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A theory for the size dependence of the coefficient of thermal expansion �CTE� of nanostructures is devel-
oped. The theory predicts that the fractional change in the CTE from the bulk value scales inversely with the
size of the nanostructure. An explicit relation for the intrinsic length scale that governs the size dependence is
derived. The theory is tested against full-scale molecular dynamics simulations and excellent agreement is
found. Further, it is shown that the CTE can rise or fall with size depending on the properties of the bounding
surfaces of the nanostructure. The theory has the potential to be used as part of a predictive tool for the design
of nanostructures.
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The effective design and use of nanoelectromechanical
systems1 �NEMS� requires the development of predictive ca-
pabilities for their properties. At macroscales, the effective
device property can be thought of as arising from two dis-
tinct contributions: first, the geometry of the device, and sec-
ond, the property of the material that makes up the device.
For example, the resistance R of a device is �� /A, where � ,A
are the geometric attributes of the device, and � is the resis-
tivity of the material. There is overwhelming evidence that
this simple continuum approach cannot be applied without
modification at small scales. Carbon nanotubes, for instance,
can be insulating or metallic depending on their radius and
chirality,2 and show strongly size-dependent elastic proper-
ties.3 Apparently, at nanoscales, “material property” and “de-
vice geometry” cannot be separated. This is owing to the fact
that one or more of its geometric dimensions is small enough
for the response �usually in the longer, macro direction� to be
influenced by the discrete atomistic nature of the device—
both atomistic and continuum scales are important in nano-
structures. An accurate predictive theory would, therefore,
seem to require an explicit and expensive—sometimes even
prohibitive—treatment of the discrete atomistic nature of
nanosystems. Hence the development of simple theoretical
models for the size dependence of properties of nanostruc-
tures remains a fertile area of research. Theoretical ap-
proaches may be broadly classified into two types:4 �i� mul-
tiscale approaches and �ii� augmented continuum theories.
Multiscale approaches5 treat both discrete and continuum
physics in the same model, and require simulations albeit of
much smaller size than full-scale atomistic simulations. Aug-
mented continuum theories,6,7 although less general, have the
advantage of simple physical insight and provide explicit
expressions for size dependence of properties.

In this Brief Report, an augmented continuum theory is
developed for the size dependence of coefficient of thermal
expansion �CTE� of nanostructures. Starting with the idea
that “nanostructure=bulk+surface,”6,7 it is shown that the
fractional change in thermal expansion coefficient �compared
to the bulk�, varies inversely as the size of the nanostructure.
The theory is compared with full-scale molecular dynamics
simulations �which serve as numerical experiments�; excel-
lent agreement is found.

The development that follows is based on theory of lattice
dynamics of crystals.8 The nanostructure considered has a
slab geometry or bar geometry; in the case of a slab �bar�, the
thickness �cross-sectional dimensions� is �are� nanosized.
The nanostructure is taken to have a crystalline arrangement
of atoms �as is often the case in experiments1,9�, allowing for
a description in terms of a supercell. The supercell consists
of N atoms whose equilibrium positions at zero temperature
are given by Ri �i=1, . . . ,N�. The nanostructure is obtained
by periodically repeating the supercell with periodicity vec-
tor L= �L1 ,L2� �L=L1 in the case of a nanobar�. The total
energy �of the supercell� of this atomistic system is described
by a given energy function U�r1 , . . . ,rN� �several different
total energy formulations of various levels of sophistication
are possible4�, where ri are the—possibly displaced—
positions of the atoms. Clearly, Ri are the positions of atoms
that minimize U.

On increase of temperature, the thermal average positions
of atoms changes to ri=FRi+ui, where F is the homoge-
neous deformation due to thermal expansion, and ui are re-
arrangements of atoms �which is significant only at surfaces
and edges�. The deformation F and the rearrangements ui are
obtained by minimizing the Helmholtz �classical� free energy

A�T,u1, . . . ,uN;F�

= U�u1, . . . ,uN;F� + kBT�
q,�

ln����q,��
kBT

� �1�

�kB is the Boltzmann constant and T is the temperature�. The
quantities ��q ,�� are the frequencies of phonon modes la-
beled by wave vector q �in the Brillouin zone defined by the
supercell repeat vector L� and mode index �. This formula-
tion has been used extensively to study surface phonons10,11

and surface thermal rearrangements.12–14

While Eq. �1� contains the detailed physics of thermal
expansion, an approximate free energy suggested by LeSar et
al.15 is more useful to construct a theory for size dependence
of thermal expansion. In this local harmonic approxi-
mation,15 the free energy is written as
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ALH = U�u1, . . . ,uN;F� + kBT�
i

�
�=1,3

ln����i,��
kBT

� , �2�

where ��i ,�� are the vibrational frequencies of the atom i
obtained by fixing all other atoms. LeSar et al.15 showed that
this is a good approximation for temperature ranges up to
75% of the melting temperature. This model has been used to
study interfaces such as grain boundaries;16 it can therefore
serve as a simple approximation for the treatment of the ther-
modynamics of surfaces. Further, if the energy function is
based on a pair potential or embedded atom method17 �as is
assumed here�, Eq. �2� has the advantage that an approximate
free energy is defined for every atom.

