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By solving the surface plasmon �SP� eigenproblem, a scaling theory is developed for the electromagnetic
response of semicontinuous metal films. It is shown that short-range correlations in the governing Kirchhoff
Hamiltonian result in delocalization of the SP eigenmodes in the center of the spectrum. The subset of those
modes has a zero measure so that their relative weight in the spectrum becomes asymptotically small for large
systems. Still, the singularity caused by the delocalized states results in modification of the critical indices for
the high-order field moments and thus affects the optical properties of the composite. Comparison between the
developed theory and exact numerical calculations reveals excellent agreement.
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The localization of the electron wave function, which oc-
curs in random media and was first described by Anderson,1

is one of the most important concepts in the contemporary
theory of disordered systems. Development of the scaling
theory2 improved and made possible more intuitive under-
standing of the phenomena governing the motion of the el-
ementary particles in such media. It is now well established
that in one-dimensional �1D� and two-dimensional �2D� sys-
tems described by noncorrelated random potential distribu-
tions, all electron states are exponentially localized.3,4 This is
valid for various levels of disorder and in the limit of large
systems. The localization of the electron wave function im-
plies that each electron is bound in a particular region of
space, and thus transport through the media is impeded. It is
also believed that in the three-dimensional �3D� case and for
a certain strength of the disorder, extended states exist and
accordingly, a metal-dielectric transition can take place.5

Similar to the quantum-mechanical problem, localization is
also observed for classical wave propagation in disordered
media.4 In both cases, disorder prevents the establishment of
extended solutions �Bloch states� due to the absence of trans-
lation symmetry.

Recently, short-range correlations between elements of
the quantum-mechanical Hamiltonians have been shown to
result in delocalization of the electron wave function in the
1D case.6,7 In these studies, the correlations are enforced
separately for diagonal and off-diagonal matrix elements,
while mixed cross correlations between the elements are not
considered. In this paper we argue that the electromagnetic
response of a broad class of physical systems can be de-
scribed by random Hamiltonians that are characterized by
cross-correlated diagonal and off-diagonal elements. Specifi-
cally, we investigate the excitation of collective electronic
states, surface plasmons �SP�, in a random metal-dielectric
film. Our study presents theoretical evidence of a zero mea-
sure delocalization for the SP eigenmodes and their manifes-
tation in the optical response of the system.

The random metal-dielectric composites are simple binary

media which are usually fabricated by deposition of nano-
sized metal particles on dielectric substrate. In the visible
and infrared spectral ranges, the metal conductivity �m is a
complex number with a positive imaginary part �m� , and a
small real part �m� �representing losses in metal�. Therefore, a
metal particle can be viewed as an inductance L connected in
series to a resistance R, while the dielectric host is modeled
as a capacitance C. Relying on this model, one may think of
the inhomogeneous metal film as a random network of RLC
circuits.8,9 The geometrical disorder in such systems leads to
a broad range of SP resonances �corresponding to equivalent
RLC resonances� and strong enhancement of the local elec-
tric fields.9,10

To investigate the SP modes that are excited on the film
surfaces, we restrict our study to composites of metal par-
ticles with sizes much smaller than the wavelength of illumi-
nation, a��. Under this condition one can neglect retarda-
tion effects and seek a solution for the local potential in the
quasistatic approximation. The resulting “generalized” cur-
rent conservation has the form

� · ���r�„− � ��r� + E0…� = 0, �1�

where ��r� is the spatially dependent local conductivity, ��r�
describes the local potential, and E0 is the external field. In
our model we assign to ��r� a metal conductivity �m with
probability p or a dielectric conductivity �d with probability
1− p. Discretization of Eq. �1� on a square lattice with size L

leads to a system of L2 linear equations Ĥ ·�=F, where the

matrix Ĥ is the Kirchhoff Hamiltonian �KH�, while the vec-
tors � and F are the local potentials and externally induced
currents, respectively. The KH is a symmetric random matrix
with diagonal elements given by the sum Hii=� j�ij of all
bond conductivities �ij, that connect the ith site with it near-
est neighbors and off-diagonal elements Hij =−�ij. Due to the
random nature of the conductivities �ij the KH is thus math-
ematically similar to the Anderson Hamiltonian �AH� that is
studied in quantum mechanics.3,9 However, unlike the AH,
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the diagonal and off-diagonal elements of the KH are not
independent. The correlations are due to the local current
conservation, and as we will show later they result in dra-
matic changes in the nature of the SP localization as com-
pared to the discrete noncorrelated Anderson analog.

