
Nonperturbative theory of exciton-phonon resonances in semiconductor absorption

K. Hannewald and P. A. Bobbert
Group Polymer Physics, Eindhoven University of Technology, P.O.Box 513, 5600 MB Eindhoven, The Netherlands

�Received 27 May 2005; published 8 September 2005�

We develop a theory of exciton-phonon sidebands in the absorption spectra of semiconductors. The theory
does not rely on an ad hoc exciton-phonon picture, but is based on a more fundamental electron-phonon
Hamiltonian, thus avoiding a priori assumptions about excited-state properties. We derive a nonperturbative
compact solution that can be looked upon as the semiconductor version of the textbook absorption formula for
a two-level system coupled to phonons. Accompanied by an illustrative numerical example, the importance and
usefulness of our approach with respect to practical applications for semiconductors is demonstrated.
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The interaction between electronic and vibrational de-
grees of freedom is of fundamental importance for the opti-
cal and transport properties of many physical systems.1 A
classical example is given by the absorption spectra ���� of
an atom �or molecule� coupled to a phonon mode with fre-
quency �ph. These systems are often modelled excellently
within the two-level approximation, i.e., assuming an upper
empty level and a lower occupied level with energies ec,v and
electron-phonon couplings gc,v. Then, ���� can be obtained
exactly and yields �at zero temperature� the textbook
formula1

���� � e−Geff�
m=0

�
�Geff�m

m!
��Ec − Ev + m��ph − ��� . �1�

There are two phonon-induced modifications: �i� a small
level shift to lower energies �E�=e�−��phg�

2� and, more im-
portantly, �ii� the emergence of phonon replicas at multiple
phonon energies m��ph above Ec−Ev, with a Poisson distri-
bution of their respective weights that is governed by the
effective coupling Geff= �gc−gv�2.

While Eq. �1� has been a long-standing paradigm in the
analysis of absorption spectra for molecular systems, there is
no equivalent formula available for the decription of the
near-band-gap absorption in semiconductors, despite the fact
that exciton-phonon sidebands are commonly observed in
semiconductor spectroscopy.2 The difficulties arise from the
fact that a corresponding theory must simultaneously take
into account band dispersion and electron-electron interac-
tion �i.e., excitonic effects� while, at the same time, allowing
for the electron-phonon interaction in a nonperturbative man-
ner. So far, the most sophisticated approaches to solve this
problem are based on an ad hoc exciton-phonon picture.3–8

However, the use of this picture inevitably requires to make
a priori assumptions about excited-state properties �such as
the exciton binding energies Eexc, the ratios Eexc/��ph, and
the exciton-phonon coupling strength� and is, hence, in praxi
often limited to the lowest-lying excitons. Here, we over-
come these limitations by developing a theory of exciton-
phonon resonances within the more fundamental electron-
phonon picture, where both the carrier’s band structure and
their coupling strengths to the phonons may be inputted di-
rectly from ab initio calculations, see, e.g., Ref. 9. This pic-
ture has been used before by others,10–12 but exclusively for
the description of the first phonon replica. Here, we go be-

yond such perturbational approaches and develop a nonper-
turbative theory using the method of canonical transforma-
tion, thus extending previous work on the polaron problem1

towards the description of near-band-gap absorption of semi-
conductors.

We consider a Hamiltonian of the form H=Hel+Hel-el
+Hel-ph+Hph, where

Hel = �
�k

�e�k + �
q

n�qVq�a�k
† a�k, �2�

Hel-el = �
��kk�q

1
2Vqa�k

† a�k�
† a�k�+qa�k−q, �3�

Hel-ph = �
�kq

��qg�qa�k−q
† a�k�b−q + bq

†� , �4�

Hph = �
q

��q�bq
†bq + 1

2� �5�

describe the electrons, the electron-electron interaction, the
electron-phonon coupling, and the phonons, respectively.
The operators a�k

�†� annihilate �create� electrons with Bloch
wave vector k and energy e�k in band �, whereas the opera-
tors bq

�†� annihilate �create� phonons with wave vector q and
frequency �q. While our theoretical framework is applicable
to arbitrary band structures, we will consider here
exclusively the case of a direct two-band semiconductor
within the effective mass approximation, i.e., ec,vk
= ±Eg /2±�2k2 /2me,h, in order to emphasize the essential
physics of our approach. Note that Eq. �2� contains also a
Coulomb renormalization term that is nonzero for finite
charge-carrier densities n�q= �a�q

† a�q�. In the ground state at
T=0 K, it holds that nvq�1 and ncq�0. The Coulomb po-
tential in Eqs. �2� and �3� is denoted as Vq and the electron-
phonon coupling in Eq. �4� is described by the dimensionless
quantities g�q.

