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Absorption of circularly polarized light in semiconductors is known to result in optical orientation of
electron and hole spins. It has been shown here that in semiconductor quantum well structures spin orientation
of carriers can be achieved by linearly or even unpolarized light. Moreover, the sign and magnitude of the spin
orientation can be varied by rotating the polarization plane of incidence light. The effect under study is related
to reduced symmetry of the quantum wells as compared to bulk materials and, microscopically, caused by
zero-field spin splitting of electron and hole states.
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Spin-dependent phenomena in semiconductor structures
are the subject of extensive ongoing research. One of the
most widespread and powerful methods for creating spin po-
larization and investigating kinetics of spin-polarized carriers
is optical orientation of electron and nuclear spins by circu-
larly polarized light.1–5 This effect can be interpreted as a
transfer of the photon angular momenta to free carriers. Un-
der interband excitation by circularly polarized light, direct
optical transitions from the valence band to the conduction
band can occur only if the electron angular momentum is
changed by ±1. These selection rules lead to the spin orien-
tation of photoexcited carriers, with degree and sign of spin
orientation depending on the light helicity.

In the present paper we show that in low-dimensional
semiconductor systems spin orientation of carriers can be
achieved by linearly or even unpolarized light. The effect
under consideration is related to reduced symmetry of the
low-dimensional structures as compared to bulk compounds
and is forbidden in bulk cubic semiconductors. Microscopi-
cally, it is caused by asymmetrical photoexcitation of carriers
in spin subbands followed by spin precession in an effective
magnetic field induced by the Rashba or Dresselhaus spin-
orbit coupling.6

The effect is most easily conceivable for direct transitions
between the heavy-hole valence subband hh1 and the con-
duction subband e1 in quantum well �QW� structures of the
Cs point symmetry, e.g., in �113�- or �110�-grown QWs based
on zinc-blende-lattice compounds. In such structures the spin
component along the QW normal z is coupled with the in-
plane electron wave vector. This leads to k-linear spin-orbit
splitting of the energy spectrum as sketched in Fig. 1, where
the heavy-hole subband hh1 is split into two spin branches
±3/2 shifted relative to each other in the k space. Due to the
selection rules the allowed optical transitions from the va-
lence subband hh1 to the conduction subband e1 are
�+3/2�→ �+1/2� and �−3/2�→ �−1/2�, as illustrated in Fig.
1 by dashed vertical lines. Under excitation with linearly
polarized or unpolarized light the rates of both transitions
coincide. In the presence of the spin splitting, the optical
transitions induced by photons of the fixed energy �� occur
in the opposite points of the k space for the electron spin
states ±1/2. Such an asymmetry of photoexcitation results in
nonequilibrium distribution where electrons with spin +1/2
propagate mainly in one direction, e.g., kx�0, and those

with the spin −1/2 propagate in the opposite direction,
kx�0 �Refs. 7 and 8�. This state represents a pure spin cur-
rent, while the average electron spin is still zero. To obtain a
net spin orientation one should take into account spin-orbit
coupling in the conduction subband. The spin-orbit coupling
can be considered as an effective magnetic field Bk acting on
electron spins, with the field direction depending on the elec-
tron wave vector k and its strength being proportional to �k�
�Refs. 9–11�. Spin-dependent asymmetry of photoexcitation
considered above is caused by spin-orbit interaction in both
the valence and conduction subbands and, in general, does
not correspond to the eigenstate of the spin-orbit coupling in
the subband e1. Therefore, electron spins originally directed,
according to the selection rules, along or opposite to the QW
normal will precess in the effective magnetic field Bk �Ref.
12�, which has a nonzero in-plane component, as shown in
Fig. 1. Electrons with the initial spin +1/2 and wave vector
kx�0 are affected by effective field with the Larmor fre-
quency �k, while carriers with the opposite spin, −1/2, and
opposite wave vector, −kx, are affected by field with the fre-
quency �−k. Since in QW structures the effective magnetic

FIG. 1. �Color online� Microscopic origin of the optical orien-
tation of electrons spins by linearly polarized light. Asymmetry of
photoexcitation followed by spin precession leads to appearance of
the average electron spin. The vertical dashed lines show the pos-
sible optical transitions. Spin-orbit coupling in the conduction sub-
band is taken into account here as an effective magnetic field acting
on electron spins.
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field caused by spin-orbit coupling is linear in the wave vec-
tor, then �−k=−�k and the rotation axes are opposite for
carriers with the initial spins ±1/2. As a result, the preces-
sion leads to an appearance of spin component Sx�0 for
carriers with both positive and negative kx as shown in Fig.
1. The value of the generated electron spin is determined by
the average angle of spin rotation. Thus, interband absorption
of unpolarized light in QW structures of low-symmetry re-
sults in spin orientation of photoinduced carriers. The spin
polarization of electron gas disappears after photoexcitation
with the conventional spin-relaxation time.

