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A theory describing the operation of a superconducting nanowire quantum interference device �NQUID� is
presented. The device consists of a pair of thin-film superconducting leads connected by a pair of topologically
parallel ultranarrow superconducting wires. It exhibits intrinsic electrical resistance, due to thermally activated
dissipative fluctuations of the superconducting order parameter. Attention is given to the dependence of this
resistance on the strength of an externally applied magnetic field aligned perpendicular to the leads, for lead
dimensions such that there is essentially complete and uniform penetration of the leads by the magnetic field.
This regime, in which at least one of the lead dimensions—length or width—lies between the superconducting
coherence and penetration lengths, is referred to as the mesoscopic regime. The magnetic field causes a
pronounced oscillation of the device resistance, with a period not dominated by the Aharonov-Bohm effect
through the area enclosed by the wires and the film edges but, rather, in terms of the geometry of the leads, in
contrast to the well-known Little-Parks resistance of thin-walled superconducting cylinders. A detailed theory,
encompassing this phenomenology quantitatively, is developed through extensions, to the setting of parallel
superconducting wires, of the Ivanchenko-Zil’berman-Ambegaokar-Halperin theory of intrinsic resistive fluc-
tuations in a current-biased Josephson junction and the Langer-Ambegaokar-McCumber-Halperin theory of
intrinsic resistive fluctuations in a superconducting wire. In particular, it is demonstrated that via the resistance
of the NQUID, the wires act as a probe of spatial variations in the superconducting order parameter along the
perimeter of each lead: in essence, a superconducting phase gradiometer.
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I. INTRODUCTION

The Little-Parks effect concerns the electrical resistance
of a thin cylindrically shaped superconducting film and, spe-
cifically, the dependence of this resistance on the magnetic
flux threading the cylinder.1,2 It is found that the resistance is
a periodic function of the magnetic field, with period in-
versely proportional to the cross-sectional area of the cylin-
der. Similarly, in a dc SQUID, the critical value of the super-
current is periodic in magnetic field, with period inversely
proportional to the area enclosed by the SQUID ring.2

In this paper, we consider a mesoscopic analog of a dc
SQUID. The analog consists of a device composed of a thin
superconducting film patterned into two mesoscopic leads
that are connected by a pair of �topologically� parallel, short,
weak, superconducting wires. Thus, we refer to the device as
an NQUID �superconducting nanowire quantum interference
device�. The only restriction that we place on the wires of the
device is that they be thin enough for the order parameter to
be taken as constant over each cross section of a wire, vary-
ing only along the wire length. In principle, this condition of
one-dimensionality is satisfied if the wire is much thinner
than the superconducting coherence length �. In practice, it is
approximately satisfied provided the wire diameter d is
smaller than 4.4�.3 For thicker wires, vortices can exist in-
side the wires, and such wires may not be assumed to be
one-dimensional.

By the term mesoscopic we are characterizing phenomena
that occur on length scales larger than the superconducting
coherence length � but smaller than the electromagnetic pen-
etration depth �� associated with magnetic fields applied
perpendicular to the superconducting film. We shall call a
lead mesoscopic if at least one of its two long dimensions is

in the mesoscopic regime; the other dimension may be either
mesoscopic or macroscopic. Thus, a weak magnetic field ap-
plied perpendicular to a mesoscopic lead will penetrate the
lead without appreciable attenuation and without driving the
lead from the homogeneous superconducting state to the
Abrikosov vortex state. This is similar to the regime of op-
eration of superconducting wire networks; see, e.g., Ref. 4.
The nanowires connecting the two leads are taken to be to-
pologically parallel �i.e., parallel in the sense of electrical
circuitry�: these nanowires and edges of the leads define a
closed geometrical contour, which will be referred to as the
Aharonov-Bohm (AB) contour. In our approach, the nano-
wires are considered to be links sufficiently weak that any
effects of the nanowires on the superconductivity in the leads
can be safely ignored.

The theory presented here has been developed to explain
experiments conducted on DNA-templated NQUIDs.5 These
experiments measure the electrical resistivity of a pair of
superconducting nanowires suspended between long super-
conducting strips �see Fig. 1�. In them, a current source is

FIG. 1. �Color online� Schematic depiction of the superconduct-
ing phase gradiometer. A current J is passed through the bridges in
the presence of a perpendicular magnetic field of strength B.
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used to pass dc current from a contact on the far end of the
left lead to one on the far end of the right lead. The voltage
between the contacts is measured �and the resistance is hence
determined� as a function of the magnetic field applied per-
pendicular to the plane of the strips.

In light of the foregoing remarks, the multiple connected-
ness of the device suggests that one should anticipate oscil-
lations with magnetic field, e.g., in the device resistance.
Oscillations are indeed observed. But they are distinct from
the resistance oscillations observed by Little and Parks and
from the critical current oscillations observed in SQUID
rings. What distinguishes the resistance oscillations reported
in Ref. 5 from those found, e.g., by Little and Parks? First,
the most notable aspect of these oscillations is the value of
their period. In the Little-Parks type of experiment, the pe-
riod is given by �0 /2ab, where �0��hc /2e� is the super-
conducting flux quantum, 2a is the bridge separation, and b
is the bridge length, i.e., the superconducting flux quantum
divided by the area of the AB contour �see Fig. 2�. In a
high-magnetic-field regime, such periodic behavior is indeed
observed experimentally, with the length of the period some-
what shorter but of the same order of magnitude as in the AB
effect.5 However, in a low-magnetic-field regime, the ob-
served period is appreciably smaller �in fact by almost two
orders of magnitude for our device geometry�. Second, be-
cause the resistance is caused by thermal phase fluctuations
�i.e., phase slips� in very narrow wires, the oscillations are
observable over a wide range of temperatures ��1 K�. Third,
the Little-Parks resistance is wholly ascribed to a rigid shift
of the R�T� curve with magnetic field, as Tc oscillates. In
contrast, in our system we observe a periodic broadening of
the transition �instead of the Little-Parks–type rigid shift�
with magnetic field. Our theory explains quantitatively this
broadening via the modulation of the barrier heights for
phase slips of the superconducting order parameter in the
nanowires.

In the experiment, the sample is cooled in zero magnetic
field, and the field is then slowly increased while the resis-
tance is measured. At a sample-dependent field ��5 mT�, the
behavior switches sharply from a low-field to a high-field
regime. If the high-field regime is not reached before the
magnetic field is swept back, the low-field resistance curve is
reproduced. However, once the high-field regime has been
reached, the sweeping back of the field reveals phase shifts
and hysteresis in the R�B� curve. The experiments5 mainly
address rectangular leads that have one mesoscopic and one

macroscopic dimension. Therefore, we shall concentrate on
such strip geometries. We shall, however, also discuss how to
extend our approach to generic �mesoscopic� lead shapes. We
note in passing that efficient numerical methods, such as the
boundary element method �BEM�,6 are available for solving
the corresponding Laplace problems.

This paper is arranged as follows. In Sec. II, we construct
a basic picture for the period of the magnetoresistance oscil-
lations of the two-wire device, which shows how the meso-
scopic size of the leads accounts for the anomalously short
magnetoresistance period in the low-field regime. In Sec. III,
we concentrate on the properties of mesoscopic leads with
regard to their response to an applied magnetic field, and in
Sec. IV, we extend the Langer-Ambegaokar-McCumber-
Halperin �LAMH� model to take into account the interwire
coupling through the leads. Analytical expressions are de-
rived for the short- and long-wire limits, while a numerical
procedure is described for the general case. The predictions
of the model are compared with data from our experiment in
Sec. V, and we give some concluding remarks in Sec. VI.
Certain technical components are relegated to the Appendix,
as is the analysis of example multiwire devices.

II. ORIGIN OF MAGNETORESISTANCE OSCILLATIONS

Before presenting a detailed development of the theory,
we give an intuitive argument to account for the anomalously
short period of the magnetoresistance in the low-magnetic-
field regime, mentioned above.

A. Device geometry

The geometry of the devices studied experimentally is
shown in Fig. 2. Five devices were successfully fabricated
and measured. The dimensions of these devices are listed in
Table I, along with the short magnetoresistance oscillation
period. The perpendicular penetration depth �� for the films
used to make the leads is roughly 70 �m, and coherence
length � is roughly 5 nm.