In order to treat effects due to the electron-phonon cou-
pling in a nonperturbative manner, we introduce transformed
operators A�k

�†�=eUa�k
�†�eU†

,Bq
�†�=eUbq

�†�eU†
representing annihi-

lation �creation� operators of polarons and phonons of a dis-
torted lattice, as described below. The anti-Hermitian opera-
tor U is defined as U=��kqg�qa�k−q

† a�k�b−q−bq
†� and the

transformation rules are obtained by application of the
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Baker-Campbell-Hausdorff theorem eUfe−U= f + 	U , f

+ �1/2!�	U , 	U , f

+¯. As a result, we obtain the relations

a�k = �
k�

�eC��kk�A�k�, bq = Bq − �
�k

g�qA�k−q
† A�k, �6�

where we have introduced a compact matrix notation for the
exponential operators by means of the short-hand definition
�C��kk�=g�k−k��Bk−k�−Bk�−k

† �.
By virtue of the transformation rules �6�, the original four-

part Hamiltonian can be rewritten as a sum of just three
terms H=Hpol+Hpol-pol+Hph�, where

Hpol = �
�k

�E�k + �
q

n�qVq
���A�k

† A�k, �7�

Hpol-pol = �
��kk�q

1
2Vq

��A�k
† A�k�

† A�k�+qA�k−q, �8�

Hph� = �
q

��q�Bq
†Bq + 1

2� �9�

describe the polarons, the polaron-polaron interaction, and
the phonons of the distorted lattice, respectively. Here, the
coupling between the electronic and lattice degrees of free-
dom does not appear explicitly anymore but is incorporated
into the polaronic quantities E�k which, in general, contain
also phonon operators. For the purpose of our work, we fol-
low the spirit of earlier work on the polaron problem1 and
replace the phonon operators in E�k by their thermal aver-
ages. The neglected effects such as line broadening and re-
coil effects are of minor importance for the present paper that
focusses on the description of exciton-phonon sidebands. As
a result, the polaron dispersions �at T=0 K� are approxi-
mately given by the expressions Eck� ẽck−	c and Evk
� ẽvk+	v, the derivation of which is straightforward
but lengthy and will be given elsewhere.13 Here, we
used the shorthand notations 	�=�q��qg�q

2 , ẽ�k

=e−Ḡ��k�e�k��e
G��k�k, Ḡ�=�qg�q

2 , and �G��kk�=g�k−k�
2 .

Compared to the original electron dispersions ec,vk, we find a
shrinkage of the band gap �“polaron shift”� because 	c,v

0 and a narrowing of the bandwidth due to the exponential
renormalizations in ẽc,vk. The latter effect is especially im-
portant in materials with strong electron-phonon coupling
such as organic crystals,9,14,15 but within our effective mass
approximation it corresponds simply to a mass enhancement
of the charge carriers. In fact, for the purpose of the present
work, the exact knowledge of the polaron bands is not essen-
tial and, instead, we will use the approximate expressions
Ec,vk= ±Eg

* /2±�2k2 /2me,h
* , where the phonon-induced

changes are accounted for by the introduction of an effective
band gap Eg

* and effective electron/hole masses me,h
* . Another

effect of the electron-phonon interaction is the modification
of the Coulomb potential in Eqs. �7� and �8� which now
contains additional contributions, i.e., screening due to the
presence of phonons, that lead to the renormalization Vq

��

=Vq−2��qg�qg�q.
After the above preparatory considerations, we proceed

with the calculation of the ground-state absorption spectrum
�����−Im Pret���, where the retarded polarization function
is defined as

Pret�t� =
��t�
i�

1

�
�
kk�

�avk
† �t�ack�t�ack�

† �0�avk��0�� . �10�

Here, the time dependence of the electron operators is gov-
erned by the Hamiltonian H according to a�k

�†��t�
=e�i/��Hta�k

�†�e−�i/��Ht and � denotes a normalization volume. In
the following, we will evaluate Pret by means of the above
polaron concept, i.e., by incorporating the electron-phonon
interaction nonperturbatively.

