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It is proposed that the upper pseudogap phase �UPP� observed in the high-Tc cuprates correspond to the
formation of spin singlet pairing under the bosonic resonating-valence-bond �RVB� description. We present a
series of evidence in support of such a scenario based on the calculated magnetic properties including uniform
spin susceptibility, spin-lattice relaxation and spin-echo decay rates, which consistently show that strong spin
correlations start to develop upon entering the UPP, being enhanced around the momentum �� ,�� while
suppressed around �0, 0�. The phase diagram in the parameter space of doping concentration, temperature, and
external magnetic field is obtained based on the the bosonic RVB theory. In particular, the competition between
the Zeeman splitting and singlet pairing determines a simple relation between the “critical” magnetic field,
HPG, and characteristic temperature scale, T0, of the UPP. We also discuss the magnetic behavior in the lower
pseudogap phase at a temperature Tv lower than T0, which is characterized by the formation of Cooper pair
amplitude where the low-lying spin fluctuations get suppressed at both �0, 0� and �� ,��. Properties of the UPP
involving charge channels will be also briefly discussed.
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I. INTRODUCTION

The pseudogap phase has been widely regarded as an es-
sential integral part of the cuprate superconductors with ex-
tensive experimental support.1 The underlying physics of
such a phase has been a central focus in the study of high-Tc
problem for many years, and yet no consensus has been
reached concerning its nature due to the very complexity of
pseudogap phenomena observed in magnetic, transport,
single-particle, and optical channels. More and more experi-
mental evidence in recent years further indicates the exis-
tence of two kinds of pseudogap regimes at different
temperatures.1–6

Among various theoretical proposals for the pseudogap
phase, the resonating-valence-bond �RVB� idea7 is uniquely
interesting, which actually “predicted”7–10 the existence of a
pseudogap state in doped Mott insulators before experiment.
In the RVB picture, neutral spins form the singlet pairs that
are condensed as a spin liquid. The density of states of spin
excitations for such a system generally gets suppressed at
low energy, exhibiting a pseudogap feature as it costs energy
to break up the RVB pairs to create spin excitations. In such
a scenario, there is usually no gap in the pure charge degrees
of freedom, and the pseudogap phenomena observed in the
charge transport, angle-resolved photoemission spectroscopy
�ARPES�, and tunneling experiments are all indirectly attrib-
uted to the appearance of the spin gap in the spin degrees of
freedom.9 For instance, in the charge transport the strong
scattering between the charge carriers and low-lying spin
fluctuations becomes weakened because of the reduction of
the latter in the pseudogap regime. The pseudogap feature
exhibited in the ARPES and tunneling measurements may be
also interpreted as due to the opening of a pseudogap asso-
ciated with the spin degrees of freedom.

However, the original RVB description, known as the fer-
mionic RVB �f-RVB� since it involves the pairing of fermi-
onic “spinons” �neutral S=1/2 object�,9 also suffers some
notable inconsistency with the experiment. Note that the

pseudogap phenomenon has been found in the underdoped
regime of the cuprates1 where the antiferromagnetic �AF�
correlations are usually quite strong. But in an f-RVB de-
scription, the AF correlations remain intrinsically weak, even
at half-filling, where the AF long range order �AFLRO� de-
velops in the cuprates at low temperature. Here the key issue
is not about whether one can construct an AFLRO in the
RVB background, which may be easy to incorporate by a
simple mean-field order parameter.11,12 But the crucial and
highly nontrivial issue is whether the whole low-lying AF
spin correlations are intrinsically and sufficiently strong in an
RVB state,13 and whether they are capable of continuously
growing with reducing temperature or doping as has been
clearly manifested experimentally in, say, the NMR spin-
lattice relaxation rates �see the analysis in Refs. 14–18�.

Since the pseudogap phase, which involves high-energy
or temperature and short distance physics, may be properly
considered as an unstable fixed point state10 with intrinsic
instabilities towards AFLRO or d-wave superconductivity at
low temperatures, the importance of its correct description,
with regard to the latter, is like that of a Fermi liquid with
regard to the BCS superconducting state. In other words,
finding an accurate and correct description of the pseudogap
phase will be rather important for constructing a sensible
low-energy theory for describing the low-temperature AF
and superconducting phases in the cuprates.

In this paper, we show that there does exist a desirable
candidate for characterizing the pseudogap phase based on
the RVB picture, in which strong AF correlations are present
as an intrinsic and predominant feature. Such an RVB state,
known as the bosonic RVB �b-RVB� state,19 differs from the
usual f-RVB states in that it works very well at half-filling in
describing the AF correlations over a wide range of tempera-
ture, including zero temperature where an AFLRO naturally
emerges. Figure 1 schematically illustrates the global phase
diagram for such a b-RVB theory,20 where an upper
pseudogap phase �UPP� below the characteristic temperature
T0 is characterized by the formation of singlet pairing of
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neutral spins as denoted by the b-RVB order parameter �s.
As illustrated by Fig. 1, the low-temperature phases, includ-
ing a lower pseudogap phase below Tv �also known as the
spontaneous vortex phase�,21 a d-wave superconducting
phase at Tc�Tv beyond a critical doping concentration xc,
and an AFLRO phase near half-filling, can all be regarded as
the results of the low-temperature instabilities from such an
UPP.20