In order to simplify the treatment of the SP excitation in
metal-dielectric films, we first work in the regime of single-
particle resonance, �m� =−�d, where the dielectric constants
�s=4�i�s /�r depend on the complex conductivities �s �s
stands for the metal or the dielectric components� and the
resonance frequency �r. Next, we normalize Eq. �1� by �d
and use a new set of nondimensional permittivities �d

*=1 and
�m

* =−1+ i	, where for noble metals and visible light the
losses are small 	=�m� / ��m� ��1. Following the scaling
theory,9 we seek a general solution of Eq. �1� as an expansion
over the eigenstates 
n of the SP eigenproblem

� · ���r� � 
n�r�� = �n
n�r� , �2�

where the topology function ��r�= ±1 maps the real part of
the nondimensional dielectric constant �*�r� and thus corre-
sponds only to geometrical characteristics of the film. The
reduction of Eq. �2� on a square lattice results in a matrix

equation Ĥ� ·�n=�n�n, where Ĥ� is the real part of the
normalized KH and has the same correlation properties. We
solve the SP eigenproblem by applying Neumann-type
boundary conditions, thus assuring the conservation of the
local currents at the film boundaries. For example, we use
���r��n · �
n�r���x=0= ���r��n · �
n�r���x=L at the left and
right boundaries of the film.

To begin our analysis of the SP eigenproblem we first
examine some specific eigenmodes. For metal-dielectric
films at the percolation threshold, we distinguish two limit-
ing cases. In the first case presented in Fig. 1�a�, the SP
eigenmode situated at the band edge is strongly localized.
However, the nature of the eigenstates at the band center �see
Fig. 1�b�� is completely different. Those states are extended
and according to our studies �not presented here� they exhibit
multifractal properties. In Fig. 1�c� we also show a particular
SP mode that is manifested in the periodic case. The periodic
structure is modeled as a square lattice of metal particles
with metal coverage equal to 2/3. The important feature to
be recognized here is the presence of two length scales, one
corresponding to the macroscopically extended Bloch states
and the second to local oscillations on the scale of a single
particle. We believe that the microscopic SP eigenmode fluc-
tuations correspond to a strong inhomogeneity of the electro-
magnetic fields observed even for perfectly ordered metal-
dielectric films.11

The statistical properties of the SP eigenproblem are in-
vestigated in terms of the density of states ��� and SP lo-
calization lengths ����. Both characteristics are studied for
the KH and for the corresponding discrete, noncorrelated
AH. To simulate the AH we rely on the fact that for each

metal concentration p the elements of matrix Ĥ� take dis-
crete values with a specific probability. Those probability
distributions are then used to build up the AH without en-
forcing correlations between its elements.

In Fig. 2�a� we show that both correlated and noncorre-
lated eigenproblems have quite similar densities of states for
most of the spectrum. However, at the band center we ob-
serve a singularity in the case of the KH. To better under-
stand this important peculiarity, we plot �see the inset of Fig.
2�a�� the region of very small eigenvalues ���1� on a log-
log scale. In the first approximation the density of states
seems to diverge as a power law ����A���−�, where A is a
normalization constant and �=0.14±0.01 is a critical expo-
nent. However, a logarithmic singularity ����A�1
+ln����−��� also fits the result. Those two functions are vir-
tually identical in broad range of the arguments e1/�� ���
�e−1/�, and therefore for simplicity, in the scaling theory that
follows, we use the power-law relationship. In Fig. 2�a� we
have also included the result for the noncorrelated AH case,
where the density of states is relatively uniform throughout
the spectra and does not show any singularities, which
matches our expectations.

The role of the cross correlations presented in the KH

FIG. 1. Surface plasmon eigenmodes in random �a�, �b� and
periodic �c� metal-dielectric films. The corresponding eigenvalues
are: �a� �=−5.6945 �localized�, �b� �=0.0044 �delocalized�, �c�
�=−5.9974 �periodic�.
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eigenproblem is next studied in terms of the SP localization
lengths ����. The localization length for each eigenmode
is calculated using the gyration radius �2��n�=��r
− 	r
n�2�
n�r��2dr, where 	r
n=�r�
n�r��2dr is the “mass
center” of the nth mode and the integration is performed over
the film surface. Our results for ���� are presented in Fig.
2�b�. Similar to what we have observed for the density of
states �see Fig. 2�a��, there is a singularity at the band center
for the KH. The localization length diverges logarithmically
for �→0, but also can be fitted with a power law ����
����−�, where �=0.15±0.02. The size effect is clearly vis-
ible for the extended states with �����L.

The existence of delocalized states has been recently pre-
dicted for somewhat similar �but not the same� SP eigenprob-
lem in Ref. 12, where it was concluded that those modes play
a dominant role in the interaction with light. Here, we show
that the role of the delocalized modes ������L� is more
subtle. In the limit of large systems L→� the measure of
those states in the spectrum rapidly falls as ��e−L/�ln�L�,
where we have assumed logarithmic singularities for ����
and ��� with �=�. However, despite the zero measure the

delocalized states still affect the optical properties of the
composite as shown below.