Roughly, the nanostructure has two types of atoms; those
influenced by the surface and those in the bulk. The free
energies of all the “bulk atoms” are equal �in the sense of Eq.
�2��, while those of the like surface atoms are also equal.
This observation motivates a continuum approximation for
the free energy, invoking the ansatz “nanostructure=bulk
+surface,” that allows for an explicit calculation of the size
dependence of the CTE. The idea is illustrated for a nanoslab
�simple cubic crystal structure� of thickness h consisting of N
layers �h=Na, a is lattice parameter�. The thickness of the
slab is defined using the idea of the Gibbs’ dividing
surface;18 this is the thickness that would give the correct
mass of the slab when used in conjunction with the bulk
value of the mass density. The �augmented continuum� free
energy density AAC �per unit area of the slab in terms of the
bulk and surface free energy densities�, as a function of the
homogeneous strain � is

�3�

where �b and �s are geometric average vibrational frequen-
cies �in the sense of Eq. �2�� of bulk and surface atoms re-
spectively, E is the bulk biaxial modulus, and S is the surface
biaxial modulus.19 All rearrangements of surface atoms are
accounted in the surface modulus S.19 The factor 2 in front of
the surface term is to account for upper and lower surfaces of
the slab. The thermal strain ��T� is found by solving
�AAC /��=0. A straightforward calculation gives the CTE
��=����T�� /�T� of the nanoslab as

� = �2S�s + Eh�b

2S + Eh
� , �4�

where �s=−3kB�1/Sa2��� ln �s /��� is the surface CTE, and
�b=−3kB�1/Ea3��� ln �b /��� is the bulk CTE.

The size dependence of the CTE of the nanoslab is now
readily obtained as

� − �b

�b
= 2

S

E

1

h
��s

�b
− 1��1 + 2

S

E

1

h
�−1

� 2
S

E
��s

�b
− 1�1

h
.

�5�

A similar calculation for a nanobar with a square cross sec-
tion of side h �with crystallographically equivalent bounding
surfaces� gives

� − �b

�b
� 4

S

E
��s

�b
− 1�1

h
, �6�

where S and E are uniaxial surface and bulk moduli respec-
tively. The essential difference between the slab and the bar
is the factor of 4 appearing in the case of the bar in place of
2. This is because there are four bounding surfaces for the
bar, i.e., this factor depends on the geometrical attributes of
the nanostructure.

Quite generally, the size dependence of the thermal ex-
pansion of a nanostructure is

�7�

where K is a constant that depends on the geometry of the
structure, S and E are the appropriate surface and bulk elastic
moduli, and �s and �b are the surface and bulk thermal ex-
pansion coefficients. Thus the theory not only predicts that
the fractional change in the CTE depends inversely on the
size of the nanostructure, but also identifies the associated
intrinsic length scale h0.

The relation �7� is tested against full atomistic calcula-
tions. A simple Lennard-Jones �LJ� pair potential V�r�
=4���	 /r�18− �	 /r�6� is used to describe the energy function
U. The parameters chosen are �=0.56 eV, 	=2.615 65 Å,
cutoff distance 3.923 47 Å, and atomic mass m=27 amu.
The thermal expansion of fcc crystals �lattice parameter a
=4.032 Å� slabs, and bars is determined by constant-pressure
molecular dynamics �MD� simulations that provide equilib-
rium cell lengths as a function of temperature. Thermal ex-
pansion is calculated from these data; this procedure is re-
peated for several different random initial seeds for
velocities, and averages and deviations are calculated. To
corroborate the theory further, the size dependence of the
thermal expansion was also determined using the local har-
monic �LH� free-energy formulation �2�. The LH calculation
consisted of minimizing the free energy in �2� to determine
the equilibrium values of F and ui. The CTE is determined
from the dependence of the equilibrium F on temperature.

The top panel of Fig. 1 shows the thickness �h� depen-
dence of the CTE � obtained from MD simulations and LH
calculations for fcc crystals slabs bounded by the �100� sur-
face. The data are fitted to a function ��h�=�b+Kh0 /h �both
�b and Kh0 are used as fitting parameters�; it is evident that
the predicted functional form in Eq. �7� is very closely fol-
lowed by both MD and LH results, corroborating the theory.
Though the values obtained of �b and Kh0 from the fit are
different for MD and LH �owing to the approximations in the
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LH scheme�, the functional form �7� is very closely followed
in both cases, illustrating the robustness of �7�. Similar re-
sults are shown for the case of a square bar �bottom panel of
Fig. 1�, where, again, the agreement with Eq. �7� is excellent.