The main focus of the present work will be the nature of
the UPP itself. We will examine the detailed behavior of
uniform spin susceptibility, spin-lattice relaxation rates, and
spin-echo decay rate based on the b-RVB theory, which will
reveal that, as one enters the UPP from above T0, the spin
correlations change qualitatively. At the mean-field level, lo-
calized spins are essentially uncorrelated at T�T0, resulting
in a Curie-Weiss-like behavior in the uniform spin suscepti-
bility. Below T0, however, finite-range spin correlations start
to develop, predominantly around the AF momentum QAF
= �� ,��, with the weight being transferred from the momen-
tum Q0= �0,0�. The latter effect leads to the reduction of
uniform susceptibility at T�T0. We show that such magnetic
behavior in the UPP is quite consistent with the experimental
measurements in the cuprates.

The above results clearly indicate that the UPP corre-
sponds to a crossover from a weakly correlated localized
spin system at higher temperature into a strongly AF corre-
lated spin liquid at lower temperature. This picture is thus in
sharp contrast to the f-RVB picture of the pseudogap, where
the low-energy spin excitations, either around QAF or Q0, all
get suppressed with the opening of the pseudogap. This latter
behavior rather resembles the lower pseudogap phase of the
b-RVB theory at T�Tv �in Ref. 22 it is simply called the
pseudogap phase� than the UPP. But even the distinction be-
tween the pseudogap state of the f-RVB theory and such a
lower pseudogap state of the b-RVB theory is very signifi-
cant as has been discussed in Ref. 22: the former is exchange

energy driven while the latter is kinetic energy driven. Here
the lower pseudogap phase corresponds to the formation of
Cooper pair amplitude but is short of superconducting phase
coherence, which exists between Tv and Tc and can be re-
garded as a vortex liquid state.21 It was previously pointed
out in Ref. 21 that such a spontaneous vortex phase should
coincide with the experimentally discovered Nernst region23

in the high-Tc cuprates.
The quantitative phase diagram of the UPP is determined

in the three-dimensional parameter space of temperature,
doping concentration, and external magnetic field. The latter
introduces the competition between the Zeeman spin split-
ting and singlet spin pairing. The mean-field theory will pre-
dict a simple proportional relation between the “critical”
magnetic field HPG, at which the UPP is destroyed, and T0 in
zero field. A comparison with experiment will be made.

The remainder of the paper is arranged as follows. In Sec.
II A, the bosonic RVB description is briefly reviewed. In
Sec. II B, the definition of the upper pseudogap phase is
given and its phase diagram is determined. In Secs. II C and
II D, its magnetic properties are systematically investigated
in the framework of the b-RVB theory. In Sec. II E, we fur-
ther briefly discuss the lower pseudogap phase and related
magnetic behavior. Finally, Sec. III is devoted to conclusion
and discussion, where we also briefly discuss the qualitative
behavior of charge channels in the pseudogap phase within
the bosonic RVB description.

II. UPPER PSEUDOGAP PHASE IN THE BOSONIC RVB
THEORY

A. Bosonic RVB description

The so-called b-RVB state20 is underpinned by a bosonic
RVB order parameter �ij

s over a wide range of temperature
and doping as schematically shown in Fig. 1, which defines
the UPP. This UPP �before the emergence of low-
temperature AF and superconducting instabilities� will be the
main subject to be examined in the present work. In the
following we shall first discuss its “mean-field” description
based on the t-J model.

In the phase string representation24 of the t-J model �see
Appendix A�, a natural “mean-field” decoupling of the su-
perexchange term HJ is given as follows:19

HJ → Hs = −
J

2 �
�ij��

�ij
s ei�Aij

h
bi�

† bj−�
† + H.c. + const., �1�

where the b-RVB order parameter �ij
s is defined in terms of

the bosonic spinon annihilation operator bi� by

�ij
s = �

�

�e−i�Aij
h
bi�bj−�� . �2�

At half-filling, �ij
s is equivalent to the usual Schwinger-boson

mean-field order parameter as Aij
h =0, with Eq. �1� reducing

to the Schwinger-boson mean-field Hamiltonian25 which de-
scribes the AF correlations fairly well in the regime of �ij

s

�0 at T�T0=0.91 J /kB. Away from half-filling, a topologi-
cal link field Aij

h emerges in the Hamiltonian �1� as well as in
Eq. �2�, which represents the influence of the nonlocal phase

FIG. 1. The global phase diagram in the b-RVB description
�Ref. 20�. The upper pseudogap phase �UPP� is characterized by the
bosonic RVB pairing order parameter �s at T�T0 whose properties
are the main focus of this paper. The antiferromagnetic ordered
phase �AF�, the lower pseudogap phase at T�Tv, and the supercon-
ducting phase �SC� at T�Tc all happen on top of this UPP at low
doping.
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string effect induced by the hole hopping24 on the spin de-
grees of freedom. It is related to the hole density by the
following gauge invariant relation:24

�
�ij��C

Aij
h = � �

l��C

nl
h, �3�

where C denotes an arbitrary loop on the square lattice that
encloses a region �C, and nl

h is the holon number operator at
site l.

