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Zinc oxide �ZnO� is a wide-band-gap semiconductor with potential optical, electronic, and mechanical
applications. First-principles investigations �C. G. Van de Walle, Phys. Rev. Lett. 85, 1012 �2000�� predicted
that hydrogen impurities act as shallow donors in ZnO. IR spectroscopy �M. D. McCluskey et al., Appl. Phys.
Lett. 81, 3807 �2002�� showed that a local vibrational mode at 3326.3 cm−1, at liquid-helium temperatures,
corresponded to an O-H type bond. The microscopic structure of this hydrogen complex, however, was not
determined. In this Brief Report, the structure and stability of O-H complexes are discussed. The second
excited state of the O-H stretch mode was found at 6389 cm−1, allowing us to compare the experimental
results with the harmonic calculations of Van de Walle. Results from high-pressure and polarized IR spectros-
copy strongly suggest that hydrogen occupies an antibonding location with an O-H bond oriented at an angle
of 111° to the c axis. By correlating the IR absorbance strength with free-electron concentration, it was
established that the O-H complexes are shallow donors. However, the O-H donors are unstable, decaying
significantly after several weeks at room temperature. The kinetics of the dissociation follow a bimolecular
decay model, consistent with the formation of H2 molecules.
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Zinc oxide �ZnO�, a wide-band-gap semiconductor, has
attracted renewed interest with potential applications as a
blue light emitting material,1 a buffer layer for GaN-based
devices,2 a transparent conductor in solar cells,3,4 a transpar-
ent transistor,5 and as a transducer6 for microelectrical-
mechanical systems. Nearly a half century after the experi-
mental work of Mollwo7 and Thomas and Lander,8 first-
principles calculations by Van de Walle9 showed that
hydrogen could be a shallow donor in ZnO, raising the pos-
sibility that hydrogen donors may be an important source of
n-type conductivity in this material. Motivated by the theo-
retical predictions, experiments on muonium implanted into
ZnO10 and electron-nuclear resonance measurements on
n-type ZnO11 supported the hypothesis that hydrogen is a
shallow donor. Several other studies12–14 show evidence that
hydrogen is related to n-type conductivity in ZnO. A study
by Shi et al.15 has also shown that hydrogen is sometimes
present in as-grown ZnO and is partially responsible for its
n-type conductivity.

In order to determine the microscopic structure of hydro-
gen donors, in previous work, we used infrared �IR� spec-
troscopy to measure the local vibrational modes �LVMs�
arising from these complexes.16,17 Although it was estab-
lished conclusively that hydrogen forms O-H complexes, the
microscopic structure of these complexes was not deter-
mined. Two possible models for the O-H complex are shown
in Fig. 1: the antibonding �ABO,�� and bond-centered �BC��
configurations. In both of these models, the O-H bond is
oriented at a nearly tetrahedral angle with respect to the c
axis. Theoretical studies also proposed ABO,� and BC� con-
figurations, where the O-H bond is parallel to the c axis.
Since the predicted LVM frequencies for all these models
are similar, further experiments were required to identify
the correct one.

In the present work, IR spectra were obtained using a
Bomem DA8 vacuum Fourier transform infrared spectrom-
eter. Low-temperature measurements were obtained using a
Janis STVP continuous-flow liquid-helium cryostat with
wedged ZnSe windows. Elevated temperature measurements
were obtained using a resistive carbon block heater designed
to allow for simultaneous heating and IR spectroscopy. The
temperature of the sample was measured by a type-K ther-
mocouple. As an additional check, the temperature was also
inferred from the frequency shift of the O-H peak. Carrier
densities were obtained using Hall-effect measurements in
the Van der Pauw geometry. Hydrostatic pressure was ap-
plied to the sample using a diamond anvil cell �DAC� with
liquid nitrogen as an ambient fluid. In situ pressure calibra-
tion was obtained within the DAC by measuring IR vibra-
tional modes of CO2 impurities.18

FIG. 1. Two different locations for hydrogen in ZnO. Relaxation
of the atoms is not shown.
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ZnO:H samples were prepared using bulk single crystals
from Cermet, Inc.19 The samples were sealed in a quartz
ampoule with 2

3 atm. H2 gas. The sealed ampoule was then
placed into a horizontal furnace at a temperature of 710 °C
and treated for a minimum of 10 h followed by a rapid
quench to room temperature.