Generally, direction of the optically oriented electron
spins is determined by light polarization and explicit form of
spin-orbit interaction in both the conduction and valence
bands. The latter is governed by the QW symmetry and can
be varied. In QWs based on zinc-blende-type semiconduc-
tors and grown along the crystallographic direction z � �110�,
absorption of unpolarized light leads to orientation of elec-

tron spins in the QW plane, along x � �11̄0�. We assume the
relaxation time of the asymmetrical electron distribution �e
to be shorter than the Larmor precession period, �k�e�1.
Then, the generation rate of the spin component determined
by the average angle of electron spin rotation can be esti-
mated as

Ṡx =
1

2
�e�y,k0

Ṅ , �1�

where �y is the y component of the Larmor frequency of the
effective magnetic field, y � �001�, k0 is the average wave
vector of electrons with the spin projection +1/2 along the

QW normal in the moment of photoexcitation, and Ṅ is gen-
eration rate of electrons in the subband e1. Taking into ac-
count the explicit form of the spin-orbit interaction in �110�-
grown QWs of the Cs point-group symmetry, one derives

Ṡx = �yx
�e1��zx

�hh1�	e,hh�e

�3 Ṅ . �2�

Here �
�
��� ��=e1,hh1� are the constants describing linear in

the wave-vector coupling between the 
 component of the
electron angular momentum and � component of the wave
vector in the subbands e1 and hh1, respectively, 
 and � are
the Cartesian coordinates, 	e,hh=memhh

� / �me+mhh
� � is the re-

duced mass, and me and mhh
� are the electron and heavy-hole

effective masses in the QW plane, respectively.
The possibility to achieve optical orientation by linearly

polarized light in various low-dimensional structures follows
also from symmetry analysis. Phenomenologically, spin gen-
eration by light is described by

Ṡ
 = I�
��


��

e�e�
* + e�e�

*

2
+ I�

�

�
�i�e � e*��, �3�

where Ṡ
 are the generation rates of the spin components, I is
the light intensity, e is the �complex� unit vector of the light
polarization, e* is the complex conjugate vector to e. The
pseudotensor �
� describes “conventional” optical orienta-
tion by circularly polarized light since the vector product
i�e�e*� is proportional to the light helicity and vanishes for

linearly polarized light. In contrast, the symmetrized product
�e�e�

* +e�e�
*� /2 is insensitive to the light helicity for ellipti-

cally polarized radiation and reaches maximum for linear
polarization. Thus, the third-rank tensor 
��, symmetrical in
the last two indices, 
��=
��, describes spin orientation
by linearly polarized light. In what follows we consider this
effect and assume the polarization vector e to be real.

Symmetry analysis shows that in zinc-blende- or
diamond-type bulk crystals, Td and Oh point groups, respec-
tively, all components of 
��, vanish, and optical orientation
of electron and hole spins can be achieved by circularly po-
larized light only. In contrast, in low-dimensional systems
grown on the basis of cubic semiconductors, nonzero com-
ponents of 
�� do exist, allowing for spin orientation by
light of zero helicity. In particular, in QWs of the Cs symme-
try the tensor 
�� contains eight independent constants, and
spin orientation can be achieved even under excitation with
unpolarized light as was demonstrated above.

In �001�-grown QWs spin orientation cannot be achieved
by unpolarized light, but is allowed under excitation with
linearly polarized light. Asymmetrical �001�-grown struc-
tures, such as single heterojunctions or QWs with nonequiva-
lent normal and inverted interfaces, belong to the C2v point-
group symmetry, and optical orientation by linearly polarized
light is described here by three independent constants A, B,
and C as follows:

Ṡz� = Aex�ey�, Ṡx� = Bey�ez�, Ṡy� = Cex�ez�, �4�

where z� � �001� is the QW normal, x� � �11̄0�, and y� � �110�.
One can see that excitation with linearly polarized light un-
der normal incidence may result in orientation of electron
spins along the QW normal, with the sign and magnitude
depending on the light polarization. The point-group symme-
try of �001�-grown QWs with equivalent interfaces is en-
hanced to D2d, which allows only one linearly independent
constant: A=0, B=−C. Particularly, it follows that in such
structures excitation with linearly polarized light in the ge-
ometry of normal incidence does not lead to spin orientation.
In the other limiting case, when the spin-orbit coupling is
determined only by the structure inversion asymmetry unre-
lated to the crystal lattice, as it can happen in QWs grown of
centrosymmetrical semiconductor compounds like SiGe, the
symmetry of the structure is effectively increased to C�v and
the relations A=0, B=−C retain. Thus, generation of electron
spins along the QW normal is possible in asymmetrical
�001�-grown QWs, but vanishes for symmetrical structures
of the D2d point group as well as for uniaxial structures of
the C�v symmetry.