B. Parametric control of the state of the wires by the leads

The essential ingredients in our model are �i� leads, in
which the applied magnetic field induces supercurrents and
hence gradients in the phase of the order parameter, and �ii�
the two wires, whose behavior is controlled parametrically
by the leads through the boundary conditions imposed by the

FIG. 2. Geometry of the two-wire device, showing the dimensions. The coordinate system used for the right lead �with the origin in the
center of the lead� is also shown. The coordinates of the four corners of the right lead, as well as the coordinates of the points at which the
two wires are connected to the right lead, are indicated. As shown, we always assume that the wires are attached near the center of the short
edges of the leads.
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leads on the phase of the order parameters in the wires. For
now, we assume that the wires have sufficiently small cross
sections that the currents through them do not feed back on
the order parameter in the leads. �In Sec. III D, we shall
discuss when this assumption may be relaxed without alter-
ing the oscillation period.� The dissipation results from ther-
mally activated phase slips, which cause the superconducting
order parameter to explore a discrete family of local minima
of the free energy. �We assume that the barriers separating
these minima are sufficiently high to make them well-defined
states.� These minima �and the saddle-point configurations
connecting them� may be indexed by the net �i.e., forward
minus reverse� number of phase slips that have occurred in
each wire �n1 and n2, relative to some reference state�. More
usefully, they can be indexed by ns=min�n1 ,n2� �i.e., the net
number of phase slips that have occurred in both wires� and
nv=n1−n2 �i.e., the number of vortices enclosed by the AB
contour, which is formed by the wires and the edges of the
leads�. We note that two configurations with identical nv but
distinct ns and ns� have identical order parameters, but differ
in energy by

� IVdt =
�

2e
� I�̇dt =

h

2e
I�ns� − ns� , �1�

due to the work done by the current source supplying the
current I, in which V is the interlead voltage, � is the inter-
lead phase difference as measured between the two points

halfway between the wires, and the Josephson relation �̇
=2eV /� has been invoked. In our model, we assume that the
leads are completely rigid. Therefore, the rate of phase
change, and thus the voltage, is identical at all points inside
one lead. For sufficiently short wires, nv has a unique value,
as there are no stable states with any other number of vorti-
ces.

Due to the screening currents in the left lead, induced by
the applied magnetic field B �and independent of the wires�,
there is a field-dependent phase �2←1,L�B�=�1

2dr� ·�� 	�B�
�computed below� accumulated in passing from the point at
which wire 1 �the top wire� contacts the left �L� lead to the
point at which wire 2 �the bottom wire� contacts the left lead
�see Fig. 3�. Similarly, the field creates a phase accumulation
�2←1,R�B� between the contact points in the right �R� lead. As
the leads are taken to be geometrically identical, the phase
accumulations in them differ in sign only: �2←1,L�B�
=−�2←1,R�B�. We introduce ��B�=�2←1,L�B�. In determining
the local free-energy minima of the wires, we solve the

Ginzburg-Landau equation for the wires for each vortex
number nv, imposing the single-valuedness condition on the
order parameter,


1,L←R − 
2,L←R + 2��B� = 2�nv. �2�

This condition will be referred to as the phase constraint.

Here, 
1,L←R=�R
Ldr� ·�� 	�B� is the phase accumulated along

wire 1 in passing from the right to the left lead; 
2,L←R is
similarly defined for wire 2.

Absent any constraints, the lowest-energy configuration of
the nanowires is the one with no current through the wires.
Here, we adopt the gauge in which A=Byex for the electro-
magnetic vector potential, where the coordinates are as
shown in Fig. 2. The Ginzburg-Landau expression for the
current density in a superconductor is

J � ��	�r� −
2e

�
A�r�� . �3�

For our choice of gauge, the vector potential is always par-
allel to the nanowires, and therefore the lowest-energy state
of the nanowires corresponds to a phase accumulation given
by the flux through the AB contour, 
1,L←R=−
2,L←R
=2�Bab /�0. As we shall show shortly, for our device ge-
ometry �i.e., when the wires are sufficiently short, i.e., b
 l�,
this phase accumulation may be safely ignored, compared to
the phase accumulation ��B� associated with screening cur-
rents induced in the leads. As the nanowires are assumed to
be weak compared to the leads, to satisfy the phase con-

TABLE I. Comparison between measured and theoretical magnetoresistance periods. The geometries of the samples were obtained via
scanning electron microscopy and used to compute the periods theoretically; see the text for additional details.

Sample b �nm� 2a �nm� 2l �nm� Theoretical period ��T� Measured period ��T� Error

205-4 121 266 11267 929.21 947 1.9%

219-4 137 594 12062 388.73 456.6 12.8%

930-1 141 2453 14480 78.41 77.5 −1.2%

930-1 �shaved� 141 2453 8930 127.14 128.3 0.9%

205-2 134 4046 14521 47.41 48.9 3.0%

FIG. 3. �Color online� �a� Close-up of the two nanowires and the
leads. The top �bottom� thick arrow represents the integration con-
tour for determining the phase accumulation 
1,L←R�
2,L←R� in the
first �second� wire. The dotted arrow in the left �right� lead indicates
a possible choice of integration contour for determining the phase
accumulation �2←1,L��2←1,R�. These contours may be deformed
without affecting the values of the various phase accumulations, as
long as no vortices are crossed. �b� Sketch of the corresponding
superconducting phase at different points along the AB contour
when one vortex is located inside the contour.
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straint �2�, the phase accumulations in the nanowires will
typically deviate from their optimal value, generating a cir-
culating current around the AB contour. As a consequence of
LAMH theory, this circulating current results in a decrease of
the barrier heights for phase slips, and hence an increase in
resistance. The period of the observed oscillations is derived
from the fact that whenever the magnetic field satisfies the
relation

2�m = 2�
2abB

�0
+ 2��B� �4�

	where m is an integer and the factor of 2 accompanying
��B� reflects the presence of two leads
, there is no circulat-
ing current in the lowest-energy state, resulting in minimal
resistance. Furthermore, the family of free-energy minima of
the two-wire system �all of which, in thermal equilibrium,
are statistically populated according to their energies� is
identical to the B=0 case. The mapping between configura-
tions at zero and nonzero B fields is established by a shift of
the index nv→nv−m. Therefore, as the sets of physical states
of the wires are identical whenever the periodicity condition
�4� is satisfied, at such values of B the resistance returns to its
B=0 value.

C. Simple estimate of the oscillation period

In this subsection, we will give a “back of the envelope”
estimate for the phase gain ��B� in a lead by considering the
current and phase profiles in one such lead. According to the
Ginzburg-Landau theory, in a mesoscopic superconductor,
subjected to a weak magnetic field, the current density is
given by Eq. �3�. Now consider an isolated strip-shaped lead
used in the device. Far from either of the short edges of this
lead, A=Byex is a London gauge,7 i.e., along all surfaces of
the superconductor A is parallel to them; A→0 in the center
of the superconductor; and � ·A=0. In this special case, the
London relation20 states that the supercurrent density is
proportional to the vector potential in the London gauge.
Using this relation, we find that the supercurrent density is
J�−�2e /��A=−�2e /��Byex, i.e., there is a supercurrent den-
sity of magnitude ��2e /��Bl flowing to the left at the top
�long� edge of the strip and to the right at the bottom �long�
edge. At the two short ends of the strip, the two supercurrents
must be connected, so there is a supercurrent density of mag-
nitude ��2e /��Bl flowing down the left �short� edge of the
strip and up the right �short� edge �see Fig. 4�. Near the short
ends of the strips, our choice of gauge no longer satisfies the
criteria for being a London gauge, and therefore �� may be
nonzero. As in our choice of gauge A points in the ex direc-
tion, the supercurrent on the ends of the strip along ey must
come from the �y� term. Near the center of the short edge
�y�=−2�c1l /�0B. The phase difference between the points
�−L ,−a� and �−L ,a� is therefore given by

��B� = �
−a

a

�y�dy = −
2�c1

�0
B2al , �5�

where we have substituted 2� /�0 for 2e /� and c1�a / l� is a
function of order unity, which accounts for how the current

flows around the corners. As we shall show, c1 depends only
weakly on a / l, and is constant in the limit a
 l.

Finally, we obtain the magnetoresistance period by substi-
tuting Eq. �5� into Eq. �4�,

�B = �� �0

c14al
�−1

+ � �0

2ab
�−1�−1

. �6�

Thus, we see that for certain geometries the period is largely
determined not by the flux threading through the geometric
area 2ab but by the response of the leads and the correspond-
ing effective area 4al, provided the nanowires are suffi-
ciently short �i.e., b
 l�, justifying our assumption of ignor-
ing the phase gradient induced in the nanowires by the
magnetic field.

In fact, we can also make a prediction for the periodicity
of the magnetoresistance at high magnetic fields, i.e., when
vortices have penetrated the leads �see Sec. III A�. To do this,
we should replace l in Eq. �6� by the characteristic intervor-
tex spacing r. Note that if r is comparable to b, we can no
longer ignore the flux through the AB contour. Furthermore,
if r
b, then the flux through the AB contour determines
periodicity and one recovers the usual Aharonov-Bohm type
of phenomenology.