The direct evaluation of Eq. �10� is complicated by the
fact that the original Hamiltonian �2�–�5� is not diagonal with
respect to the electron and phonon operators. Therefore, it is
instead advantageous to use the representation �7�–�9� where
the interaction between the charge carriers and the lattice is
already incorporated into the polaronic terms. From the
physics point of view, this approach can be best rationalized
by looking at the underlying physical picture: first, the
electron-phonon interaction leads to the formation of po-
larons and, then, optical transitions take place between the
polaron bands. Despite its approximate nature as discussed
above, this approach turns out to be very powerful and, in
particular, allows us to describe the phonon replicas of the
excitonic resonances in all orders without invoking an ad hoc
exciton-phonon picture. In technical terms, we apply the
transformation rules �6� to the right-hand side of Eq. �10�,
which yields

Pret�t� =
��t�
i�

1

�
�

k1¯k4

�e�i/��HptAvk1

† Ack2
e−�i/��HptAck3

† Avk4
�


�	eCc�t�−Cv�t�
k1k2
	eCv�0�−Cc�0�
k3k4

� , �11�

where we used the abbreviations Hp=Hpol+Hpol-pol and
	C��t�
kk�=g�k−k��Bk−k�e

−i�k−k�t−Bk�−k
† ei�k�−kt�. The advan-

tage of the new representation �11� can be seen immediately:
the polaronic and phononic terms are completely separated
and, hence, their thermal averages can be performed inde-
pendently which significantly simplifies the remaining calcu-
lations.

For the evaluation of the thermal average over the po-
laronic part, we apply the Baker-Campbell-Hausdorff theo-
rem to the quantity e�i/��HptAvk1

† Ack2
e−�i/��Hpt. In order to avoid

the typical hierarchy problems encounterd in theories includ-
ing Coulomb interaction, we make use of the mean-field ap-
proximation, which yields the commutator 	Hp ,Avk1

† Ack2



�−�k1�k2�
Sk1k2,k1�k2�

Avk1�
† Ack2�

, where the S matrices, defined as

Sk1k2,k1�k2�
= 	�Eck2

− Evk1
��k1k1�

− Vk1−k1�
vc 
�k1−k2,k1�−k2�

, �12�

contain both the relevant interband transitions and the
screened Coulomb interaction. While the neglected correla-
tion effects can be expected to have only a small influence on
the linear absorption, the particular strength of the mean-field
approach is that it allows us to calculate the thermal
averages completely analytically. In fact, extending the
above matrix notation to the multiple commutators
	Hp , 	Hp , . . . , 	Hp ,Avk1

† Ack2

¯ 

, the summation over all or-

ders is straightforward and yields the formal identity
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e�i/��HptAvk1

† Ack2
e−�i/��Hpt = �

k1�k2�

	e−�i/��St
k1k2,k1�k2�
Avk1�

† Ack2�
.

�13�

If we insert the relation �13� into Eq. �11� and perform the
thermal average over the polaron operators assuming the
ground state �Avk1�

† Ack2�
Ack3

† Avk4
�=�k1�k4

�k2�k3
, the retarded po-

larization function adopts the form

Pret�t� =
��t�
i�

1

�
�

k1¯k4

	e−�i/��St
k1k2,k3k4
Xk1k2

�t� , �14�

Xk1k2
�t� = �	eCc�t�−Cv�t�
k1k2

	eCv�0�−Cc�0�
k2k1
� . �15�

For the remaining evaluation of the thermal averages over
the phonon operators in Eq. �15�, we expand Xk1k2

�t�
ª�n=0

� �1/n!�Xk1k2

�n� �t� into a power series of gcq−gvq. The

zeroth-order term is simply given by Xk1k2

�0� �t�=�k1k2
and,

apart from the renormalization e�k→E�k, leads to a well-
known result for the absorption in the absence of electron-
phonon coupling. This is best seen if we define an effective
Hamiltonian Hkk�

�0� = �Eck−Evk��kk�−Vk−k�
vc and express the

zeroth-order polarization as Pret
�0��t�= 	��t� / i�



�1/���kk�	e
−�i/��H�0�t
kk�. Then, the absorption signal be-

comes

��0���� � Im
1

�
�
kk�

	H�0� − ��� + i0�
kk�
−1 , �16�

which is basically Elliott’s famous formula for the absorption
of direct semiconductors16 that includes excitonic effects via
the Coulomb term in Hkk�

�0� .
While the above zeroth-order result provides an important

consistency check of our theory, the phonon sidebands
emerge from the higher-order terms Xk1k2

�n� �t�. For the explicit
evaluation of these contributions, we utilize the fact that only
the even orders n=2m are nonzero and assume dispersionless
phonons ��q→�ph� at zero temperature. Then, the lowest

term is readily obtained and gives Xk1k2

�2� �t�=−2	Ḡ−G�t�
k1k2
,

where we have abbreviated �Ḡ�k1k2
= Ḡ�k1k2

, Ḡ=�q�Geff�q0,
and 	G�t�
k1k2

= �Geff�k1k2
e−i�pht with effective interband cou-

pling matrix-elements defined as

�Geff�k1k2
= �gck1−k2

− gvk1−k2
�2. �17�

If the coupling to the phonons is exactly the same for con-
duction and valence electrons, i.e., �Geff�k1k2

�0, then the
polarization �14� reduces to Pret

�0� and there are no phononic
sidebands at all in the absorption spectrum.