A consistent theory of the spin orientation by linearly po-
larized light is conveniently developed by using the spin-
density-matrix technique. The dynamics of the density ma-
trix � of photoexcited electrons in the subband e1 is
described by the equation1

��

�t
+

�

�0
+

i

�
�Hso

�e1�,�� = G + St� . �5�

Here �0 is the lifetime of photoelectrons, Hso
�e1� is the spin-

orbit contribution to the Hamiltonian,
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Hso
�e1� =

�

2
��k

�e1� · �� , �6�

�k
�e1� is the Larmor frequency of the spin-orbit coupling-

induced effective magnetic field, � is the vector composed
of the Pauli matrices �x, �y, and �z, G is the matrix of
electron photogeneration, and St� is the collision integral that
describes electron scattering by phonons, static defects,
charge carriers, etc., leading to equilibration. It is convenient
to expand the density matrix � and the matrix of photoge-
neration G into diagonal and spin components as follows:

� = f0I + �Sk · �� ,

G = g0I + �gk · �� ,

where f0=Tr � /2 is the distribution function of electrons,
Sk=Tr���� /2 is the total spin of electrons with the wave
vector k, 2g0 is the rate of carrier photogeneration, gk is the
rate of spin photogeneration into the state with the wave
vector k, and I is the 2�2 unit matrix. Then, for the steady-
state regime, the equation for the spin density Sk in the
relaxation-time approximation and neglecting spin-flip scat-
tering has the form

Sk

�0
+ �Sk � �k

�e1�� = gk −
Sk − S̄k

�e
, �7�

where S̄k is Sk averaged over directions of the wave vector k,
�e is the isotropization time of the spin density Sk. In the case
of elastic scattering by static defects in two-dimensional
structures, the time �e coincides with the conventional mo-
mentum relaxation time that governs the electron mobility.
However, we note that electron-electron collisions between
particles of opposite spins, which do not affect the mobility,
can contribute to relaxation of the asymmetrical spin-
dependent distribution and decrease the time �e, as it hap-
pens, e.g., in spin relaxation.13 Assuming the value �e�k

�e1� to
be a small parameter, the solution of Eq. �7� for the spin

density S̄k to the second order in �k
�e1� has the form

S̄k

�0
+ �e��k

�e1� � �S̄k � �k
�e1��� = ḡk + �e��k

�e1� � gk� , �8�

where the overline means averaging over directions of the
wave vector. The first term in the left-hand side of Eq. �8�
describes disappearance of the total electron spin due to
recombination. The second term in the left-hand side is
responsible for the D’yakonov-Perel’ spin-relaxation
mechanism.9,10 The right-hand side of Eq. �8� describes ori-
entation of electron spins. The first term is responsible for
“conventional” optical orientation by circularly polarized
light, while the second term describes spin generation caused
by asymmetric photoexcitation gk followed by spin preces-
sion in effective magnetic field with the Larmor frequency
�k. Under illumination with linearly polarized or unpolar-
ized light ḡk is zero, and the spin generation is given by the
second term. Then, the total spin generation rate in the sub-
band e1 has the form

Ṡ = �
k

�e��k
�e1� � gk� . �9�

As an example, let us consider optical orientation of elec-
tron spins in �001�-grown QWs under normal incidence of
linearly polarized light. In contrast to the energy spectrum in
low-symmetry structures sketched in Fig. 1, in �001� QWs
the k-linear spin splitting of the hh1 valence subband is de-
pressed and here, for the sake of simplicity, we consider
optical transitions between the light-hole subband lh1 and
the conduction subband e1. Calculations show that in this
particular case the dependence of the photogeneration matrix
components on the polarization vector e to the first order in
the spin-orbit interaction has the form

gk = ��k
�e1� + 2e��k

�lh1� · e� − �k
�lh1��

�

2

�g0

��k
,

g0 =
�

3�
	 eA

cm0

2

�Pcv�2��Ee1,lh1 + �k − ��� . �10�

Here e is the electron charge, A is the amplitude of the vector
potential of the light wave, c is the light velocity, m0 is the
free-electron mass, Pcv= �S�p̂z�Z� is the interband matrix ele-
ment of the momentum operator, Ee1,lh1 is the energy gap
between the subbands lh1 and e1, �k=�2k2 /2	e,lh, and
	e,lh=memlh