III. MESOSCALE SUPERCONDUCTING LEADS

In this section and the following one, we shall develop a
detailed model of the leads and nanowires that constitute the
mesoscopic device.

A. Vortex-free and vorticial regimes

Two distinct regimes of magnetic field are expected, de-
pending on whether there are trapped �i.e., locally stable�
vortices inside the leads. As described by Likharev,8 a vortex
inside a superconducting strip-shaped lead is subject to two
forces. First, due to the currents induced by the magnetic
field, there is a Magnus force pushing it toward the middle of
the strip. Second, there is a force due to image vortices
�which are required to enforce the boundary condition that
no current flows out of the strip and into the vacuum� pulling
the vortex toward the edge. When the two forces balance at

FIG. 4. Current profile in a long superconducting strip, calcu-
lated for a finite-length strip by summing the series for ��
− �2� /�0�A 	from Eq. �15�
 numerically. Note that there is no vor-
tex in the center of the lead.

PEKKER et al. PHYSICAL REVIEW B 72, 104517 �2005�

104517-4



the edge of the strip, there is no energy barrier preventing
vortex penetration and vortices enter. Likharev has estimated
the corresponding critical magnetic field to be

Hs 

�0

�d

1

�a�1�
, �7�

where d ��2l� is the width of the strip and a�1��1 for strips
that are much narrower than the penetration depth �i.e., for
d
��.

Likharev has also shown that, once inside a strip, vortices
remain stable inside it down to a much lower magnetic field
Hc1, given by

Hc1 =
�0

�d

2

d
ln� d

4�
� . �8�

At fields above Hc1, the potential energy of a vortex inside
the strip is lower than for one outside �i.e., for a virtual
vortex9�. Therefore, for magnetic fields in the range Hc1
�H�Hs, vortices would remain trapped inside the strip, but
only if at some previous time the field were larger than Hs.
This indicates that hysteresis with respect to magnetic-field
variations should be observed, once H exceeds Hs and vor-
tices become trapped in the leads.

In real samples, in addition to the effects analyzed by
Likharev, there are also likely to be locations �e.g., structural
defects� that can pin vortices, even for fields smaller than
Hc1, so the reproducibility of the resistance versus field curve
is not generally expected once Hs has been surpassed.

As the magnetic field at which vortices first enter the
leads is sensitive to the properties of their edges, we expect
only rough agreement with Likharev’s theory. For sample
219-4, using Likharev’s formula, we estimate Hs=11 mT
�with �=5 nm�. The change in regime from fast to slow os-
cillations is found to occur at 3.1 mT for that sample.5 It is
possible to determine the critical magnetic fields Hs and Hc1
by the direct imaging of vortices. Although we do not know
of such a direct measurement of Hs, Hc1 was determined by
field cooling niobium strips, and found to agree in magnitude
with Likharev’s estimate.10

B. Phase variation along the edge of the lead

In the previous section it was shown that the periodicity
of the magnetoresistance is due to the phase accumulations
associated with the currents along the edges of the leads
between the nanowires. Thus, we should make a precise cal-
culation of the dependence of these currents on the magnetic
field, and this we now do.

1. Ginzburg-Landau theory

To compute ��B�, we start with the Ginzburg-Landau
equation for a thin film as our description of the mesoscopic
superconducting leads,

�� + ����2� +
1

2m*��

i
� −

e*

c
A�2

� = 0. �9�

Here, � is the Ginzburg-Landau order parameter, e*�=2e� is
the charge of a Cooper pair and m* is its mass, and � and �

may be expressed in terms of the coherence length � and
critical field Hc via �=−�2 /2m*�2 and �=4��2 /Hc

2.
The assumptions that the magnetic field is sufficiently

weak and that the lead is a narrow strip �compared with the
magnetic penetration depth� allow us to take the amplitude of
the order parameter in the leads to have the value appropriate
to an infinite thin film in the absence of the field. By express-
ing the order parameter in terms of the �constant� amplitude
�0 and the �position-dependent� phase ��r�, i.e.,

��r� = �0ei��r�, �10�

the Ginzburg-Landau formula for the current density,

J =
e*�

2m*i
��* � � − � � �*� −

e*2

m*c
�*�A�r� , �11�

becomes

J =
e*

m*�0
2�� � ��r� −

e*

c
A�r�� , �12�

and �after dividing by ei��r�� the real and imaginary parts of
the Ginzburg-Landau equation become

0 = ���0 + ��0
3 +

1

2m*�0�� � ��r� −
e*

c
A�r��2� ,

�13a�

0 =
�2

2m*i
�0��2��r� −

e*

�c
� · A�r�� . �13b�

As long as any spatial inhomogeneity in the gauge-covariant
derivative of the phase is weak on the length scale of the
coherence length 	i.e., �����r�− �e* /�c�A�r��
1
, the third
term in Eq. �13a� is much smaller than the first two and may
be ignored, fixing the amplitude of the order parameter at its

field-free infinite thin-film value, viz., �̄0��−� /�. To com-
pute ��r�, we need to solve the imaginary part of the
Ginzburg-Landau equation.

2. Formulation as a Laplace problem

We continue to work in the approximation that the ampli-

tude of the order parameter is fixed at �̄0. Starting from Eq.
�13b�, we see that for our choice of gauge, A=Byex, the
phase of the order parameter satisfies the Laplace equation,
�2�=0. We also enforce the boundary condition that no cur-
rent flows out of the superconductor on boundary surface �,
whose normal is n,

�n · j�� = 0, �14a�

j � ��� −
2�

�0
A� . �14b�

3. Solving the Laplace problem for the strip geometry

To solidify the intuition gained via the physical arguments
given in Sec. II, we now determine the phase profile for an
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isolated superconducting strip in a magnetic field. This will
allow us to determine the constant c1 in Eq. �6�, and hence
obtain a precise formula for the magnetoresistance period. To
this end, we solve Laplace’s equation for � subject to the
boundary conditions �14�. We specialize to the case of a rect-
angular strip.21

In terms of the coordinates defined in Fig. 2, we expand
��x ,y� as the superposition

��x,y� = �L/R + �
k

�Ake
−kx + Bke

kx�sin�ky� , �15�

which automatically satisfies Laplace’s equation, although
the boundary conditions remain to be satisfied. �L�R� is the
phase at the the point in the left �right� lead located halfway
between the wires. In other words, �L=��−L−b ,0� and
�R=��−L ,0� in the coordinate system indicated in Fig. 2.
�L/R are not determined by the Laplace equation and bound-
ary conditions, but will be determined later by the state of
the nanowires.

We continue working in the gauge A=Byex. The boundary
conditions across the edges at y= ± l �i.e., the long edges� are
�y��x ,y= ± l�=0. These conditions are satisfied by enforcing
kn=��n+ 1

2
� / l, where n=0,1 ,2 , . . . . The boundary condi-

tions across the edges at x= ±L �i.e., the short edges� are
�x��x= ±L ,y�=hy �where h�2�B /�0�. This leads to the
coefficients in Eq. �15� taking the values

Bk = − Ak =
h

kn
3l

�− 1�n

cosh�knL�
�n = 0,1, . . . � , �16�

and hence to the solution

��x,y� = �
n=0

�
�− 1�n2h

kn
3l cosh�knL�

sin�kny�sinh�knx� . �17�

Figure 5 shows the phase profiles in the leads, in the region
close to the trench that separates the leads.

C. Period of magnetoresistance for leads having
a rectangular strip geometry

Using the result for the phase that we have just estab-
lished, we see that the phase profile on the short edge of the
strip at x=−L is given by

��− L,y� = −
2hl2

�2 �
n=0

�
�− 1�n

�n +
1

2
�3 sin

��n +
1

2
�y

l
, �18�

where we have taken the limit L→�. We would like to
evaluate this sum at the points �x ,y�= �−L , ±a�. This can be
done numerically. For nanowires that are close to each other
�i.e., for a
 l�, an approximate value can be found analyti-
cally by expanding in a power series in a around y=0,

��− L,a� = ��− L,0� + a� �

�y
��− L,y��

y=0

+
a2

2
� �2

�y2��− L,y��
y=0

+ O�a3� . �19�

The first and third terms are evidently zero, as � is an odd
function of y. The second term can be evaluated by changing
the order of summation and differentiation. �Higher-order
terms are harder to evaluate, as the changing of the order of
summation and differentiation does not work for them.�
Thus, to leading order in a we have

��− L,a� 
 −
8G

�2 hla , �20�

where G��n=0
� 	�−1�n / �2n+1�2

0.916 is the Catalan num-

ber �see Ref. 11�. This linear approximation is plotted, to-
gether with the actual phase profile obtained by the numeri-
cal evaluation of Eq. �18�, in Fig. 6. Hence, the value of c1 in
Eq. �5� becomes c1=8G /�2
0.74, and Eq. �6� becomes

FIG. 5. �Color online� Phase profile in the leads in the vicinity
of the trench, generated by numerically summing the series for �
for a finite-length strip. Arrows indicate phases connected by
nanowires.