IR measurements at liquid-helium temperatures have re-
vealed a weak absorption peak located at 6389.1 cm−1, with
a height approximately 1/50th that of the peak at
3326.3 cm−1 �Fig. 2�. After two months, both peaks decayed
significantly. The peaks at 3326.3 and 6389.1 cm−1 are attrib-
uted to the first and second excited state, respectively, of the
O-H bond-stretching mode. The frequency of the second
excited state allows us to compare our results with the har-
monic approximation used by Van de Walle.9 Using the
Morse potential20,21 as a model, the energy eigenstates are
given by

En = �e�n + 1
2��1 − xe�n + 1

2�� , �1�

where xe accounts for the anharmonicity of the potential.
Equation �1� is used to calculate the energy levels E0, E1, and
E2. The first and second excited states are given by

�E1 = E1 − E0 = �e − 2�exe �2�

and

�E2 = E2 − E0 = 2�e − 6�exe, �3�

respectively. The harmonic frequency is given by �e and the
anharmonic term is �exe. Using 3326 cm−1 and 6389 cm−1

for the energies of the first and second excited states, we
find that �e=3589 cm−1, in good agreement with the calcu-
lated harmonic frequency of 3550 cm−1 for hydrogen in
an AB location.9 The anharmonic shift is given by 2�exe
=−263 cm−1.

Polarized IR spectroscopy was used to determine the
angle of the O-H bond with respect to the c axis. Figure 3
shows the O-H absorbance peak area as a function of polar-
izer angle for c-cut and a-cut ZnO, with IR transmission at
normal incidence. The data for the c-cut crystal show that
there is no angular dependence for the O-H absorbance, in-
dicating that the O-H bonds are oriented symmetrically
around the c axis. For the a-cut crystal, the maximum inten-
sity was observed for a polarization angle perpendicular to
the c axis. The angle � that the O-H dipoles make with the c
axis can be estimated by

IP�c

IP�c
=

3 cos2 �
3
2 sin2 �

= 2 cot2 � , �4�

where IP�c and IP�c are the absorbance peak areas for polar-
ization parallel and perpendicular to the c axis, respectively.
The ratio obtained from the fit to the data in Fig. 3 is 0.284,
which yields �=110.6°, in excellent agreement with a tetra-
hedral bond angle. This shows that hydrogen lies along a
tetrahedral Zn-O bond either in a BC� or ABO,� configura-
tion.

To further probe the structure of O-H donors, the LVM
was measured as a function of hydrostatic pressure. Accord-
ing to first-principles calculations by Limpijumnong and
Zhang,22 the O-H LVM should exhibit a positive shift if it is
in a BC configuration and a negative shift if it is in an AB
configuration. Figure 4 shows how the O-H vibrational
mode at 3326.3 cm−1 �as measured at liquid helium tempera-
tures� shifts towards lower wavenumber with increasing
pressure, in qualitative agreement with the ABO,� model. A
least-square fit yields

��cm−1� = 3326.4 − 1.84P + 0.069P2, �5�

where P is the pressure in GPa. The magnitude of the slope
�1.8 cm−1/GPa� is lower than the calculated value
�4 cm−1/GPa�.22 The slight decrease in the magnitude of the
slope is consistent with results from hydrogen in other semi-
conductors. In all reported cases, the magnitude of the
pressure-induced frequency shift is sublinear for AB
configurations23 and supralinear for BC configurations.24

Van de Walle calculated formation energies for hydrogen

FIG. 2. IR absorbance due to the first �3326.3 cm−1� and second
�6389.1 cm−1� excited state of the O-H bond-stretching mode in
ZnO. A subsequent measurement, shown in gray, reveals that both
peaks have decayed. Spectra have been offset for clarity.

FIG. 3. Polarized IR spectra of the 3336.7 cm−1 absorbance
peak in ZnO:H at room temperature. For IR light propagating � to
the c axis, 0° corresponds to polarization � to the c axis. The gray
line is a sin2 � fit.
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in several different configurations within ZnO.9 While hydro-
gen in the BC� and BC� configurations have the lowest for-
mation energies �−1.84 eV and −1.82 eV, respectively�, they
also have the largest net displacement for the neighboring Zn
and O atoms. It is possible that the large relaxation presents
a significant barrier to the formation of BC complexes.25 The
ABO,� and the ABO,� configurations have formation energies
of −1.78 eV and −1.59 eV, respectively. The prediction that
ABO,� has a lower energy than ABO,� is in agreement with
our polarized IR results.