The evaluation of the higher orders Xk1k2

�2m��t� by application
of Wick’s theorem is much more complicated and we skip
the details of the tedious calculation. Yet, after an appropriate
regrouping of all terms, the final result can be condensed into

Xk1k2

�2m��t�= 	�−1�m�2m�! /m!
		Ḡ−G�t�
m
k1k2
, which can be

looked upon as a generalization of the above second-order
contribution. Using this result, the summation of the whole

power series is easily done and gives the compact expression

Xk1k2
�t� = e−Ḡ	eG�t�
k1k2

. �18�

If inserted into Eq. �14�, an explicit �though formal� expres-
sion for the retarded polarization Pret�t� is obtained that,
compared to the actual complexity of the problem, consti-
tutes a surprisingly compact result.

In order to gain deeper physical insight into our findings,
we expand the exponential matrices 	eG�t�
k1k2

into a power
series of �Geff�k1k2

. Then, the polarization �14� can be cast

into the form Pret�t�=e−Ḡ�1/���kk��m=0
� �1/m!�Pkk�

�m� �t�,
where the contributions from optical transitions
involving m phonons are given by Pkk�

�m� �t�
= 	��t� / i�
�k1k2

	�Geff�m
k1k2
	e−�i/��St
k1k2,kk�e

−im�pht. From
this, a clear-cut physical picture is obtained after applying
the definition �12� of the S matrices and performing the Fou-
rier transformation into frequency domain. Then, the absorp-
tion signal becomes simply

���� � − e−�q�Geff�q0 Im
1

�
�
kk�

�
m=0

�
1

m!
Pkk�

�m� ��� , �19�

where the quantities Pkk�
�m� ��� have to be determined selfcon-

sistently from the equations

	Eck − Evk� + m��ph − ��� + i0�
Pkk�
�m� ���

− �
q

Vq
vcPk−q,k�−q

�m� ��� = − 	�Geff�m
kk�. �20�

The interpretation of Eq. �20� is straightforward and very
intuitive. It decribes the excitation of electrons �or, more
strictly, polarons� from a valence-band state with energy Evk�
to a conduction-band state with energy Eck under simulta-
neous emission of m phonons with energy ��ph. The corre-
sponding effective coupling matrix element

	�Geff�m
kk� = �
k1¯km−1

�Geff�kk1
�Geff�k1k2

¯ �Geff�km−1k� �21�

accounts for the m electron-phonon scattering processes in-
cluding all possible combinations of intermediate wave vec-
tors involved. Furthermore, the Coulomb term in Eq. �20�
has the structure of a vertex correction and allows for inter-
band exciton-phonon interaction. Most importantly, in the
absorption signal ���� it gives rise to phonon sidebands at
multiple phonon energies m��ph �m=1,2 , . . . � above the ex-
citonic resonances, as demonstrated in the numerical ex-
ample below.

It is worthwhile to note that if we neglect the Coulomb
terms in Eq. �20�, the quantities Pkk�

�m� ��� can be obtained
algebraically and the absorption �19� reduces to

���� � e−�q�Geff�q0
1

�
�
kk�

�
m=0

� 	�Geff�m
kk�

m!
��Eck − Evk� + m��ph

− ��� . �22�

This formula is strikingly reminescent of the textbook for-
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mula �1� for a two-level system coupled to phonons,1 but
now including the dispersions of both the electron energies
and the electron-phonon coupling strength.