FIG. 6. Phase profile on the x=−L �i.e., short� edge of the strip.
Numerical summation 	Eq. �18� with 100 terms
 for L=2 and L
=� �l=1� as well as the linear form from Eq. �20�. Note that the
linear fit is good near the origin �e.g., for a�0.25l�, and the curves
for L=2 and L=� coincide.
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B =
�0

2�
h =

�2

8G

�0

4al
. �21�

To obtain this result, we used the relation ��B� /2=��−L ,a�.

D. Bridge-lead coupling

In order to simplify our analysis, we have assumed that
the nanowires do not exert any influence on the order param-
eter in the leads. We examine the justification for this as-
sumption in the setting of the experiment that we are at-
tempting to describe.5

The assumption will be valid if the bending of the phase
of the order parameter, in order to accommodate any circu-
lating current around the AB contour, occurs largely in the
nanowires. As the phase of the order parameter in the leads
satisfies the Laplace equation, which is linear, we can super-
pose the circulating-current solution with the previously ob-
tained magnetic-field-induced solution. The boundary condi-
tions on the right lead for the circulating-current solution are
n ·��=0 everywhere, except at the two points where the
nanowires are attached to the lead 	i.e., at �x ,y�= �L , ±a�
.
Treating the nanowires as point current sources, the bound-
ary condition on the short edge of the right lead is �x�
= I��0 /Hc

2s��	��y+a�−��y−a�
, where I is the current circu-
lating in the loop, and Hc, s, � are the film critical field,
thickness, and coherence length. By using the same expan-
sion as before, Eq. �15�, we obtain the coefficients of the
Fourier series in the long strip limit,

Ak = I��0/Hc
2s��

2 sin�ka�
kl exp�kl�

. �22�

Having the coefficients of the Fourier series, we can find the
phase difference in the right lead between the two points at
which the nanowires connect to the right lead, induced in this
lead by the current circulating in the loop,

�cc = 2I��0/Hc
2s�� �

n=0

k=1/w
sin2�ka�

kl
� ln�2l/�w� . �23�

Here, we have introduced a large wave-vector k cutoff at the
inverse of the width w of the wire. On the other hand, the
current flowing through the wire is

�Hc2

�0
ws

�


b
, �24�

where �, Hc, and s are the wire coherence length, critical
field, and height �recall that b is the wire length�. To support
a circulating current that corresponds to a phase accumula-
tion of �
 along one of the wires, the phase difference be-
tween the two nanowires in the lead must be on the order of

�cc = �

w

b

�Hc
2s��wire

�Hc
2��film

ln� 2l

�w
� . �25�

For our experiments,5 we estimate that the ratio of �cc to �

is always less than 20%, validating the assumption of weak
coupling.

E. Strong nanowires

We remark that the assumption of weak nanowires is not
obligatory for the computation of the magnetoresistance pe-
riod. Dropping this assumption would leave the period of the
magnetoresistance oscillations unchanged.

To see this, consider �11, i.e., the phase profile in the
leads that corresponds to the lowest energy solution of the
Ginzburg-Landau equation at field corresponding to the first
resistance minimum 	i.e., at B being the first nonzero solu-
tion of Eq. �4�
. For this case, and for short wires, the phase
gain along the wires is negligible, whereas the phase gain in
the leads is 2�, even for wires with large critical current.
Excited states, with vortices threading the AB contour, can
be constructed by the linear superposition of �11 with �0nv

,
where �0nv

is the phase profile with nv vortices at no applied
magnetic field.

This construction requires that the nanowires are narrow,
but works independently of whether nanowires are strong or
weak, in the limit that H
Hc. The energy of the lowest-
energy state always reaches its minimum when the applied
magnetic field is such that there is no phase gain �i.e., no
current� in the nanowires. By the above construction, it is
clear that the resistance of the device at this field is the same
as at zero field, and therefore the minimum possible.

Therefore, our calculation of the period is valid, indepen-
dent of whether the nanowires are weak or strong. However,
the assumption of weak nanowires is necessary for the com-
putation of magnetoresistance amplitude, which we present
in the following section.

IV. PARALLEL SUPERCONDUCTING NANOWIRES AND
INTRINSIC RESISTANCE

In this section, we consider the intrinsic resistance of the
device. We assume that this resistance is due to thermally
activated phase slips �TAPS� of the order parameter, and that
these occur within the nanowires. Equivalently, these pro-
cesses may be thought of as thermally activated vortex flow
across the nanowires. Specifically, we shall derive analytical
results for the asymptotic cases of nanowires that are either
short or long, compared to coherence length, i.e., Josephson
junctions12,13 or Langer-Ambegaokar-McCumber-Halperin
�LAMH� wires;14,15 see also Ref. 16. We have not been able
to find a closed-form expression for the intrinsic resistance in
the intermediate-length regime, so we shall consider that
case numerically.

There are two �limiting� kinds of experiments that may be
performed: fixed total current and fixed voltage. In the first
kind, a specified current is driven through the device and the
time-averaged voltage is measured. Here, this voltage is pro-
portional to the net number of phase slips �in the forward
direction� per unit time, which depends on the height of the
free-energy barriers for phase slips. Why do we expect
minima in the resistance at magnetic fields corresponding to
2�=2m� and maxima at 2�= �2m+1�� for m integral, at
least at vanishingly small total current through both wires?
For 2�=2m�, the nanowires are unfrustrated, in the sense
that there is no current through either wire in the lowest local
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minimum of the free energy. On the other hand, for 2�
= �2m+1�� the nanowires are maximally frustrated: there is
a nonzero circulating current around the AB contour. Quite
generally, the heights of the free-energy barriers protecting
locally stable states decrease with increasing current through
a wire, and thus the frustrated situation is more susceptible to
dissipative fluctuations, and hence shows higher resistance.
Note, however, that due to the interbridge coupling caused
by the phase constraint, the resistance of the full device is
more subtle than the mere addition of the resistances of two
independent, parallel nanowires, both carrying the requisite
circulating current.

In the second kind of experiment, a fixed voltage is ap-
plied across the device and the total current is measured. In
this situation, the interlead voltage is fixed, and therefore the
phase drop along each wire is a fixed function of time.
Hence, there is no interbridge coupling in the fixed voltage
regime. Therefore, the resistance of the device would not
exhibit a magnetic-field dependence. If the voltage is fixed
far away from the wires, but not in the immediate vicinity of
the wires, so that the phase drop along each wire is not
rigidly fixed, then some of the magnetic-field dependence of
the resistance would be restored. In our experiments on two-
wire devices, we believe that the situation lies closer to the
fixed current limit than to the fixed voltage limit, and there-
fore we shall restrict our attention to the former limit.

In the fixed current regime, the relevant independent ther-
modynamic variable for the device is the total current
through the pair of wires, i.e., I� I1+ I2. Therefore, the ap-
propriate free energy to use, in obtaining the barrier heights
for phase slips, is the Gibbs free energy G�I�, as discussed by
McCumber,17 rather than the Helmholtz free energy F���.22

In the Helmholtz free energy, the independent variable can
be taken to be ���L−�R, i.e., the phase difference across
the center of the “trench,” defined modulo 2�. G�I� is ob-
tained from F��� via the appropriate Legendre transforma-
tion,

G�I� = F��� −
�

2e
I� , �26�

where the second term represents the work done on the sys-
tem by the external current source. F��� is the sum of the
Helmholtz free energies for the individual nanowires,

F��� = F1�
1� + F2�
2� , �27�

where F1 �2��
1 �2�� is the Ginzburg-Landau free energy for
first �second� wire and a simplified notation has been used,

1�
1,L←R and 
2�
2,L←R. 
1 and 
2 are related to each
other and to � through the phase constraint Eq. �2�.

A. Short nanowires: Josephson junction limit

If the nanowires are sufficiently short, they may be treated
as Josephson junctions. Unlike the case of long nanowires,
described in the following subsection, in this Josephson re-
gime there is no metastability, i.e., the free energy of each
junction is a single-valued function of the phase difference,
modulo 2�, across it. The phase constraint then implies that

there is a rigid difference between the phases across the two
junctions. As a consequence, nv can be set to zero. The Gibbs
free energy in such a configuration is then

G�I� = −
�

2e
	Ic1 cos�
1� + Ic2 cos�
2� + I�
 , �28�

where Ic1 and Ic2 are the critical currents for the junctions. In
thermodynamic equilibrium, the Gibbs free energy must be
minimized, so the dependent variable � must be chosen such
that �G�I� /��=0.