The second part of this study deals with the stability of
hydrogen in the ABO,� location. These O-H bonds decay
over time at room temperature, perhaps forming H2 mol-
ecules, which would be nearly invisible to IR spectroscopy.15

Such a decay is described by a bimolecular model, in which
hydrogen atoms combine to form H2:

y�t� =
y0

y0kt + 1
+ yt→�. �6�

In this equation, y0 represents the initial O-H concentration,
k is the decay constant, and yt→� represents the minimum
value that y approaches as t increases.26 Equation �6� de-
scribes the observed decay better than a standard exponential
decay, although it deviates from the data for slightly longer
times �Fig. 5�.

The formation and decay of O-H complexes is well cor-
related with the free-electron concentration. The as-received
ZnO sample had an electron carrier density of 1.8
�1017 cm−3. Immediately after hydrogen annealing, the
electron carrier density increased to 4.3�1017 cm−3. The
carrier density and the O-H IR absorbance peak were moni-
tored separately for two ZnO:H samples that had been simul-
taneously hydrogenated in the same ampoule. The results in
Fig. 5 show that the two decaying values are very well cor-
related, providing conclusive evidence that the O-H com-
plexes are shallow donors. From Fig. 5 we can deduce a
calibration factor �	� for the following equation:

N = 	� 
���d� , �7�

where N is the O-H donor concentration �cm−3� and the
integral is the area of the absorption coefficient for the O
-H absorbance peak �cm−2�. The absorption coefficient is


��� =
A���

x
ln�10� , �8�

where A��� is the absorbance, x is the sample thickness, and
� is frequency �cm−1�. Figure 5 shows the absorbance peak
area and the free-electron concentration as a function of time,
from which an average calibration factor of 	=1.6
�1016 cm−1 is obtained. This value is in good agreement
with hydrogen-related complexes in other semiconductors.27

At longer times, the IR absorbance peak decays more rap-
idly than the electron concentration, suggesting the forma-
tion of a “hidden” hydrogen donor. Such a hydrogen donor
would explain why the electron carrier density approaches
2.0�1017 cm−3 rather than its initial value of 1.8
�1017 cm−3. Evidence of this “hidden” hydrogen donor has
also been observed in as-grown ZnO.15 One candidate for the
hidden donor is a hydrogen-decorated oxygen vacancy,
which may have an LVM frequency below our measurement
range.28

FIG. 6. Plot of ln�k� as a function of inverse temperature, yield-
ing an activation energy �Ea� of 0.96 eV.

FIG. 4. Pressure dependence of the O-H bond-stretching fre-
quency. The solid line is a polynomial least-squares fit �Eq. �5��.
Spectra were taken at liquid-helium temperatures with a resolution
of 1.0 cm−1.

FIG. 5. Plot of the O-H IR absorbance peak area and the carrier
concentration at room temperature. Both quantities decay following
a bimolecular model �gray line�.
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The decay of the O-H peak was measured at several dif-
ferent temperatures. Figure 6 shows the plot of the log of the
decay constant as a function of inverse temperature. The data
were fit by

ln k = A −
Ea

kBT
, �9�

yielding an activation energy Ea=0.96 eV. This value agrees
with the diffusion activation energy measured by Mollwo
�1.12 eV� and Thomas and Lander �0.91 eV�, suggesting that
the formation of H2 molecules in this temperature range is
diffusion-limited.

In conclusion, polarized IR measurements showed that the
O-H bond lies 110.6° from the c axis of ZnO:H, in agree-

ment with the ABO,� and BC� models. High pressure studies
show a decrease in frequency with applied pressure. By com-
paring with first-principles investigations, we conclude that
the ABO,� model is the most likely configuration. While hy-
drogen in the ABO,� configuration acts as a donor, it is not
stable. The decay is explained by a bimolecular model, con-
sistent with the formation of neutral H2 molecules within the
ZnO crystal.
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