The “mean-field” Hamiltonian �1� is by nature a gauge
model, which is invariant under the U�1� transformation:
bi�→bi�ei�	i and Aij

h →Aij
h + �	i−	 j�. It can be easily shown

that the spin rotational symmetry is respected by Eq. �1� by
verifying �Hs ,S�=0 where the definition of the spin operator
S in the phase string representation is given in Appendix A.
In the low-temperature regime, where the bosonic holons in
the b-RVB theory will experience the Bose condensation
such that one may approximately treat Aij

h as describing a
uniform flux of the strength 
� per plaquette �
 denotes the
doping concentration of holes�.19 In the high-temperature re-
gime, Aij

h may be treated as describing randomly distributed
static � flux tubes of concentration 
 since the holons will
behave like incoherent objects there.22 Different from a usual
Jordan-Wigner phase, the gauge field Aij

h , which is seen by
spinons, is attached to an independent degree of freedom,
holons, and therefore the above approximations are reason-
able.

In both limits, the bilinear form of Eq. �1� in terms of the
bosonic spinon operator bi� can be diagonalized by the fol-
lowing Bogoliubov transformation:19

bi� = �
m

�um��i��m� − vm��i��m−�
† � , �4�

with

um��i� = umwm��i�

vm��i� = vmwm��i� , �5�

where wm��i� satisfies the following eigenequation:

�mwm��i� = −
J

2 �
j=nn�i�

�ij
s e−i�Aji

h
wm��j� , �6�

in which j=nn�i� denotes the four nearest neighbors �nn� of
site i. One has um= �1/�2���
 /Em�+1 and vm=sgn��m�
��1/�2���
 /Em�−1, where Em=�
2−�m

2 is the spinon spec-
trum. The Lagrangian multiplier 
 is determined by enforc-
ing the average constraint ���bi�

† bi��=1−
, which leads to

2 − 
 =
1

N
�
m




Em
coth

�Em

2
�7�

�
�ij�

	�ij
s 	2 = �

m

�m
2

JEm
coth

�Em

2
, �8�

where �=1/kBT and the last equation is obtained by the
self-consistent condition �2� for the RVB order parameter.
Note that a Bose condensed term nBC

b related to the AFLRO

�Ref. 19� at T=0 and half-filling has been dropped in Eq.
�13� since we shall mainly be interested in the high-
temperature behavior.

All the nontrivial effect of doping is reflected in the eigen
equation �6� where the phase string effect induced by hop-
ping enters via the topological gauge field Aij

h . Note that the
spinon wave function wm��i� should vanish at the hole sites
�where �ij

s =0� due to the no-double-occupancy condition.
Previously,19 such an equation has been solved by a simple
mean-field choice �ij

s �j=nn�i��=�s with the relaxed con-
straint condition such that the spinons can go to any sites. In
the following we still relax the no-double-occupancy con-
straint on average in Eq. �6�, but with a replacement of

J → Jeff = �1 − 2g
�J �9�

to represent the average effect of the reduction of the super-
exchange coupling around holes: if holes are static, each of
which will simply break two nn links in each direction such
that g=1 in the dilute hole limit �when the average hole-hole
distance is much larger than the nn links�. Generally g�1
for a moving hole since the suppression of �ij

s around each
hole extends more than the four broken nn bonds �e.g., from
the singular twist by Aij

h around each hole�. One may thus
approximately rewrite Eq. �6� as

�mwm��i� = − Js �
j=nn�i�

e−i�Aji
h
wm��j� , �10�

in which

Js 

Jeff�

s

2
,

and Eq. �8� can be consistently rewritten as

�s =
1

4N
�
m

�m
2

JsEm
coth

�Em

2
. �11�

Note that the same mean-field equations have been obtained
in Ref. 19 with a slightly different definition, i.e., with �s

replaced by �s / �1−2g
�=�1
s �with g=1� in Ref. 19.

B. Upper pseudogap phase

The UPP is defined by the formation of the b-RVB pairing
with �s�0. Its high-temperature boundary at �s=0 is de-
picted by a characteristic temperature T0 as illustrated in Fig.
1. In the following, we determine it based on the mean-field
theory outlined above.

According to Eq. �7�, one finds

2 − 
 = coth



2kBT0
�12�

by noting that �m→0 at �s→0. Consequently, Eq. �11� re-
duces to 1= �2−
��1/2N��m��m /�s�2 /Jeff
, which gives rise
to


 =
2 − 


2
Jeff �13�

by further identifying
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1

N
�
m

��m/�s�2 = Jeff
2 �14�

in terms of Eq. �10�. Finally one obtains

kBT0 =� 1 −



2

ln
3 − 


1 − 

�Jeff. �15�

It is interesting to note that the gauge field Aij
h does not ex-

plicitly appear in T0 because of the general relation �14�,
indicating that the phase string effect, which is crucial to the
low-temperature �low-energy� physics, actually plays no role
in determining the phase boundary of the UPP. Of course, the
hopping effect still enters in T0 via the renormalized factor g
in Jeff which shall be the only adjustable parameter depend-
ing on the detailed physics of local hopping. We find that the
phase diagram and magnetic properties to be studied below
are actually not sensitive to g except for the characteristic
concentration xRVB at which Jeff is extrapolated to zero at T
=0.