Using 
1=�+� and 
2=�−�, G�I� may be rewritten in
the form

G̃�I� = −
�

2e
	��Ic1 + Ic2�2 cos2 � + �Ic1 − Ic2�2 sin2 � cos���

+ I�1
 , �29�

where we have shifted the free energy by an additive con-
stant

� �

2e
�I tan−1�� Ic1 − Ic2

Ic2 + Ic1
�tan ��

and

� � � + tan−1�� Ic1 − Ic2

Ic2 + Ic1
�tan �� .

In this model, the option for having Ic1� Ic2 is kept open.
Equation �29� shows that, up to an additive constant, the free
energy of the two-junction device is identical to that of an
effective single-junction device with an effective Ic, which is
given by

Ic = ��Ic1 + Ic2�2cos2 � + �Ic1 − Ic2�2sin2 � . �30�

Thus, we may determine the resistance of the two-junction
device by applying the well-known results for a single junc-
tion, established by Ivanchenko and Zil’berman12 and by
Ambegaokar and Halperin,13

R = Rn
2�1 − x2�1/2

x
exp	−���1 − x2 + x sin−1 x�
sinh���x/2� ,

�31a�

x � I/Ic, � � �Ic/ekBT , �31b�

where Rn is the normal-state resistance of the two-junction
device. This formula for R holds when the free-energy bar-
rier is much larger than kBT, so that the barriers for phase
slips are high. References 12 and 13 provide details on how
to calculate the resistance in the general case of an over-
damped junction, which includes that of shallow barriers.
Figure 7 shows the fits to the resistance, computed using
Eqs. �30� and �31�, as a function of temperature, magnetic
field, and total current for sample 219-4. Observe that both
the field and the temperature dependence are in good agree-
ment with experimental data. In Sec. V B 2, we make more
precise contact between theory and experiment, and explain
how the data have been fitted. We also note that, as it should,
our Josephson junction model exactly coincides with our ex-
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tension of the LAMH model in the limit of very short wires
and for temperatures for which the barrier-crossing approxi-
mation is valid.

B. Longer nanowires: LAMH regime

In this section, we describe an extension of the LAMH
model of resistive fluctuations in a single narrow wire,14,15

which we shall use to make a quantitative estimate of the
voltage across the two-wire device at a fixed total current. In
this regime, the nanowires are sufficiently long that they be-
have as LAMH wires. We shall only dwell on two-wire sys-
tems, but we note in passing that the model can straightfor-
wardly be extended to more complicated sets of lead
interconnections, including periodic, gratinglike arrays �see
Appendix A�.

As the sample is not simply connected, i.e., there is a hole
inside the AB contour, it is possible that there are multiple
metastable states that can support the total current. These
states differ by the number of times the phase winds along
paths around the AB contour. The winding number nv
changes whenever a vortex �or an antivortex� passes across
one of the wires.

In the present theory, we include two kinds of processes
that lead to the generation of a voltage difference between
the leads; see Fig. 8. In the first kind of process 	Fig. 8�a�
,
two phase slips occur simultaneously: a vortex passes across
the top wire and, concurrently, an antivortex passes across
the bottom wire �in the opposite direction�, so that the wind-
ing number remains unchanged. In the second kind of pro-
cess 	Fig. 8�b�
, the phase slips occur sequentially: a vortex
�or antivortex� enters the AB contour by passing across the
top �or bottom� wire, stays inside the contour for some time
interval, and then leaves the AB contour through the bottom
�or top� wire.9

Our goal is to extend LAMH theory to take into account
the influence of the wires on each other. In Appendix C, we
review some necessary ingredients associated with the
LAMH theory of a single wire. As the wires used in the
experiments are relatively short �i.e., 10 to 20 zero-
temperature coherence lengths in length�, we also take care
to correctly treat the wires as being of finite length.

Recall that we are considering experiments performed at a
fixed total current, and accordingly, in all configurations of
the order parameter this current must be shared between the
top and bottom wires. We shall refer to this sharing,

I = I1 + I2, �32�

as the total current constraint. Let us begin by considering a
phase-slip event in a device with an isolated wire. While the
order parameter in that wire pinches down, the end-to-end
phase accumulation must adjust to maintain the prescribed
value of the current through the wire. Now consider the two-
wire device, and consider a phase slip event in one of the
wires. As in the single-wire case, the phase accumulation
will adjust, but in so doing it will alter the current flowing
through the other wire. Thus, in the saddle-point configura-
tion of the two-wire system, the current splitting will differ

FIG. 7. �Color online� Sample 219-4: Experimental data �solid
lines� and theoretical fits using the Josephson junction model
�dashed lines�. �a� Resistance vs temperature curves. �1� Zero mag-
netic field and low total current. �2� Magnetic field set to maximize
the resistance and low total current. �3� Zero magnetic field and
70 nA total current. �b� Resistance as a function of magnetic field at
various temperatures from 1.2 to 2.0 K in 0.1 K increments. The
fitting parameters used were Jc1=639 nA, Jc2=330 nA, Tc1

=2.98 K, and Tc2=2.00 K, with corresponding coherence lengths
�1�0�=23 nm and �2�0�=30 nm. Only one set of fitting parameters
	derived from curves �1� and �2�
 was used to produce all the the-
oretical curves.

FIG. 8. Thermally activated phase slip processes under consideration. �a� Parallel phase slips. �b� Sequential phase slips.
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from that in the locally stable initial �and final� state.
Taking into account the two kinds of phase-slip processes,

and imposing the appropriate constraints �i.e., the total cur-
rent constraint and the phase constraint�, we construct the
possible metastable and saddle-point configurations of the
order parameter in the two-wire system. Finally, we compute
the relevant rates of thermally activated transitions between
these metastable states, construct a Markov chain,18 and de-
termine the steady-state populations of these states. Thus, we
are able to evaluate the time average of the voltage generated
between the leads at fixed current due to these various dissi-
pative fluctuations. We mention that we have not allowed for
wires of distinct length or constitution �so that the Ginzburg-
Landau parameters describing them are taken to be identi-
cal�. This is done solely to simplify the analysis; extensions
to more general cases would be straightforward but tedious.

1. Parallel pair of nanowires

The total Gibbs free energy for the two-wire system is
given by

G�I� = F1�
1� + F2�
2� − 4E��J1 + J2� . �33�

Here, we have followed MH by rewriting the current-phase
term in terms of dimensionless currents in wires i=1,2, i.e.,
Ji defined via Ii=8�cJiE /�0. Moreover, E�Hc

2�� /8� is the
condensate energy density per unit length of wire, and Fi�
i�
is the Helmholtz free energy for a single wire along which
there is a total phase accumulation of 
i. The precise form of
Fi�
i� depends on whether the wire is in a metastable or
saddle-point state.

We are concerned with making stationary the total Gibbs
free energy at specified total current I, subject to the phase
constraint, Eq. �2�. This can be accomplished by making sta-
tionary the Helmholtz free energy on each wire, subject to
both the total current constraint and the phase constraint, but
allowing 
1 and 
2 to vary so as to satisfy these
constraints—in effect, adopting the total current I as the in-
dependent variable. The stationary points of the Helmholtz
free energy for a single wire are reviewed in Appendix C as
implicit functions of 
i, i.e., the end-to-end phase accumula-
tion along the wire. The explicit variable used there is Ji,
which is related to 
i via Eq. �C21�.

2. Analytical treatment in the limit of long nanowires

In the long-wire limit, we can compute the resistance ana-
lytically by making use of the single-wire free energy and
end-to-end phase accumulation derived by Langer and
Ambegaokar14 �and extended by McCumber17 for the case of
the constant-current ensemble�. Throughout the present sub-
section, we shall be making an expansion in powers of 1 /b,
where b is the length of the wire measured in units of the
coherence length, keeping terms only to first order in 1/b.
Thus, one arrives at formulas for the end-to-end phase accu-
mulations and Helmholtz free energies for single-wire meta-
stable �m� and saddle-point �sp� states,17


m��� = �b , �34a�


sp��� = �b + 2 tan−1�1 − 3�2

2�2 �1/2

, �34b�

Fm��� = − E	b�1 − �2�2
 , �34c�

Fsp��� = − E�b�1 − �2�2 −
8�2

3
�1 − 3�2� , �34d�

where � is defined via Ji=�i�1−�i
2�. In the small-current

limit, one can make the further simplification that Ji
�i;
henceforth we shall keep terms only up to first order in �. To
this order, the phase difference along a wire in a saddle-point
state becomes


sp = �b + � − 2�2� . �35�

Next, we make use of these single-wire LAMH results to
find the metastable and saddle-point states of the two-wire
system, and use them to compute the corresponding barrier
heights and, hence, transition rates. At low temperatures, it is
reasonable to expect that only the lowest few metastable
states will be appreciably occupied. These metastable states,
as well as the saddle-point states between them, correspond
to pairs, �1 and �2, one for each wire, that satisfy the total
current constraint as well as the phase constraint,

�1 + �2 = J , �36�


1��1� − 
2��2� = 2�nv + 2� , �37�

where we need to substitute the appropriate 
m/sp��i� from
Eqs. �34a� and �35� for 
i��i�.

