.5�0 �dashed curve�. Inset: corresponding ���E�
for the same parameters. In addition to the random short-range dis-
order, a LA-mode modulation is introduced.
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In the experimental situation,9 the fluctuations of L��E�
due to electron-electron scattering were found to scan the
range �10 nm, 60 nm	, with a systematic decrease near the
onsets of new subbands. The values given here �for the cho-
sen evolution time� are thus physically reasonable, since
electron-phonon scattering is expected to lead to a weaker
decoherence effect.20,21

In Fig. 4, the conductance for several random potentials
and a superimposed longitudinal optic �LO� phonon dephas-
ing are reported. Differently from the LA mode, the LO-
mode-driven dephasing impacts more significantly at lower
energies, close to the charge neutrality point, and its intro-
duction yields strong modulation of the conductance close to
the onsets of new subbands. The strong reduction of G�E�
within �−0.5 eV,0.5 eV	, has been shown in Refs. 16 and 17
to come from time-dependent band-structure changes driven
by the LO vibrational modes. Similarly to the prior case,
L��E� is seen to decrease at each onset of a new subband
and is strongly affected by increasing the static disorder
potential.

In conclusion, the combined effect of static short-range
and dynamic long-range disorder has been studied, simulat-
ing the case of disordered carbon nanotubes in the presence
of vibrational degrees of freedom. In the weak-localization
regime, coherence length scales were shown to fluctuate in
accordance with the spectral features, while in the case of a
strong static potential, the time-dependent long-range pertur-
bation was shown to induce delocalization effects. Ab initio
molecular dynamics was recently used to study the role of
phonon dephasing on elastic scattering and conductance in
short nanotube-based junctions.22 Our present approach and
results provide a complementary framework to understand
localization phenomena in carbon nanotubes in the presence
of vibrational modes.
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