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Conductance and coherence lengths in disordered carbon nanotubes: Role of lattice defects
and phonon vibrations
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We report on a theoretical study of quantum transport in carbon nanotubes in the presence of two different
sources of scattering: a static short-range random potential that simulates lattice defects, superimposed onto a
long-range time-dependent perturbation that mimics the phonon-induced real-space atomic displacements. In
the weak-localization regime, fluctuations of the coherent length scales are shown to be driven by band-
structure features, whereas the phonon-induced delocalization effect occurs in the stronger-localization regime.
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The theory of localization in disordered mesoscopic sys-
tems is a long-standing issue, based on the quantum interfer-
ence effects (QIE’s) on charge transport."> These QIE’s be-
tween clockwise and counterclockwise backscattering paths
develop in the so-called coherent regime and yield an in-
crease of the probability of return to the origin for propagat-
ing wave packets. The contribution of QIE’s is usually re-
duced by several inelastic scatttering sources that produce
decoherence of the wave-packet phase. At low temperature
the main decoherence mechanisms are electron-phonon and
electron-electron couplings. Within the framework of weak-
localization theory, it has been possible to derive perturba-
tively the relation between the measured conductance G(E),
its quantum correction 6G(E), and the coherence length L
that fixes the scale beyond which QIE’s are destroyed. Esti-
mation of the coherence lengths is a central issue in mesos-
copic physics, and weak localization provides an elegant
framework to extract the behavior of Ly, which mainly de-
pends on the dimensionality of charge transport.>* Nowa-
days, an important issue concerns the decoherence phenom-
enon at very low temperature in disordered metallic
systems.! The observation of the saturation of the coherence
time ’Td,,s despite a vanishing contribution of inelastic back-
scattering, is challenging the intimate nature of localization
in low dimensionality.!

Within this context, a theoretical characterization of co-
herence length scales in realistic systems, based on a micro-
scopical modeling of both elastic scatters and a physically
sounding long-range time-dependent dephasing perturbation,
is missing.

Carbon nanotubes® offer, on the other hand, remarkable
opportunities to investigate quantum transport in low-
dimensional materials. Weak localization in carbon nano-
tubes has been the subject of intense research during recent
years. At first, large-diameter nanotubes were shown to
manifest a negative magnetoresistance effect (decreasing of
the resistance upon switching on an external magnetic field)
as well as Aharonov-Bohm oscillations with a half-quantum-
flux period.” Recently weak localization was also observed in
small-diameter double-walled nanotubes with external diam-
eter of only ~3 nm.? The nature of intrinsic lattice defects is,
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however, difficult to analyze experimentally, but the use of
the so-called Anderson-type random potential has allowed a
reasonable interpretation of experiments.® Finally, Stojetz
and co-workers® have recently succeeded in measuring some
energy dependence of the coherence length scale by using an
efficient back-gate electrode able to move the Fermi-level
position and explore the physics of different subbands. Their
measurements show a systematic decrease of L, near the
onsets of new subbands (van Hove singularity positions).

In this paper, we study quantum transport in weakly dis-
ordered carbon nanotubes in the presence of electron-
phonon coupling. Our numerical approach consists in com-
puting the time-dependent quantum dynamics of electronic
wave packets (for 7 electrons), under the action of a time-
dependent Hamiltonian that mimics the vibrational modes in
real space as well as the strength of the electron-phonon
coupling. For selected phonon modes (acoustic and optical),
the time-dependent Schrodinger equation is solved in real
space!® and the Kubo conductance® as well as coherence
length scales are investigated in the weak-localization
regime.* Remarkably, for strong static disorder, long-range
vibrations are shown to limit localization effects.