In the absence of a magnetic field �i.e., �=0�, the lowest-
energy state is the one with no circulating current, and the
current split evenly between the two wires. This corresponds
to the solution of Eqs. �36� and �37� with n=0, together with
the substitution �34a� for 
i��i� for both wires �i.e., 
1=�1b
and 
2=�2b�. Thus we arrive at the solution

�1 = J/2, 
1 = bJ/2, �38a�

�2 = J/2, 
2 = bJ/2. �38b�

If we ignore the lowest �excited� metastable states, then only
a parallel phase-slip process is allowed. The saddle point for
a parallel phase slip corresponds to a solution of Eqs. �36�
and �37� with n=0 and the substitution �35� for 
i��i� for
both wires,

�1 = J/2, 
1 = bJ/2 + � − 2�2J/2, �39a�

�2 = J/2, 
2 = bJ/2 + � − 2�2J/2. �39b�

The change in the phase difference across the center of the
trench, �����sp−�m�, is �−2�2� for a forward phase slip
and −�−2�2� for a reverse phase slip. The Gibbs free-
energy barrier for the two kinds of phase slips, computed by
subtracting the Gibbs free energy for the ground state from
that of the saddle-point state, is

PEKKER et al. PHYSICAL REVIEW B 72, 104517 �2005�

104517-10



�G = E�16�2

3
± 4J�� . �40�

The former free energy is obtained by substituting Eq. �34c�
into Eq. �33� for both wires; the latter one is obtained by
substituting Eq. �34d� into Eq. �33� for both wires. We note
that the Gibbs free-energy barrier heights for parallel phase
slips �in both the forward and reverse directions� are just
double those of the LAMH result for a single wire. From the
barrier heights, we can work out the generated voltage by

appealing to the Josephson relation, V= �� /2e��̇, and to the
fact that each phase slip corresponds to the addition �or sub-
traction� of 2� to the phase. Hence, we arrive at the current-
voltage relation associated with parallel phase slips at �=0,

V�=0,par =
�

e
�e−�E�16�2/3�sinh�I/I0� , �41�

where the prefactor � may be computed using time-
dependent Ginzburg-Landau theory or extracted from experi-
ment, and I0=4e /�h.

If we take into account the two lowest excited states,
which we ignored earlier, then voltage can also be generated
via sequential phase slips �in addition to the parallel ones,
treated above�. To tackle this case, we construct a diagram in
which the vertices represent the metastable and saddle-point
solutions of Eqs. �36� and �37�, and the edges represent the
corresponding free-energy barriers; see Fig. 9. Pairs of
metastable-state vertices are connected via two saddle-point-

state vertices, corresponding to a phase slip on either the top
or the bottom wire. To go from one metastable state to an-
other, the system must follow the edge out of the starting
metastable state leading to the desired saddle-point state. We
assume that, once the saddle-point state is reached, the top of
the barrier has been passed and the order parameter relaxes
to the target metastable state. �To make the graph more leg-
ible, we have omitted drawing the edge that corresponds to
this relaxation process.� To find the Gibbs free-energy differ-
ence between a metastable state and a saddle-point state, we
need to know the phase difference across the center of the
trench. To resolve the ambiguity of 2� in the definition of �,
the phase difference can be found by following the wire with
no phase slip. To further improve the legibility of Fig. 9, the
free-energy barriers are listed in a separate table to the right.
Note that a phase slip on just one of the wires, being only
half of the complete process, can be regarded as a gain in
phase of ±� for the purposes of calculating voltage, as indi-
cated in both the graph and the table.

Once the table of barrier heights has been computed, we
can construct a Markov chain on a directed graph, where the
metastable states are the vertices—in effect, an explicit ver-
sion of our diagram. In general, each pair of neighboring
metastable states, sn and sn+1, is connected by four directed
edges,

sn ——→
top

sn+1, sn ——→
bottom

sn+1, �42a�

FIG. 9. Diagram representing
the ground state �central filled
circle�, the two lowest-energy
metastable states �left and right
filled circles�, and the saddle-point
states connecting them �open
circles� for the case of magnetore-
sistance minimum �i.e., �
=0,� , . . .�. The saddle-point states
at the top of the graph correspond
to phase slips in the top wire �i.e.,
wire 1�; those at the bottom corre-
spond to the bottom wire �i.e.,
wire 2�. �Saddle-point states for
parallel phase slips are not
shown.� For each state �1 and �2

are listed. For each barrier �repre-
sented by an edge and labeled by
a through h�, the table at the right
lists the gain in phase across the
trench, the gain in Helmholtz free
energy, the barrier height �i.e., the
gain in Gibbs free energy�, and the
amount of phase that would effec-
tively be generated at the end of
the phase slip event �i.e., upon
completion of a closed loop, the
amount of phase generated is the
sum of the effective phases�.
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sn ←——
top

sn+1, sn ←——
bottom

sn+1, �42b�

where the probability to pass along a particular edge is given
by P�·�=exp−��G�·�, in which �G�·� may be read off from
the table in Fig. 9.

We denote the occupation probability of the nth meta-
stable state by on, where n corresponds to the n in the phase
constraint �2�. on may be computed in the standard way, by
diagonalizing the matrix representing the Markov chain.18

Each move in the Markov chain can be associated with a
gain in phase across the device of ±�, as specified in Fig. 9.
Thus, we may compute the rate of phase gain, and hence the
voltage

V =
��

4e
�
�nm�

on

gn,m
	P�sn ——→

top
sm� − P�sn ——→

bot
sm�
 ,

�43�

where the rate prefactor � is to be determined, �nm� indi-
cates that the sum runs over neighboring states only, and gn,m
keeps track of the sign of the phase gain for reverse phase
slips,

gn,m = � 1 if m � n ,

− 1 if m � n .
� �44�

For the case �=0, and keeping the bottom three states only,
the voltage generated via sequential phase slips turns out to
be

V�=0,seq =
2�

e
�e−�E	�8�2/3�+��2/b�
sinh�I/2I0� . �45�

Having dealt with the case of �=0 �and hence obtained
the value of the resistance at magnetic fields corresponding
to resistance minima�, we now turn to the case of �=� /2,
i.e., resistance maxima.

In this half-flux quantum situation, there are two degen-
erate lowest-energy states, with opposite circulating currents.
These states are connected by saddle-point states in which a
phase slip is occurring on either the top or bottom wire. The
diagram of the degenerate ground states and the saddle-point
states connecting them is shown in Fig. 10. By comparing
the diagram with the associated table, it is easy to see that the
free-energy barriers are biased by the current, making clock-
wise traversals of Fig. 10 more probable than counterclock-
wise traversals. As there are only two metastable states being
considered, and as they are degenerate, it is unnecessary to
go through the Markov chain calculation; clearly, the two
states each have a population of 1

2 . The voltage being gener-
ated by the sequential phase slip is then given by

V�=�/2,seq =
�

2e
�e−�E	�8�2/3�−��2/b�
sinh�I/2I0� . �46�

V�=�/2,seq is larger than the sum of V�=0,seq and V�=0,par, so, as
expected, the resistance is highest at magnetic fields corre-
sponding to �=� /2. For very long wires, the perturbation of
one wire when a phase slip occurs in the other is very small,
and therefore we expect that the dependence of resistance on
magnetic field will decrease with wire length. Indeed, for
very long wires, the difference in barrier heights to sequen-
tial phase slips between the �=0 and �=� /2 cases disap-
pears 	i.e., Eq. �45� and �46� agree when b�1
.

3. Numerical treatment for intermediate-length nanowires

Instead of using the long-wire approximation, Eqs.
�34a�–�34d�, we can use the exact functions for the end-to-

FIG. 10. Diagram and corresponding table for the case of mag-
netoresistance maxima �i.e., �=� /2 ,3� /2 , . . .�. See the caption to
Fig. 9 for explanation of the diagram.