� / �me+mlh
� � is the reduced mass for the in-plane

motion.
In �001�-grown structures the vectors �k

��� have the form

�k
��� =

2

�
��x�y�

��� ky�,�y�x�
��� kx�,0� ,

where �=e1, lh1 is the subband index. Then, substituting Eq.
�10� into Eq. �9�, one derives the spin generation rate in the
subband e1,

Ṡz� = 2ex�ey���y�x�
�e1� �y�x�

�lh1� − �x�y�
�e1� �x�y�

�lh1��
	e,lh�e

�3 Ṅ . �11�

Optical orientation of electron spins by linearly polarized
light can be observed and studied with a conventional tech-
nique for the detection of spin orientation, e.g., by analyzing
circular polarization of luminescence under electron-hole ra-

diative recombination. Moreover, the dependence of Ṡz� on
polarization of the incident light given by Eq. �11� allows
one to separate the effect under study from possible experi-

mental background noise. Indeed, the spin generation Ṡz� is
of opposite sign for the exciting light polarized along the
�100� and �010� crystallographic axes and vanishes for the

light polarized along the �11̄0� or �110� axes. Generally, the
dependence of the spin orientation on the light polarization is

given by Ṡz��2ex�ey�=sin 2�, where � is the angle between

the light polarization plane and the �11̄0� axis.
The spin generation rate given by Eq. �11� is proportional

to constants of the spin-orbit coupling in both e1 and lh1
subbands and vanishes if the product �

y�x�
�e1�

�
y�x�
�lh1� equals to

�
x�y�
�e1�

�
x�y�
�lh1�. The appearance of the k-linear terms is connected

with the reduction of the system symmetry as compared to
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bulk materials. In �001�-grown QWs based on zinc-blende-
lattice semiconductors, there are two types of the k-linear
contributions to the effective Hamiltonians of electron and
light-hole subbands.6,11 The contributions can originate from
the lack of an inversion center in the bulk compositional
semiconductors and/or from anisotropy of chemical bonds at
the interfaces �so-called Dresselhaus term�,10 and can be in-
duced by the heterostructure asymmetry unrelated to the
crystal lattice �Rashba term�.14 The constants describing
k-linear spin splitting in the subbands e1 and lh1 are related
to the corresponding Dresselhaus and Rashba constants by

�x�y�
��� = �D

��� + �R
���,

�y�x�
��� = �D

��� − �R
���. �12�

In symmetrical �001�-grown QWs, the spin-orbit coupling is
given by the Dresselhaus term only, while the Rashba term
vanishes. In this case the constants �

x�y�
��� and �

y�x�
��� are equal

and, hence, the expression in the parenthesis in Eq. �11� is
zero and the spin orientation does not occur. In the other
limiting case, if the Rashba coupling dominates and the
Dresselhaus term is negligible, the constants are related by
�

x�y�
��� =−�

y�x�
��� , and the effect vanishes as well. Thus, only in

QWs with both the Rashba and the Dresselhaus spin-orbit
couplings can one induce orientation of electron spins by
normally incident linearly polarized light. This result is in

full agreement with the symmetry analysis presented above.
The spin orientation along the QW normal by linearly polar-
ized light is possible for asymmetrical �001�-grown QWs,
but vanishes for symmetrical structures of the D2d class as
well as for uniaxial structures of the C�v symmetry.

The constants of spin-orbit coupling and the relaxation
time can be estimated as � /��105 cm/s, �e�10−11 s. Then,
an estimation for electron spin generated under absorption of

one photon following Eq. �11� gives Ṡ / Ṅ�10−2 �or 1%�.
Spin orientation of carriers, caused by asymmetrical pho-

toexcitation followed by spin precession in the effective
magnetic field, can be achieved not only under interband
optical transitions, but also under intersubband and intrasub-
band �Drude-like� photoexcitation in QW structures. In the
latter case it can be considered as a nonlinear effect of gen-
eration of spin polarization by ac electric field.

It should be noted that circular polarization of lumines-
cence under excitation with linearly polarized light in zero
magnetic field was observed under study of excitons local-
ized on anisotropic islands in QWs �Ref. 15�. This effect is
caused by optical alignment of exciton dipoles followed by
dipole oscillations in anisotropic media and, generally speak-
ing, can be observed in spinless systems.
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