The starting Hamiltonian is the 7 effective model

H= E & m){m| + E '}’(’”i,i+5)[|77i><77'i+5| +H.c.],
i i6=13

where the on-site energies ¢; are taken at random within the
interval [-W/2,W/2] (with uniform probability, while W is
in y,=2.7 eV units) to simulate lattice defects (Anderson-
type disorder potential),'' whereas the integral overlaps be-
tween nearest-neighbor orbitals |m;) and |, are constant
(7i.i+5=Yo) in the absence of phonon vibrations. The effect of
the electron-phonon interaction is introduced by modulating
the integral overlap intensity ¥(r;; s according to the time-
dependent displacements of the bond lengths r;;, 5 between
one | ;) orbital located at atomic position |i) and its nearest
neighbors located at |i+68) (Se[1,3]). The bond-length-
dependent Hamiltonian matrix element vy is computed by us-
ing the analytical expression given by Porezag et al.'> The

C-C bond length is therefore r; ;, 5= 5-(R;,5~R,), with & the
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bond direction. The atomic position for the phonon mode
with wave vector q and frequency w, is given by R,-:R?
+Aqe,(q)cos(q-R;+wyt), where RY give the equilibrium
atomic positions, whereas A and e are the phonon amplitude
and_eigenvector. The phonon amplitude is given by A,
=\e‘°ﬁnq/ 2M wy, where M is the carbon mass, while ng is the
phonon occupation number. For thermal equilibrium, ng is
the Bose-Einstein occupation factor, ng=1/(e#¢~1) for pho-
non absorption and nqzl/(e55—1)+1 for phonon emission
with B=kzT and € phonon energy.'® Hereafter we will con-
centrate on the longitudinal acoustic (LA) phonon mode and
longitudinal optical (LO) mode, with the oscillation ampli-
tude defined by A,

The resolution of the time-dependent Schrodinger equa-
iH1

tion is made by expanding the evolution operator ¢™'"*' as a

product of short-time evolution steps e~"*A7, for a total evo-
lution time r=nAT. Typically AT is one-tenth of the oscilla-
tion period of the considered phonon mode. During each
elapsed time AT, the Hamiltonian energetics is fixed by the
static part of the Anderson potential, whereas the time-
dependent part, due to long-range vibrational modes, varies
following the real space modulations of the overlap integrals.
A similar treatment of dephasing has been implemented ei-
ther by defining an artificial oscillating behavior of off-
diagonal electronic couplings'* or through an on-site time-
dependent perturbation.!> In Ref. 14, scaling properties of
the quantum conductance were analyzed in the weak-
localization regime, whereas the metal-insulator transition
was investigated in Ref. 15.

The Kubo conductance is related to the diffusion coeffi-

cient Tr{S(E-H)[X(H)-X(0) 2/ TH[SE-H)], where &E
—7:{) is the spectral measure operator, whose trace gives the

total density of states, while /'AV(Z) is the position operator in
the Heisenberg representation. From the time dependence of
LA(E, 1) =(¥(0)|[X(r)—- X(0)*|¥(0)), one derives the scaling
properties of the conductance,!? together with the conduction
regime. The presence of lattice defects produces elastic scat-
tering of the m electrons and leads to a transition of the
quantum spreading from a ballistic like to a diffusive regime,
at which the diffusion coefficient will first saturate. This al-
lows us to estimate the intrinsic elastic mean free path from
L*(E,t)/t—€,v(E) for a given disorder strength.

In the top panel of Fig. 1, the elastic mean free path is
shown for three amplitudes of the disorder potential W
={0.07,0.1,0.5}y,. Close to the charge neutrality point,
€,(E=0) can be derived analytically within the Fermi golden
rule (FGR). The use of the Fermi golden rule gives €,
=vp7,, Wwith vp=3a.v,/2h the Fermi velocity (a..
=1.44 A), whereas 7, is the elastic scattering time. For the
Anderson disorder potential, an analytical derivation gives'!