Figure 2 shows T0 �solid curve� as a function of 
 /xRVB
with J=1350 K. The experimental data determined by the
uniform spin susceptibility measurement in LSCO �Refs. 26
and 27� �see the discussion in the next section� are shown by
the full squares, which are in good agreement with the the-
oretical curve. Furthermore, the open circles are indepen-
dently determined from the c-axis transport28 in the over-

doped regime �see discussion below�. Note that the
theoretical curve T0 versus 
 /xRVB in Fig. 2 is not sensitive
to the choice of g. Furthermore, one can use the above ex-
perimental data26–28 to fix xRVB at xRVB=1/2g=0.25 �g=2�.
We shall then choose xRVB=0.25 throughout the rest of paper
without any more adjustable parameter.

For the b-RVB origin of the UPP, the Zeeman splitting
due to the external magnetic field can effectively destroy the
singlet pairing of spins in the strong field limit. Since the
orbit part of the neutral spins does not couple to the external
field directly, the Zeeman splitting will be the only direct
field effect on the RVB background. It thus provides a direct
probe of the RVB nature of the UPP in, say, the overdoped
regime, where the critical field strength may be within the
experimental accessible range. In the following we consider
the Zeeman effect in the UPP.

Apply an external magnetic field H along a spin z axis
�which is not necessarily perpendicular to the lattice plane�.
A spin Zeeman energy term should be then added to Hs in
Eq. �1�,

− 2�B�
i

Si
zH = − �BH�

�

��m�
† �m�. �16�

Consequently the spinon excitation spectrum is modified by

Em
� = Em − ��BH , �17�

which now explicitly depends on the spin index �. Then the
mean-field Eq. �12� at �s→0 is modified to

2 − 
 =
1

2�
�

coth
E�

2TkB
, �18�

with E�

−��BH, while Eq. �13� remains the same. From
these equations, we can easily obtain the following relation
between T0 at zero field and the zero-temperature “critical”
field HPG

0 at which �s vanishes,

�BHPG
0 = ln
3 − 


1 − 

�kBT0, �19�

with the coefficient only weakly dependent on the doping
concentration. In Fig. 2, �BHPG

0 /kB ln 3 is plotted as the
dashed curve which scales with the zero-field T0 fairly well,
which predicts

�BHPG
0 � 1.1kBT0. �20�

In general, the temperature dependence of the “critical”
field HPG�T� can be obtained based on Eqs. �18� and �13�. In
the inset of Fig. 2, HPG versus T at 
=0.22 is shown together
with the experimental data obtained from the c-axis magneto
transport measurements.28 We see that the high-temperature
experimental data �open circles� fit the theoretical curve very
well without any additional adjustable parameter. Further-
more the zero-field T0 determined by the same experiments
is also in good agreement with the theory as shown �open
circles� in the main panel of Fig. 2 as mentioned above. One
may also note that the experimental HPG�T� starts to deviate
from the theoretical curve in the inset �full squares� as the
temperature is further lowered and saturated to approxi-
mately half of the predicted number �which implies �BHPG

0

FIG. 2. The characteristic temperature T0 of the UPP versus

 /xRVB. Solid line: the present theory; Full squares: determined
from the uniform spin susceptibility �s in LSCO compound �Ref.
27�; Open circles: determined from the c axis magnetoresistivity
��c� measurement in Bi-2212 compound �Ref. 28�; The dashed line
shows the scaling relation of the zero-temperature critical field HPG

0

with T0 as predicted by the theory. Inset: the critical field HPG as a
function of temperature at 
=0.22. The experiment data from the c
axis transport in Bi-2212 �Ref. 28� are also shown by the open and
full squares.
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�kBT0 /2�. However, we would like to point out that such a
deviation occurs only for those data �full squares� which
have been obtained by extrapolation in the experimental
measurement28 and therefore may not be as reliable as the
higher temperature ones �open squares� in the inset of Fig. 2.
We believe that further experiments are needed in order to
convincingly verify �falsify� the present prediction �20�.

Finally the boundaries of the UPP in the three-
dimensional parameter space of doping concentration, tem-
perature, and magnetic field determined based on the b-RVB
mean-field theory are shown in Fig. 3.

C. Uniform spin susceptibility

The RVB nature of the UPP is clearly manifested in the
magnetic properties. We first consider uniform spin suscep-
tibility �s in the following, which can be easily derived based
on the above mean-field description in the presence of mag-
netic field. In terms of the total spin magnetic moment,

M = �B�
m

�n�Em
+ � − n�Em

− �� , �21�

�where n���=1/ �e��−1� is the Bose distribution function�,
the uniform spin susceptibility �s per cite as defined by �s
= 	M /NH	H→0 is found by

�s =
2�B

2�

N
�
m

n�Em��1 + n�Em�� . �22�

Since we are mainly interested in the high-temperature
regime well above the superconducting phase, the holes are
incoherent objects such that Aij

h can be approximately treated
as describing randomly distributed � flux tubes of concen-
tration 
 as discussed before. Then we can numerically cal-
culate �s based on the mean-field equations given in Sec.
II A, which is averaged under different random configura-
tions of Aij

h . A similar computation has been done before to
explore the crossover from the lower to upper pseudogap
phases,22 but not in the region up close to T0. �In the follow-
ing calculations, the largest sample size is 32�32 lattice and
the sample size is not very important as mainly the high-
temperature properties are concerned.�

The calculated �s is presented in the main panel of Fig.
4�a� at different doping concentrations. Note that �s reaches
a maximum value �s

max at temperature T0 where the RVB
order parameter �s vanishes. At T�T0, �s follows a Curie-
1 /T behavior as spins become free moments at the mean-
field level. The curves in Fig. 4�a� are presented as �s /�s

max

versus T /T0, which approximately collapse onto a single
curve independent of doping. For comparison, the inset
shows the experimental data obtained in LSCO compounds
which are plotted in the same way as in the main panel with
a very good collapsing onto a universal scaling curve.26,27

The peak positions decides the experimental pseudogap tem-
perature T0’s at different dopings, which are presented in Fig.
2.

In Fig. 4�b�, the calculated �s versus T at 
=0 is shown
together with the high-temperature series expansion �HTSE�
result.29 �Note that here the calculated �s is rescaled by a 2/3
numerical factor as used in the Schwinger-boson approach to
restore the sum rule.25� It is noted that the experimental scal-
ing curve actually coincides with the half-filling HTSE very
well.26,27 Thus one can clearly see the overall qualitative
agreement between the bosonic RVB theory and the experi-
ment from Figs. 4�a� and 4�b�. Note that the mean-field �s
deviates from the HTSE result prominently around T0 where
the latter is a much smoother function of T. It reflects the fact
that T0 is only a crossover temperature and the vanishing �s

does not represent a true phase transition. Obviously, the
amplitude fluctuations beyond the mean-field �s have to be
considered in order to better describe �s in this regime. T0
determined in the mean-field theory is quite close to the
HTSE result, indicating the crossover temperature itself can
still be reasonably decided by the mean-field bosonic RVB
description given above. The comparison of T0 between the
theory and experiment has been already presented in Fig. 2
and discussed in the previous section.

FIG. 3. The phase diagram of the UPP in the parameter space of
doping, temperature, and external magnetic field, as calculated
based on the mean-field bosonic RVB theory.

FIG. 4. �a� The calculated uniform spin susceptibility �s scaled
with the maximum �s

max at T0 versus T /T0, which follows an ap-
proximately doping-dependent curve. Inset: The experimental data
in Refs. 26 and 27 which collapse into a universal scaling curve
plotted in the same fashion as in the main panel. �b� The theoretical
�s at half-filling �solid� and the one obtained by the high-
temperature series expansion �HTSE�. The latter fits the experimen-
tal scaling curve in the inset of �a� very well �Refs. 26 and 27�.
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D. Spin-lattice relaxation rate and spin-echo decay rate

The NMR spin-lattice relaxation rate of nuclear spins is
determined by30

1

T1
=

2kBT

g2�B
2N

�
q

F�q�2��zz� �q,��
�

�
�→0+

, �23�

where the form factor F�q�2 comes from the hyperfine cou-
pling between nuclear spin and spin fluctuations. For ex-
ample, for planar 63Cu�2� nuclear spins in the cuprates, with
the applied field perpendicular to the CuO2 plane, the form
factor F�q�2 is found to be15,16

63F�q�2 = �A� + 2B�cos qxa + cos qya��2, �24�

where the hyperfine couplings A� and B are estimated as
A� /B�0.84, B�3.8�10−4 meV.16 �These coefficients may
slightly vary among YBCO and LSCO compounds.� For pla-
nar 17O�2� nuclear spins, one has

17F�q�2 = 2C2�1 + 1
2 �cos qxa + cos qya�� , �25�

with C�0.87B. Due to the fact that 17F�q�2 vanishes at the
AF wave vector QAF= �� ,��, while 63F�q�2 is peaked at
QAF, a combined measurement of 1 / 63T1 and 1/ 17T1 will
thus provide important information about the AF correlations
at low frequency �→0.

Based on the bosonic RVB mean-field equations outlined
in Sec. II A, the spin-lattice relaxation rates, 1 / 63T1 and
1/ 17T1, for the planar copper and oxygen nuclear spins, can
be straightforwardly computed as shown in Appendix B. The
results are presented in Fig. 5. It shows that the ratio
17T1 / 63T1, which is a constant above T0, starts to increase
with reducing temperature below T0. At lower temperature,
T /T0�0.5, such a ratio rises sharply. For example, 17T1 / 63T1
diverges at 
=0 as a true AFLRO exists at T=0, and it still
reaches about 100 in the low-temperature limit at 
=0.125,
all qualitatively consistent with the experimental observation
in the cuprates.17 As pointed out above, such behavior clearly
demonstrates that strong low-lying AF correlations around
QAF develop in the UPP, leading to the simultaneous en-

hancement of 1 / 63T1 and the cancellation in 1/ 17T1. In the
inset of Fig. 5, 1 / 63T1T has been plotted, which is also quali-
tatively consistent with the experiment,16–18 but deviates
from the conventional Korringa behavior 1 / 63T1T�const for
a Fermi liquid system, thanks to the strong AF fluctuations of
spins in the UPP below T0.31 By contrast, the ratio 17T1 / 63T1
in an f-RVB mean-field state �the � flux phase� at half-filling
remains flat over the whole temperature region as shown by
the dashed line in Fig. 5, indicating the absence of any sig-
nificant AF correlations around QAF in its pseudogap regime.
In combination with the reduced uniform spin
susceptibility,22 one sees that in the pseudogap of the f-RVB,
the low-energy spin excitations, either around QAF or Q0
= �0,0�, all get suppressed with the opening of the
pseudogap.