FIG. 11. �Color online� Squared amplitude u�b /2� of the order
parameter at the end of a wire, as a function of its value u0=u�0� at
the midpoint of the wire, computed using the JacobiSN function
	see Eq. �C20b�
, for the case b=16, J=0.235. The black line cor-
responds to trajectories that do not go through a pole; the gray line
corresponds to trajectories that do pass through at least one pole.
The intersection of the dashed and black lines represents those tra-
jectories that satisfy the boundary condition u�±b /2�=1. 	The inter-
section of the dashed-dotted and black lines represents trajectories
that start and stop at the same point, i.e., u�b /2�=u0
.
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end phase accumulation along a wire 
(J���) and the Helm-
holtz free energy Fm/sp(J���). By dropping the long-wire ap-
proximation, as the temperature approaches Tc and the
coherence length decreases, the picture correctly passes to
the Josephson limit. In this approach, the total current and
the phase constraints must be solved numerically, as 
(J���)
is a relatively complicated function. Figure 12 provides an
illustration of how, for a single wire, the function J�
� de-
pends on its length. We shall, however, continue to use the
barrier-crossing approximation. Because the barriers get
shallower near Tc, our results will become unreliable �and,
indeed, incorrect� there.

The form of the order parameter that satisfies the
Ginzburg-Landau equation inside the wire is expressed in
Eqs. �C20b� and �C6�. Therefore, to construct the functions

�J� and Fm/sp�J� 	i.e., Eqs. �C21� and �C22�
, we need to
find u0�J�, i.e., the squared amplitude of the order parameter
in the middle of the wire. Hence, we need to ascertain suit-
able boundary conditions obeyed by the order parameter at
the ends of the wire, and use the relation between the squared
amplitude of the order parameter in the middle of the wire
and at the edges �see Fig. 11�.23 For thin wires, a reasonable
hypothesis is that the amplitude of the order parameter at the
ends of the wire matches the amplitude in the leads,

f�z = ± b/2�2 =
Hcfilm

2 �T��film
2 �T�

Hcwire
2 �T��wire

2 �T�
. �47�

For wires made out of superconducting material the same as
�or weaker than� the leads, this ratio is always larger than
unity.23

Once we have computed the functions 
�J� and Fm/sp�J�
for both saddle-point and metastable states on a single wire,
we can use the phase and total current constraints to build the
saddle-point and metastable states for the two-wire device.
We proceed as before, by constructing a Markov chain for
the state of the device, except that now we include in the
graph all metastable states of the device. By diagonalizing

the Markov chain, we find the populations of the various
metastable states and, hence, the rate of gain of �.

V. CONNECTIONS WITH EXPERIMENT

In this section, a connection is made between our calcu-
lations and our experiments.5 First, the predicted period of
the magnetoresistance oscillations is compared to the experi-
mentally obtained one. Then, the experimentally obtained re-
sistance versus temperature curves are fitted using our exten-
sion of the IZAH Josephson junction model �for shorter
wires� and our extension of the LAMH wire model �for
longer wires�.

A. Device fabrication

Four different devices were successfully fabricated and
measured. The devices were fabricated by suspending DNA
molecules across a trench and then sputter-coating them with
the superconducting alloy of MoGe. The leads were formed
in the same sputter-coating step, ensuring seamless contact
between leads and the wires. Next, the leads were truncated
lithographically to the desired width. In the case of device
930-1, after being measured once, its leads were further nar-
rowed using focused ion beam milling, and the device was
remeasured. For further details of the experimental proce-
dure, see Ref. 5.

B. Comparison between theory and experiment

1. Oscillation period

The magnetoresistance periods obtained for four different
samples are summarized in Table I. The corresponding the-
oretical periods were calculated using Eq. �6�, based on the
geometry of the samples, which was obtained via scanning
electron microscopy. To test the theoretical model, the leads
of one sample, sample 930-1, were narrowed using a focused
ion beam mill, and the magnetoresistance of the sample was
remeasured. The theoretically predicted periods all coincide
quite well with the measured values, except for sample
219-4, which was found to have a “�” shaped notch in one
of the leads �which was not accounted for in calculating the
period�. The notch effectively makes that lead significantly
narrower, thus increasing the magnetoresistance period, and
this qualitatively accounts for the discrepancy.

For all samples, when the leads are driven into the vortex
state, the magnetoresistance period becomes much longer,
approaching the Aharonov-Bohm value for high fields. This
is consistent with the theoretical prediction that the period is
then given by Eq. �6�, but with l replaced by the field-
dependent intervortex spacing r.

2. Oscillation amplitude

We have made qualitative and quantitative estimates of
the resistance of two-bridge devices in several limiting cases.
For devices containing extremely short wires 	b
��T�
,
such as sample 219-4, the superconducting wires cannot sup-
port multiple metastable states, and thus they operate essen-
tially in the Josephson junction limit, but with the junction

FIG. 12. Current �in units of the critical current� vs end-to-end
phase accumulation for superconducting wires of various lengths:
0� �solid line�, 1.88�, 5.96�, 14.4� �dotted line�. The transition from
LAMH to Josephson junction behavior is evident from the loss of
multivaluedness of the current, as the wire length is reduced.
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critical current being a function of temperature given by
LAMH theory as Ic�T�= Ic�0��1−T /Tc�3/2. A summary of fits
to the data for this sample, using the Josephson junction
limit, is shown in Fig. 7. On the other hand, for longer wires
it is essential to take into account the multiple metastable
states, as is the case for sample 930-1, which has wires of
intermediate length. A summary of numerical fits for this
sample is shown in Fig. 13. In all cases, only the two low
total-current magnetoresistance curves were fitted. By using
the extracted fit parameters, the high total-current magne-

toresistance curves were calculated, with their fit to the data
serving as a self-consistency check. As can be seen from the
fits, our model is consistent with the data over a wide range
of temperatures and resistances. We remark, however, that
the coherence length required to fit the data is somewhat
larger than expected for MoGe.

VI. CONCLUDING REMARKS

The behavior of mesoscale NQUIDs composed of two
superconducing leads connected by a pair of superconduct-
ing nanowires has been investigated. Magnetoresistance
measurements5 have revealed strong oscillations in the resis-
tance as a function of magnetic field, and these were found to
have anomalously short periods. The period has been shown
to originate in the gradients in the phase of the superconduct-
ing order parameter associated with screening currents gen-
erated by the applied magnetic field. The periods for five
distinct devices were calculated, based on their geometry,
and were found to fit very well with the experimental results.

The amplitude of the magnetoresistance has been esti-
mated via extensions, to the setting of parallel superconduct-
ing wires, of the IZAH theory of intrinsic resistive fluctua-
tions in a current-biased Josephson junction for the case of
short wires and the LAMH theory of intrinsic resistive fluc-
tuations in superconducting wires for pairs of long wires. In
both cases, to make the extensions, it was necessary to take
into account the interwire coupling mediated through the
leads. For sufficiently long wires, it was found that multiple
metastable states, corresponding to different winding num-
bers of the phase of the order parameter around the AB con-
tour, can exist and need to be considered. Accurate fits have
been made to the resistance versus temperature data at vari-
ous magnetic fields and for several devices by suitably tun-
ing the critical temperatures, zero-temperature coherence
lengths, and normal-state resistances of the nanowires.

As these device are sensitive to the spatial variations in
the phase of the order parameter in the leads, they may have
applications as superconducting phase gradiometers. Such
applications may include the sensing of the presence in the
leads of vortices or of supercurrents flowing perpendicular to
lead edges.
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APPENDIX A: MULTIWIRE DEVICES

In this appendix, we give an example of how to extend the
theory presented in this paper to the case of devices compris-
ing more than two wires. In our example, we consider an
array of n identical short wires �i.e., wires in the Josephson

FIG. 13. �Color online� Sample 930-1: Resistance vs tempera-
ture curves. Experimental data �full lines� and theoretical fits using
the LAMH-type model in the intermediate regime �dashed lines�.
Theoretical curves terminate when the short-wire regime is reached,
i.e., 5��T��b. �1� Zero magnetic field and low total current. �2�
Magnetic field set to maximize the magnetoresistance and low total
current. �3� Zero magnetic field and 80 nA total current. �4� Mag-
netic field set to maximize the resistance and 80 nA total current.
The fit on the left was optimized numerically, and the one on the
right was obtained by hand, showing that a more realistic value of
�01 remains reasonably consistent.
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junction limit� spaced at regular intervals. We continue to
work at a fixed total current and to ignore charging effects.
The end-to-end phase accumulations along the wires are re-
lated to each other as


2 = 
1 + 2� ,


3 = 
1 + 4� ,

�


n = 
1 + 2�n − 1�� , �A1�

i.e., 
n−
1=2�n−1�� �for n=2, . . . ,N�, where � is the phase
accumulation in one of the leads between each pair of adja-
cent wires. The Gibbs free energy of the multiwire sub-
system is given by

G�I,
1� = −
h

2e
�Ic�

m=1

n

cos	
1 + 2�m − 1��
 + I
1� ,

�A2�

where I is the total current and we are assuming that the
wires have identical critical currents. As for the two-junction
case, this junction array is equivalent to a single effective
junction. Figure 14 shows the critical current of this effective
junction as a function of � for devices comprising 2, 5, and
15 wires. The magnetoresistance of such a device then fol-
lows from IZAH theory, i.e., Eq. �31�.