18a.. %5 [

€, = W \n? +m* +nm. (1)

The obtained values for €, at the charge neutrality point
are given by €, (E=0,W=0.05%,)=2800 nm, €, (E=0,W
=0.1%,)=800 nm, and ¢ ,(E=0,W=0.57y,)=37 nm. Note that
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FIG. 1. Top panel: elastic mean free path for a metallic (10,10)
disordered nanotube as a function of energy of charge carriers and
for several values of the Anderson random potential W given in vy,
units. Note that €,(W=0.5) has been rescaled by a factor of 8. The
rescaled density of states (dotted line) is also shown. Bottom panel:
corresponding conductance (main frame) with elastic disorder and
electron-phonon time-dependent dephasing. The staircase gives the
exact number of quantum channels, N . Inset: conductance for a
larger value of the disorder potential W=0.5y, with (dotted line) or
without (bold line) LA-mode displacements.

in Fig. 1, €,(W=0.57y,) — 8¢, (E=0,W=0.5%,), for the sake
of clarity. One thus finds that € ,(W=0.05)/¢,(W=0.1)=3.5,
whereas €,(W=0.05)/€,(W=0.5)=80, in good agreement
with the 1/W? scaling given by Eq. (1). At higher energies,
€, decreases significantly with some modulations at the on-
sets of new subbands.

By defining (L) the time at which L*(f)=L?, the conduc-
tance at such a scale is defined by G = e’n(E)L(m(L))/ 7(L)."°
In Fig. 1 (bottom panel), the quantum conductance is shown
for the same parameters for the random potential but with
superimposition of the additional time-dependent part encod-
ing the LA mode. At W=0.0 the effect of phonon vibrations
is negligible in most of the spectrum except at some particu-
lar energies +0.2 eV, which correspond to a particular
phonon-induced symmetry breaking effect.'®!” For disorder
W={0.07,0.1}y,, the conductance takes values much smaller
than in the ballistic case [W=0 and G(E)=N, G, with N
the number of available channels, G0=2e2/ 1], and the super-
imposed effect of phonons remains weak. In contrast, for a
sufficiently large potential strength (W=0.5v,), a remarkable
increase of the conductance due to phonon-induced atomic
displacements is seen for all the spectrum (Fig. 1, bottom
panel, inset). Such a dephasing-assisted limitation of local-
ization effects has already been discussed in other models,!'8
but it is here disclosed for realistic quasi-one-dimensional
(quasi-1D) systems and physical modeling of the time-
dependent perturbation that mimics a real phenomenon (lat-
tice vibrations).

To extract the information about the energy dependence
of the coherence length scales, we proceed as follows. In the
weak-localization regime, the quantum correction of the

113410-2



BRIEF REPORTS

T P V.

6 oy, t=3500 N
= sk ol — Can(EBWE00D
- ! e BG(E,W=0.07)
= 4r
@ S 1=35000
(D 2_ P e el P P

1

. L¢(E,W=0.07, LA mode)
—-L q’(E,W=0. 1, LA mode)
— Lq)(E, W=0.07)

1,5 2 2,5 3 35 4 4,5 5
Energy [eV]

FIG. 2. Top panel: conductance for the disordered (10,10) tube
with W=0.077y,, taken at evolution times ¢t=3500%A/v, and ¢
=350007%/y, (dashed curves). The bold curve gives the classical
part Gja(E)=GoN | € (E)/L(E,1), whereas the dotted curve gives
the quantum correction 8G(E) (r=35 000%/7,). Bottom panel: co-
herence lengths deduced from 8G(E)=L4(E)/L(E) computed at ¢
=35000%/y, and for several values of the disorder potential. The
dotted region is not addressed since 8G(E)=0 at r=35 000%/ .

Drude conductance is computed by solving the so-called
Cooperon equation.* Assuming a quasi-1D geometry of the
system, it has been shown that decoherence due either to
electron-phonon or electron-electron scattering is described
by the same approach!®?’ and that the conductance reads

(. (E)
L(E,1)

2
G(E) = %(NL(E)

- 5G(E)>, 2)

where L(E,¢) is the length scale that is energy dependent due
to velocity v(E) and scales as L(E,t)=\v(E){,t, in the dif-
fusive regime, whereas the term 8G(E) gives the contribu-
tion of QIE’s beyond the scale of €,. Within the weak-
localization theory and for quasi-1D systems, this
contribution is shown to be related to the coherence length
LyE) as OG(E)=LyE)/L(E.1), whereas 1,(E)=L3(E)/
v(E){,. Therefore, by studying the scaling behavior of
S8G(E), one can access relevant physical information about
the fluctuations of the coherence length scales in the weak-
localization regime.