The above results clearly show that the UPP in the
bosonic RVB state corresponds to the crossover from a
weakly correlated localized spin assembly at higher tempera-
ture into a strongly AF correlated spin liquid at lower tem-
perature. The peculiar feature of the bosonic RVB descrip-
tion is that although the formation of bosonic RVB singlet
pairing suppresses the spin correlations at Q0 below T0, it
also leads to the enhancement of the low-energy spin corre-
lations near AF momentum QAF. Such a feature of the UPP is
significantly different from the pseudogap phase in the
f-RVB mean-field description, but is strongly supported by
the NMR measurements.14–18

Finally, we further examine the spin-echo decay rate
1 /T2G, which is related to the static AF correlations via the
real part of spin susceptibility function by32


 1

T2G
�2

=
0.69

8�2

1

���e�4� 1

N
�
q

Fef f�q�4�zz� �q�2

− � 1

N
�
q

Fef f�q�2�zz� �q��2� , �26�

where the factor Feff�q� is

Feff�q� = A� + 2B�cos qxa + cos qya� , �27�

with A� �−4B, such that Feff�q� is peaked at QAF and vanish
at Q0.

Similar to 1/T1, the detailed expression of 1/T2G in the
bosonic RVB theory is given in Appendix C. In Fig. 6, the

FIG. 5. 17T1 / 63T1 vs temperature at different doping concentra-
tions in the upper pseudogap phase of the b-RVB state. The dashed
line shows the result of an f-RVB state �� flux phase� at half-filling.
The inset shows the non-Korringa behavior of 1 / 63T1T in the
b-RVB state at various dopings �the symbols are the same as in the
main panel�.

FIG. 6. 1 /T2G vs temperature in the upper pseudogap phase
below T0 at different doping concentrations.
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calculated 1/T2G at different doping concentrations show
that 1 /T2G begins to increase with reducing temperature be-
low T0. Such behavior has been also observed in the
experiment,33–35 which once again clearly illustrates the pic-
ture that the strong AF correlations start to develop in the
UPP.

E. Lower pseudogap phase

So far we have been focused on the UPP, which is the
high-temperature phase in the bosonic RVB description. As
stressed in Sec. I, there can be several different low-
temperature phases growing out of this background �Fig.
1�.20 One particular phase we wish to discuss below is the
so-called spontaneous vortex phase21 which can be properly
classified as the lower pseudogap phase in the present ap-
proach. In this phase, the holon condensation occurs and
Cooper pair amplitude forms, but the system is still short of
superconducting phase coherence which can be regarded as a
vortex liquid state due to the presence of unpaired spinon-
vortex composites.21 These spinon-vortices contribute to the
Nernst effect and therefore the lower pseudogap phase
should coincide with the Nernst region discovered23 experi-
mentally in the cuprates. Recently the electromagnetic re-
sponse of such a vortex liquid phase has been also
discussed36 based on a different RVB approach.

Previously the magnetic properties in this phase was
discussed22 in the context of exploring the driving mecha-
nism in comparison with the pseudogap phase in the f-RVB
state. In the following, we focus on the magnetic behavior of
this lower pseudogap phase and contrast it with that of the
UPP discussed above.

The mean-field equations are the same as in the UPP, but
due to the holon condensation the gauge field Aij

h in Eq. �10�
can be treated as a uniform flux of strength �
 per
plaquette22 as discussed in Sec. II A. In the main panel of
Fig. 7, the uniform spin susceptibility shows a true “spin
gap” behavior, in contrast to the “scaling” curve shown in the
UPP in Fig. 4, where �s in the doped regime roughly behaves
like that at half-filling—in the latter case �s saturates to a
constant at T=0. In the lower pseudogap phase, these �s’s

can drop below that at 
=0 and vanish at T=0 as shown in
Fig. 7. Such a lower pseudogap behavior has been indeed
observed experimentally.2,9

Furthermore, in this lower pseudogap phase, 1 / 63T1 also
decreases with temperature �see the left inset of Fig. 7�, as
opposed to the behavior in the UPP, indicating the appear-
ance of the spin gap over whole momenta. On the other
hand, although the low-energy spin fluctuations are gapped,
the static AF spin-spin correlations as described by the real
part of spin susceptibility function still remain, as reflected
by 1/T2G shown in the right inset of Fig. 7, where the mono-
tonic increase of 1 /T2G in the UPP �Fig. 6� is replaced by the
saturation at lower pseudogap phase. This feature has also
been observed experimentally.33–35

III. CONCLUSION AND DISCUSSION

In this paper, we have systematically analyzed the mag-
netic characterizations of a high-temperature intrinsic phase
of the bosonic RVB state, which is described by the forma-
tion of the bosonic RVB order parameter at a temperature
below the characteristic T0, but still higher than those for
low-temperature orders, including AFLRO and superconduc-
tivity, to emerge.