APPENDIX B: PHYSICAL SCALES

It is convenient to express the results of the long-wire
model, Eqs. �41�, �45�, and �46�, in terms of macroscopic
physical parameters. Following Tinkham and Lau,19 we ex-
press the condensation energy scale per coherence length of
wire as

E = 0.22kBTc�1 − t�3/2 Rq

RN

b

��T = 0�
, �B1�

where t�T /Tc, RN is the normal-state resistance of the de-
vice, and Rq�h /4e2
6.5 k� is the quantum of resistance.
The LAMH prefactor for sequential phase slips then be-
comes

� =
b�1 − t

��T = 0�
� 8�2E

3kBTc
�1/2

8kB�Tc − T�
��

, �B2�

and for parallel phase slips becomes

� = � b�1 − t

��T = 0�
�2�16�2E

3kBTc
�1/2

8kB�Tc − T�
��

. �B3�

The remaining parameters in the model are RN, Tc, and ��T
=0�. The normal-state resistance and the critical temperature
may be obtained from the R versus T curve. The coherence
length may be obtained by comparing E obtained from the
critical current at low temperature, via

Ic =
2

3�3

16�E
�0

, �B4�

with E obtained via Eq. �B1�.
In experiment, it is expected that the two wires are not

identical. The long-wire model can be easily extended to this
case. The number of parameters to be fitted would then ex-
pand to include the normal-state resistance for each wire
�only one of which is free, as the pair are constrained by the
normal-state resistance of the entire device, which can be
extracted from the R versus T curve�, a zero-temperature
coherence length for each wire, and a critical temperature for
each wire.

APPENDIX C: LAMH THEORY FOR A SINGLE BRIDGE

In this appendix, we reproduce useful formulas from
LA,14 and rewrite them in a way that is convenient for fur-
ther calculations, especially for numerical implementation.
As in the case of single-wire LAMH theory, one starts with
the Ginzburg-Landau free energy

F = �
−b/2

b/2

����2 +
�

2
���4 +

�2

2m
����2dz . �C1�

The relationships between the parameters of the Ginzburg-
Landau free energy �� and ��, coherence length �, the
condensation energy per unit coherence length E, the cri-
tical field Hc, and the cross-sectional area of the wire �
are given by �2 /�=Hc

2� /8�=E /� and �2=�2 /2m���. Fol-
lowing McCumber,17 it is convenient to work in terms of
the dimensionless units obtained using the transforma-
tions ���2→ �� /�����2, z→��2m��� /�2�z, and b→b /�
=��2m��� /�2�b. In terms of these units, the free energy be-
comes

F = 2E�
−b/2

b/2 �1

2
�1 − ���2�2 + ����2�dz . �C2�

FIG. 14. Effective single junction critical current for a multi-
junction array, as a function of �. The critical current has been
rescaled so that Jc��=0�=1. Note the similarity with a multislit
interference pattern.
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The Ginzburg-Landau equation is obtained by varying the
free energy,

�F = 0 ⇒ − � + ���2� − �2� = 0. �C3�

By writing �= fei� and taking the real and imaginary parts of
the Ginzburg-Landau equation, one obtains

− f + f3 + ����2f = f �, �C4�

2��f� + ��f = 0. �C5�

From Eq. �C5�, one finds the current conservation law,

f2�� = J , �C6�

where J is identified with the dimensionless current
�1/2i���*��−���*�. The physical current �in stat-amps� is
given by I=JcHc

2�� /�0. Expressing �� in terms of J, Eq.
�C4� becomes

f � = − f + f3 +
J2

f3 = −
d

df
U�f� , �C7�

where the effective potential U�f� is given by

U�f� =
J2

2f2 +
f2

2
−

f4

4
. �C8�

Following LA, Eq. �C8� can usefully be regarded as the
equation of motion for a particle with position f�z�, where z
plays the role of time, moving in the potential U�f�.14 Before
proceeding to find the solution of this equation, we pause to
consider the type of trajectories that are possible. Later, it
will be demonstrated that at the edge of the wire f�±b��1,
so the particle starts to the right of the hump; see Fig. 15. If
the total energy of the particle is less than the height of the
hump, the particle will be reflected by the hump. If, however,
the particle starts with more energy than the height of the
hump, it will pass over the hump and be reflected by the
J2 /2f2 dominated part of U�f�.

The equation of motion can be solved via the first integral
�i.e., multiplying both sides by f and integrating with respect
to f�,

E =
�f��2

2
+ U�f� ⇒ f� = �2	E − U�f�
 , �C9�

where E is a constant of integration �i.e., the energy of the
particle in the mechanical analogy�, which gives

z = �
f0

f df
�2	E − U�f�


= �
f0

f fdf
�2f2E − J2 − f4 + f6/2

.

�C10�

It is convenient to apply “initial” conditions at the middle of
the wire, where f�z=0�= f0, and to integrate toward the
edges. We require that the particle come back to its starting
point after a “time” b, i.e., at the edges of the wire the am-
plitude of the order parameter must match the boundary con-
dition. Therefore, the middle of the wire must be the turning
point for the particle, i.e., at z=0 we have E=U�f0�.

What follows next is a series of manipulations via which
one can express solution for f�z� in terms of special func-
tions.

Step 1: substitution: f2→u,

z =
1

2
�

u0

u du
�2Eu − J2 − u2 + u3/2

. �C11�

Step 2: substitution: u→u0+�,

�C12�

2z = �
0

u−u0 d�

���� J2

u0
− u0 + u0

2�
�

+ �3

2
u0 − 1�

�

� + �2/2��1/2 ,

2z = �
0

u−u0 d�

	��� + �� + �2/2�
1/2 �C13�

�C14�

=�
0

u−u0 �2d�

	��� + � + ��2 − 2�
−u1

��� + � − ��2 − 2�
−u2

�
1/2

=�
0

u−u0 �2d�

	��� − u1��� − u2�
1/2 . �C15�

Step 3: substitution: �→u1z2,

2z =
2�2
�u2

�
0

��u−u0�/u1 d 

�� 2 − 1��u1

u2
 2 − 1��1/2 �C16�

FIG. 15. “Mechanical potential” U	u= f2
 at an intermediate
value of the dimensionless current, plotted as a function of ampli-
tude squared to make comparison with Fig. 11 more convenient.

PEKKER et al. PHYSICAL REVIEW B 72, 104517 �2005�

104517-16



=
2�2
�u2

EllipticF�ArcSin��u − u0

u1
�,

u1

u2
� . �C17�

The following definitions have been used:

�	u0
 � J2/u0 − u0 + u0
2, �	u0
 �

3

2
u0 − 1, �C18�

u1	�,�
 � − � − ��2 − 2�, u2	�,�
 � − � + ��2 − 2� .

�C19�

By inverting relation �C17�, one obtains an explicit equa-
tion for the amplitude of the order parameter as a function of
position along the wire �see Fig. 16�,

f2�z� = u0 + u1 sin2�JacobiAmplitude�z�u2

2
,
u1

u2
��
�C20a�

=u0 + u1JacobiSn2�z�u2

2
,
u1

u2
� . �C20b�

The end-to-end phase difference along the wire may be
found by using the current conservation law. Thus one ob-
tains


 = �
−b/2

b/2 J

f2�z�
dz = 2J�

0

b/2 dz

u0 + u1JacobiSn2�z�u2

2
,
u1

u2
� .

�C21�
The Helmholtz free energy can be found by substituting

the expressions for f�z� and ���z� into the expression for the
free energy. One then obtains

F = 4E�
0

b/2

dz�1

2
− 2f2 + f4 + J2/u0 + u0 − u0

2/2� ,

�C22�

where E was expressed in terms of u0. Equations �C21� and
�C22� provide expressions for 
 and F which are true regard-
less of the length of the wire, and therefore may be used as a
starting point for computing the Gibbs free energy of the
various metastable states subject to the total current and the
phase constraints.
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