Figure 2 (top panel) shows the conductance computed
at two different evolution times r=3500%/vy, and ¢
=350007%/y,=8 ps (dashed curves). One clearly sees a
downscaling of the conductance with time, which comes
from the classical linear downsizing in the diffusive regime
€, (E)/L(E,1), together with the QIE contribution of 6G(E, 1),
which increases with time, since interferences are allowed to
develop on a larger scale. In the same figure, one also reports
the classical term G, (E)=N,(E)Gyl,(E)/L(E,t) (bold
curve), along with the quantum interference term S6G(E,1)
=G(E,1)—G,(E) (dotted curve), at =35 000%/y,. These
results are obtained for W=0.07, and no phonon dephasing.
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FIG. 3. Main frame: coherence length as a function of energy
for random potential of W=0.1v, (bold curve), W=0.2v, (dotted
curve), and W=0.5y, (dashed curve). Inset: corresponding 74(E)
for the same parameters. In addition to the random short-range dis-
order, a LA-mode modulation is introduced.

Figure 2 (bottom panel) gives L,(E) deduced from Eq. (2)
for W={0.07,0.1}y,, with (dashed and dotted curves) and
without (bold curve) phonon dephasing. The values range
within [10 nm, 1000 nm] in the considered energy window.
One notes that for energies <0.9 eV and within the consid-
ered evolution time, the quantum correction 8G(E)=0, so
that no meaningful information about the coherence length
can be deduced in the weak-localization regime. In Fig. 3,
stronger static disorder potentials are considered. The results
show the important decrease of the coherence length with
elastic disorder. In contrast, the coherence time 74(E) (inset)
shows reversed behavior, owing to the strong decrease of €,.
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FIG. 4. Main frame: conductance of disordered (10,10) nano-
tubes in the presence of the superimposed phonon-dephasing term
due to the LO phonon mode. A drawing gives the relative atomic
displacements between first neighbors. Inset: L4(E) for the same
parameters at t=35 000%/ .
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In the experimental situation,’ the fluctuations of L(E)
due to electron-electron scattering were found to scan the
range [10 nm, 60 nm], with a systematic decrease near the
onsets of new subbands. The values given here (for the cho-
sen evolution time) are thus physically reasonable, since
electron-phonon scattering is expected to lead to a weaker
decoherence effect.?%-2!

In Fig. 4, the conductance for several random potentials
and a superimposed longitudinal optic (LO) phonon dephas-
ing are reported. Differently from the LA mode, the LO-
mode-driven dephasing impacts more significantly at lower
energies, close to the charge neutrality point, and its intro-
duction yields strong modulation of the conductance close to
the onsets of new subbands. The strong reduction of G(E)
within [-0.5 eV,0.5 eV], has been shown in Refs. 16 and 17
to come from time-dependent band-structure changes driven
by the LO vibrational modes. Similarly to the prior case,
L4(E) is seen to decrease at each onset of a new subband
and is strongly affected by increasing the static disorder
potential.
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In conclusion, the combined effect of static short-range
and dynamic long-range disorder has been studied, simulat-
ing the case of disordered carbon nanotubes in the presence
of vibrational degrees of freedom. In the weak-localization
regime, coherence length scales were shown to fluctuate in
accordance with the spectral features, while in the case of a
strong static potential, the time-dependent long-range pertur-
bation was shown to induce delocalization effects. Ab initio
molecular dynamics was recently used to study the role of
phonon dephasing on elastic scattering and conductance in
short nanotube-based junctions.?> Our present approach and
results provide a complementary framework to understand
localization phenomena in carbon nanotubes in the presence
of vibrational modes.
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