Such a phase exhibits the pseudogap features that match
those of the upper pseudogap phase in the high-Tc cuprate
superconductors very well. The key feature in the crossover
to the UPP from above T0 is the onset of the development of
strong AF spin-spin correlations, which remain rather weak
at T�T0 where the system resembles more an ensemble of
uncorrelated localized spins. This explains why experimen-
tally the uniform spin susceptibility shows an approximately
Curie-Weiss behavior at T�T0, reaches a peak at T0, and
then gets reduces below T0 as the weight of the spin-spin
correlations at the momentum �0,0� being transferred to
�� ,��, in contrast to an equal weight distribution above T0.
It further explains why the spin-lattice relaxation rate gets
enhanced for the planar copper nuclear spins whereas re-
duced for the planar oxygen nuclear spins below T0, and why
the spin-echo decay rate increases with the decreasing tem-
perature; Clearly the development of the AF correlations is
the underlying mechanism here.

We emphasize that the formation of spin singlet pairing
and the onset of AF correlations at the same time are not
always true. In the f-RVB description of the slave-boson ap-
proach, the formation of the f-RVB order parameter actually
leads to the reduction of the spin-lattice relaxation rates for
both the copper and oxygen nuclear spins at low tempera-
tures. This is because the spin pseudogap opens for both the
ferromagnetic and AF correlations. By contrast, this case oc-
curs in the b-RVB description only at a lower temperature
when the system enters the lower pseudogap regime, charac-
terized by the formation of Cooper pair amplitude in the
so-called spontaneous vortex phase21 which is a vortex liquid
state, short of superconducting phase coherence. A compara-
tive study of this lower pseudogap phase in the b-RVB
theory and the pseudogap phase in the f-RVB theory has
been given in Ref. 22 where two opposite driving mecha-
nisms, kinetic vs superexchange energy driven, have been
identified.

FIG. 7. Uniform spin susceptibility in the lower pseudogap
phase at different dopings including half-filling. The left inset
shows 1/ 63T1 and the right inset 1 /T2G with the same symbols as in
the main panel.
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The phase diagram of the UPP has been determined by a
generalized “mean-field” description in the b-RVB theory in
the parameter space of temperature, doping, and magnetic
field. Since the UPP essentially reflects the spin singlet pair-
ing, the Zeeman splitting competes directly, which results in
a quantitative prediction for experiment as discussed in Sec.
II B.

A central consequence of an RVB �spin singlet� descrip-
tion of the pseudogap phase is that the pseudogap represents
the suppression of the low-lying spectral weight in spin ex-
citations, but not in charge excitations, as pointed out in the
Sec. I. In the following, we briefly outline the scenario about
what happens to the charge channel when one enters the UPP
in the bosonic RVB theory. We shall leave the more quanti-
tative investigation in future work.

In order to see how the charge transport is affected by the
spin fluctuations, we first note that in the b-RVB theory, the
charge degrees of freedom �holons� are described by the fol-
lowing effective Hamiltonian:19

Hh = − th �
�ij��

eiAij
s
hi

†hj + H.c., �28�

where the bosonic holons, created by hi
†, interact with the

gauge field Aij
s associated with the spin degrees of freedom.

Similar to the definition of the gauge field Aij
h in Eq. �3�, Aij

s ,
which is introduced in the phase string representation �see
Appendix A�, satisfies

�
�ij��C

Aij
s = � �

l��C

�nl↑
b − nl↓

b � , �29�

where C is an arbitrary path. Physically Aij
s describes ±� flux

tubes bound to ↑�↓� spinons as seen by holons. So at T
�T0, uncorrelated localized spins imply a maximum scatter-
ing to the holons according to Eqs. �28� and �29�. By forming
the RVB pairing below T0, one can easily understand that the
fluctuations in Aij

s will be effectively reduced, and so does the
scattering to the holons according to Eqs. �28� and �29�, lead-
ing to a pseudogap feature in the charge transport without
involving a charge gap. Note that when the temperature is
further reduced to Tv, where the holons gain the phase co-
herence and become Bose condensed, the system enters the
lower pseudogap phase �spontaneous vortex phase� in which
the effect of the holon condensation will feed back to the
spinon part via Aij

h in Eq. �1� and cause the lower pseudogap
phenomenon in the spin part as discussed in Sec. II E. Fi-
nally, the quasiparticle excitation can be regarded as a re-
combination of holon, spinon, and phase string, in the super-
conducting phase.37 It has been argued that the
deconfinement occurs above Tc, and the composite structure
is expected to shows up in both the lower and upper
pseudogap phases, and the pseudogap feature is thus be-
lieved to be associated with that in the spinon degrees of
freedom.
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APPENDIX A: PHASE STRING FORMULATION

The t−J model

Ht−J = − t �
�ij��

�ci�
† cj� + H.c.� + J�

�ij�

S� i · S� j −

1

4
ninj�

�A1�

may be reformulated by using the phase string
decomposition24

ci� = �− ��ihi
†bi�ei�i�

string
, �A2�

where hi and bi� are all bosonic fields. Here �i�
string is a non-

local phase factor to restore the fermionic statistics of the
electron operator, and can be expressed as �i�

string
 1
2 ��i

b

−��i
h� with �i

b=�l�i	i�l�����nl�
b −1�, �i

h=�l�i	i�l�nl
h. Here

	i�l� is defined as an angle 	i�l�=Im ln�zi−zl� with zi=xi

+ iyi representing the complex coordinate of a lattice site i.
The resulting Hamiltonian Ht−J=Ht+HJ reads

Ht = − t �
�ij��

�ei�Aij
s −�ij

0 ��hi
†hj�ei�Aij

h
�bj�

† bi� + H.c.