Calculations were also performed with fcc crystal slabs
bounded by �110� and �111� surfaces where, again, excellent
fit to Eq. �7� is found �results not shown�. Since the crystal is
cubic, the bulk thermal expansion is isotropic. Thus the val-
ues of �b obtained from fits in the three cases of �100�, �110�,
and �111� slabs must be equal within error bars—the values
fitted to MD data are, respectively, 4.93
10−5, 5.02
10−5,
5.00
10−5 �the bulk CTE value determined separately is
5.01
10−5�. Similar agreement is found for the LH data as
well, further demonstrating the correctness of Eq. �7�. Since
�s is not determined separately in this work, the close agree-
ment of fit values of �b with the bulk CTE values provides
further corroboration of the correctness of Eq. �7�.

In all the cases discussed thus far, the magnitude of the
thermal expansion increased with decreasing size. This is not
a general result. In fact, the rise or fall of the CTE with size
is determined by the sign of h0= �S /E���s /�b−1�. It is
known that the surface elastic constant S can be of either
sign.19 Thus for a surface with S�0 and �s��b, the CTE
will fall with decreasing size. It is known19 that the biaxial

modulus �100� surface of fcc Al modeled with the embedded
atom potentials of Ercolessi and Adams20 is negative. Figure
2 shows the variation of CTE with the slab thickness for Al,
where it is seen that the CTE falls with decreasing thickness.
Again, the functional form of Eq. �7� is closely followed in
this case �Al described by embedded atom potentials as op-
posed to Lennard-Jones pair potentials discussed before�,
clearly demonstrating the correctness of Eq. �7� in describing
very different systems.

The relation �5� for the size dependence of the CTE was
derived from a classical formulation for the free energy �3�.
The classical formulation was chosen to develop the theory
so that theory can be tested against classical simulations. It is
easily seen that the relation �5� also follows from a quantum
version of the free energy

�8�

where f�
�=e
/2 / �e
−1�, and the index i runs over the three
modes �in the LH sense� of bulk and surface atoms. The
thermal expansion of the nanostructure is given by Eq. �5�,
with �s=−�1/Sa2kBT2��i f ����si /kBT���si��si /�� and
�b=−�1/Ea3kBT2��i f ����bi /kBT���bi��bi /��. Thus, in the
temperature regime kBT��� �� is a typical mode fre-
quency�, quantum effects manifest strongly, and both �s
and �b can depend strongly �exponentially� on temperature.
Consequently the length scale h0 defined in Eq. �7� can also
depend strongly on temperature. This is in contrast to
the high-temperature limit where h0 will be, comparatively,
a weak function of temperature. The important point
to be noted is that the dependence of the CTE at a fixed
temperature on the size of the nanostructure does not depend

FIG. 1. �Color online� Size dependence of coefficient of thermal
expansion �. Top: Results for LJ slabs bounded by �100� crystal
planes of thickness h. Bottom: Results for LJ square �side h� bars
bounded by �100� crystal planes. The lines indicated as “Fit” corre-
spond to fits of simulation data to Eq. �7�.

FIG. 2. �Color online� Variation of CTE with thickness of Al20

slabs bounded by �100� crystal surface. This surface is known to
have a negative biaxial modulus. The line indicated as “Fit” corre-
spond to fits of simulation data to Eq. �7�.
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on the type of formulation �classical or quantum�. In particu-
lar, the theory is therefore expected to be applicable to room-
temperature nanostructures made of metals �low Debye fre-
quency, classical limit�, and to covalent �e.g., carbon�
nanostructures �high Debye frequency, quantum effects in-
cluded�.

In addition to providing basic physical insight into the
size dependence of the CTE, the theory developed here has
the strong potential to be a predictive tool for the design of
nanostructures. To this end, the bulk properties �E ,�b�, and
surface properties �S ,�s� of various crystal faces are to be
calculated from—preferably first principles—atomistic cal-
culations. A fertile research direction is the calculation of the
surface CTE for various crystal faces for materials used in

NEMS applications along lines similar to the calculation of
surface elastic properties.19

In summary, a theory for the size dependence of the CTE
in nanostructures is developed and tested with full-scale ato-
mistic simulations. It is predicted that the fractional change
in the CTE from the bulk value scales inversely with the size
of the nanostructure. The intrinsic length scale that the gov-
erns the size dependence is identified. It is shown that the
CTE can rise or fall depending on the properties of the
bounding surfaces of the nanostructure.
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