In order to demonstrate the usefulness of our theory, we
apply it to a simple but illustrative example, namely, a one-
dimensional model crystal within the contact-potential ap-
proximation 	Vq�const¬V /�, �Geff�kk��const¬Geff /�
.
For this system, the numerical solution of Eqs. �19�–�21�
becomes particularly easy and provides an excellent play-
ground to investigate the basic phenomena described by our
approach. For the explicit calculations, we employ electron-
hole symmetry �me

*=mh
*
¬m*� and use the parameters V

=0.50��ph, Geff=0.45, and a small Lorentzian line broaden-
ing of 0.17��ph. The phonon energy is fixed at ��ph=3 in
units of 1

2m*�e2 /4��0����2 and the k space is discretized on
an equidistant mesh of 800 points with an energy-cutoff of
Eck−Evk�Eg

*+25��ph.
In Fig. 1�a�, we start our analysis by the calculation of the

zeroth-order absorption signal ��0���� from Eq. �16�, which
basically corresponds to the phonon-free result. Conse-
quently, if the Coulomb term in Hkk�

�0� is neglected �dashed
line�, ��0���� simply reflects the singularity of the 1D-
density-of-states at the band gap, whereas the inclusion of
the Coulomb potential �solid line� leads to a single exciton
peak just below Eg

*, as expected for the contact-potential
model. In Fig. 1�b�, we proceed with the calculation of the
total absorption signal ����. For the full solution including
Coulomb interaction 	Eqs. �19�–�21�, solid line
, the strength
of our approach is immediately visible from the emergence
of the phonon replicas at energies of m��ph above the exci-
ton line. Importantly, the spectral weights of these replicas
do not follow a Poisson distribution as one might naively
expect from the atomic case, Eq. �1�. The reason for this
behavior is that the interaction between the phonons and all
unbound electron-hole pairs changes the “background” con-
tinuum absorption as well. In fact, if we look at the calcula-
tions without Coulomb interaction 	Eq. �22�, dashed line
,
we observe “steps” at energies of Eg+m��ph, i.e., at the
thresholds for emission of m phonons. While the resulting
increase on the high-energy side of the spectra may be less
pronounced for more realistic models 	e.g., a 3D cystal with
�Geff�kk��1/ �k−k��2
, our findings clearly show that, in gen-
eral, valid absorption spectra can only be obtained if the
bound and unbound states are described on equal footing, as
it is the case in our approach.

In summary, we have presented a theory of exciton-
phonon resonances in semiconductor absorption spectra. Our
primary result, Eqs. �19�–�21�, generalize the textbook ab-
sorption formula �1� for molecules to the case of semicon-
ductors. The particular strength of our approach is the simul-
taneous inclusion of the dispersive single-particle band
structures and the charge-carrier Coulomb interactions �thus
avoiding an ad hoc exciton-phonon picture� while, at the
same time, treating the electron-phonon interaction nonper-
turbatively. Numerical studies for a simplified model crystal
have provided a proof-of-principle for the practical useful-
ness of our theory, with extensions to more realistic systems
being straightforward.

We are thankful to S. Glutsch for many valuable discus-
sions and to the Dutch Foundation for Fundamental Research
on Matter �FOM� for financial support.

1 See, e.g., G. D. Mahan, Many-Particle Physics �Plenum Press,
London, 1990�, and references therein.

2 See, e.g., C. F. Klingshirn, Semiconductor Optics �Springer, Ber-
lin, 1997�.

3 M. Matsuura and H. Büttner, Phys. Rev. B 21, 679 �1980�.
4 A. V. Sherman, Phys. Status Solidi B 149, 725 �1988�.
5 X. B. Zhang et al., J. Phys.: Condens. Matter 13, 7053 �2001�.
6 M. Hoffmann and Z. G. Soos, Phys. Rev. B 66, 024305 �2002�.
7 I. Vragović and R. Scholz, Phys. Rev. B 68, 155202 �2003�.
8 H. Zhao and H. Kalt, Phys. Rev. B 68, 125309 �2003�.

9 K. Hannewald et al., Phys. Rev. B 69, 075211 �2004�.
10 R. Zimmermann and C. Trallero-Giner, Phys. Rev. B 56, 9488

�1997�.
11 Th. Östreich, Phys. Status Solidi B 164, 313 �1997�.
12 W. Schäfer et al., Phys. Status Solidi B 238, 552 �2003�.
13 K. Hannewald et al. �unpublished�.
14 T. Holstein, Ann. Phys. �N.Y.� 8, 343 �1959�.
15 R. W. Munn and R. Silbey, J. Chem. Phys. 83, 1843 �1985�.
16 R. J. Elliott, Phys. Rev. 108, 1384 �1957�.

FIG. 1. Absorption signals ��0� and � �in arbitray units� vs en-
ergy ��−Eg

* �in units of ��ph�, as calculated from Eqs. �16� and
�19�–�21�, respectively. Solid �dashed� lines: Coulomb interaction
included �excluded�. For parameters: see text.
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