Relying on the SP eigenproblem, we develop a scal-
ing theory for the high-order moments Mn,m
= 	�E�r��n�E�r� ·E�r��m/2
 / ��E0�n�E0 ·E0�m/2� of the local elec-
tric fields E�r�=−���r�, averaged over the film surface. To
accomplish this, we expand the local potential ��r� over the
SP eigenstates and assuming a power-law singularity for
both density of states ��� and the SP localization length
���� we obtain a simple scaling relationship for the field
moments

Mn,m � �
−�

� ����a/�����2�n+m−1�

��2 + 	2��n+m�/2 eim��	,��d� � 	−�n,m,

�3�

where �n,m= �n+m−1��1−2��+� is a positive scaling expo-
nent �n+m�1�, and ��	 ,��=tan−1�	 /�� is a phase factor.
In the derivation of Eq. �3� we use �=�, which agrees with
our numerical results. Note that the singularity’s critical in-
dex � affects the high-order field moments through its con-
tribution to the index �n,m. The previously reported result,9

which was obtained based on the assumption that all modes
are localized, can be retrieved from the formula above by
setting �=0. Thus formula Eq. �3� corrects the former
theory,9 by taking into account the delocalized states.

It is possible to recover Eq. �3� by considering the local
field as a set of peaks with characteristic size lp

* ���	�, mag-
nitude Em

* �E0	−1+2�, and separation distance between them
proportional to �e

*� lp
*	�−1+3��/2. Based on this similarity the

theory can be extended to frequencies that are away from the
single-particle resonance ��m� =−�d�. This is accomplished
through renormalization of the system by dividing it in seg-
ments with size lr=a���m� � /�d��/�t+s�, where t, s, and � are the
critical exponents for the static conductivity, dielectric con-
stant, and percolation correlation length, respectively. At the
new length scale, the effective dielectric constants of the
segments �m�lr� and �d�lr� possess the same resonance prop-
erties �m�lr� /�d�lr��−1+ i	 as the original SP eigenproblem.
Taking into consideration that the electric field is renormal-
ized as Em��lr /a�Em

* and the new field separation length is
�e��lr /a��e

*, the field moments are estimated as

Mn,m �  ��m� �
�m�

��n,m ��m� �
�d

����n+m−2�+s�/�s+t�

, �4�

where we have used the scaling relationship n�lr�� �lr /a�s/�

for the number of peaks in each segment. Note, that at the
single-particle resonance �m� =−�d, formula Eq. �4� is reduced
to the previous result Eq. �3�.

To examine the frequency dependence of the moments
Mn,m we consider noble metals and use the Drude model for
the dielectric constant �m�����b− ��p /��2 / �1+ i�� /��,
where �b is the interband transition term, �p is the plasma
frequency, and ����p is the relaxation rate.13 Applying the
exact block elimination method14 we check Eq. �4� for Ag
composites in the high-frequency range �p�����. The re-
sults are shown in Fig. 3. Clearly, there is an excellent cor-
relation between the numerical simulations and theoretical

FIG. 2. The density of states ��� �a�, and the SP localization
lengths ���� �b� for the KH �dots� and for the corresponding Ander-
son problem �solid line�, calculated at the resonant condition
�d

*=−�m
* =1. The band-center singularity is shown in the log-log

insets where a power-law fit �dashed line� with exponent
�=�=0.14 is applied. The data is averaged over 100 different real-
izations of percolation samples each with size L=120.
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results. In both cases the field moments gradually decrease
with the increase of the frequency and converge toward unity
for �=�p /��b. It is important to note that the enhancement
of the local electric field, manifested through the high-order
field moments, is directly measured in various linear and
nonlinear optical processes. For example, surface-enhanced
Raman scattering has been shown to be proportional to M4,0,
while the enhancement of Kerr optical nonlinearity is given
by M2,2 �Refs. 9 and 15�. Thus, experimental investigation of

these processes and their spectral dependencies can result in
further insight into the localization properties of the SP
eigenmodes.

In summary, we have investigated the surface plasmon
excitation in random metal-dielectric films. The KH describ-
ing the system exhibits unique short-range correlations be-
tween the diagonal and off-diagonal elements. These corre-
lations, occurring because of the local current conservation,
result in a localization-delocalization transition for the elec-
tromagnetic response of the composite. This transition is
manifested as a singularity in the center of the spectrum and
corresponds to a zero measure subset of delocalized SP
eigenstates. Such type of delocalization is inherent only of
the correlated KH and is not present in the noncorrelated
discrete Anderson analog. The scaling theory that is devel-
oped accounts for both localized and delocalized SP eigen-
modes and describes the high-order field moments respon-
sible for the nonlinear optical response of the system.
Despite the zero measure of the SP delocalization, it is found
that it still affects the optical properties of the composite by
modifying the critical indices in the field moments. The de-
veloped theory is shown to be in excellent agreement with
our numerical calculations.
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