HJ = −
J

2 �
�ij����

�ei�Aij
h
�bi�

† bj−�
† �ei��Aji

h
�bj−��bi�� �A3�

under the no-double-occupancy constraint

hi
†hi + �

�

bi�
† bi� = 1. �A4�

In the new Hamiltonians, �ij
0 is a � flux link variable, while

Aij
s and Aij

h are constrained by the following conditions:

�
C

Aij
s = ��

l�C

�nl↑
b − nl↓

b � �A5�

�
C

Aij
h = ��

l�C

nl
h, �A6�

where C is an arbitrary counterclockwise closed path. Fi-
nally, in the phase string representation, the spin operators
can be easily reexpressed according to the decomposition
�A2� as

Si
z =

1

2�
�

�bi�
† bi�,

Si
� = �− 1�ibi�

† bi−�ei��i
h
. �A7�

APPENDIX B: 1/T1 FORMULATION IN THE BOSONIC
RVB REPRESENTATION

1/T1 defined in Eq. �23� can be reexpressed in terms of
the real-space spin correlation function as follows:
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1

T1
=

2kBT

g2�B
2N

�
ij

Mij��zz� �i, j,��
�

�
�→0+

, �B1�

where Mij is the Fourier transformation of F�q�2 in real
space

63Mij 
 �A�
2 + 4B2�
i,j + 2A�B�

�̂


i,j+�̂ + B2 �
�̂�−�̂�


i,j+�̂+�̂�,

�B2�

where �̂= ± x̂ , ± ŷ, and

17Mij 
 2C2

i,j +
1

4�
�̂


i,j+�̂� . �B3�

From Mij we see that only up to the next-nearest-neighbor
spin correlations are involved in the spin-lattice relaxation
rates of 63Cu and 17O nuclear spins.

In the bosonic RVB mean-field theory, by using Eq. �4�
the dynamic spin susceptibility can be expressed as

��zz� �i, j,��
�

�
�→0+

= Gij
− + �− 1�i−jGij

+ , �B4�

where

Gij
± =

�

2 �
mm�

�Kmm�
zz �i, j�
−

�n�Em�
�Em

��pmm�
± �2
�Em − Em�� ,

�B5�

in which �� denotes the summation of m with �m�0 and

Kmm�
zz �i, j� 
 �

�

wm�
* �i�wm��j�wm��

* �j�wm���i� . �B6�

By noting that pmm�
− =1, pmm�

+ =
 /Em at Em=Em�, we can
further reexpress 1 /T1 in the following form:

1

T1
=

2

3g2�B
2N

�
m

�n�Em��1 + n�Em����Em��Dm
− +


2

Em
2 Dm

+� ,

�B7�

where the density of states ��Em�= �2/N��m�
�Em−Em�� and
the coefficient, Dm

± , is defined by

Dm
± =

�m�dmm�
± 
�Em − Em��

�m�
�Em − Em��
, �B8�

with

dmm�
± 


�

2
N�

ij

Kmm�
zz �i, j����i−jMij . �B9�

In Eq. �B7� a numerical factor 2 /3 is also added just like
the uniform spin susceptibility as noted in the main text as at
half-filling.25 The final result will be an average over differ-
ent random configurations of Aij

h due to the incoherent distri-
bution of holes in the UPP. �In the lower pseudogap phase,
by contrast, the holon condensation leads to a uniform flux
distribution of Aij

h and no such average is needed.� The cal-
culation is done on a 32�32 lattice and results are presented
in Fig. 5.31

APPENDIX C: SPIN-ECHO RELAXATION RATE

The spin-echo relaxation rate 1 /T2G is defined in Eq. �26�.
In the b-RVB theory, the real part of the static susceptibility,
�zz� �q�, can be expressed as

�zz� �q� = �zz�
+�q� + �zz�

−�q� , �C1�

with

�zz�
±�q� =

2

3
�

1

2 �
mm�

�Kmm�
zz �q���pmm�

± �2
�n�Em�� − n�Em��

Em − Em�

+ �lmm�
± �2

�1 + n�Em� + n�Em���

Em + Em�
� , �C2�

where

pmm�
± = umum� ± vmvm�,

lmm�
± = umvm� ± vmum� �C3�

and

Kmm�
zz �q� 


1

N
�
ij�

eiq·�ri−rj�wm�
* �i�wm��j�wm��

* �j�wm���i� .

�C4�

The numerical calculation is similar to that for 1 /T1.
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