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In this paper a previous equation for the evolution of vortex line density L in counterflow superfluid
turbulence in rotating containers is generalized, in order to take into account the influence of the walls. This
model incorporates the effects of counterflow velocity V and of angular velocity � of the container, and
introduces corrective terms depending on � /d, � being the intervortex spacing, of the order L−1/2, and d the
diameter of the channel. The stability of the solutions for L, for several regimes of averaged counterflow
velocity V and angular velocity �, is analyzed. Our mathematical analysis reveals that qualitative consistency
allows us to reduce the four coefficients characterizing the dependence on � /d to only one additional indepen-
dent coefficient, linked to the critical angular velocity �c needed for the appearance of vortex lines in a rotating
superfluid.
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I. INTRODUCTION

In recent years there has been growing interest in super-
fluid turbulence,1–3 because of its similarity with classical
turbulence.4,5 Among the aspects receiving much attention,
there are the effects of the walls as, for instance, on boundary
layers. Besides its theoretical interest, the influence of walls
on superfluid turbulence may have a practical incidence in
refrigeration of small devices by means of flow of superfluid
helium along narrow tubes: when the tubes become nar-
rower, the relevance of wall effects will increase. In the
analysis we will perform, and following previous literature
on this problem, we emphasize the spatial average of the heat
flux, rather than its detailed local features.

Superfluid turbulence has been much studied in two
physical situations: counterflow experiments and rotating
containers. As is known, thermal counterflow induces a
quasi-isotropic disordered tangle, while rotation creates an
ordered polarized vortex array. In both cases the vortex
tangle is described by introducing a scalar quantity L, the
average vortex line length per unit volume, briefly called the
vortex line density. In pure rotation, the vortex lines are
aligned along the rotation axis, and L depends on the angular
velocity � of the sample as6

L = LR �
2�

�
, �1.1�

where � is the quantum of vorticity ��=h /m, with h the
Planck constant, and m the mass of the helium atom: �
�9.97�10−4 cm2/s�. In counterflow experiments, there is a
disordered tangle of vortex lines, with a line density L �in
fully developed turbulence� given by6

L = LH � AV2, �1.2�

where V= ��V�� is the modulus of the spatial average of the
counterflow velocity V=vn−vs, vn and vs being the veloci-
ties of normal and superfluid components, respectively. This

averaged quantity is related to the absolute value of the heat
flux by q=�TSV, q, �, T, and S being, respectively, the heat
flux, density, temperature, and entropy of liquid helium II.
Here, following most of the references on this topic, we con-
sider V as homogeneous; one may consider it as an average
value of V over the cross section of the tube. This is so,
because this average value is the easiest one to measure.
Note that in our analysis for slow rotation the wall effects are
not restricted to a narrow zone near the walls but they have
an effect over the whole cross section, because in this case
the average separation between vortices, L−1/2, is comparable
to the diameter of the channel. Then, it is compatible, in this
situation, to talk about wall effects and consider a homoge-
neous counterflow velocity across the channel.

The evolution of L in superfluid counterflow turbulence is
described by Vinen’s equation,7 which, in its original form,
states that

dL

dt
= �1VL3/2 − 	�L2, �1.3�

with �1 and 	 dimensionless constants. The steady-state so-
lution of Eq. �1.3� is LH= ��1 /	��2V2, which has the form
mentioned in Eq. �1.2�.

A microscopic derivation of Vinen’s equation has been
obtained by Schwarz8 using the vortex filament model and
assuming homogeneous and isotropic turbulence. Recently
Lipniacki9 has modified the Vinen-Schwarz equation, intro-
ducing in it the effects of the anisotropy. He characterizes the
anisotropy by means of a vector I, related to the vortex
tangle structure by I= �s��s�� / ��s���, where s�
 , t� describes
the vortex lines, with 
 the length along the vortices; the
primes indicate differentiation with respect to 
. Angular
brackets stand for averages over the total vortex length of the
tangle.
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When I is parallel to V, Vinen’s equation is obtained. If I
is not directly parallel to V, Lipniacki proposes to modify
Vinen’s equation by writing9

dL

dt
= �V · IL3/2 − 	�L2. �1.4�

The origin of the Lipniacki proposal �1.4� may be found in
the microscopic analysis of vortex dynamics by Schwarz,8

where an equation analogous to �1.4� is derived. Usually, the
term in I is included in the �1 coefficient of Vinen’s equation
�1.3�; indeed comparing �1.4� with �1.3� one finds

�1 = ��I�cos�V · I� . �1.5�

In Refs. 10 and 11, by analogy with the modifications of
transport coefficients in kinetic theory of gases and in gen-
eralized hydrodynamics, nonlocal terms in Vinen’s equation
were introduced, in order to take into account the influence
of a nonvanishing ratio between the average separation �
��L−1/2� between vortex lines and the diameter d of the
channel. In this way the two transitions from the laminar to
the turbulent regime and from type-I �TI� to type-II �TII�
turbulence have been described.

Combined rotation and heat flux recently have been the
object of investigations.3,12–15 Experimental observations16

and numerical simulations13–15 have shown that, in this situ-
ation, the effects of rotation and counterflow are not merely
additive, but they exhibit some subtle nonlinear interplay,
and the vortex tangle appears to be polarized, to accomplish
the rotation. In a previous paper,17 we dealt with the com-
bined situation in the limit of fast rotation. In that work,
neglecting the dependence on L−1/2 /d, the following equation
for evolution of L in counterflow superfluid turbulence in the
presence of rotation was proposed:

dL

dt
= − 	�L2 + ��1V + �2����1/2�L3/2

− ��1� + �4V��/��1/2�L . �1.6�

Here �i and �i are parameters �which may be functions of
temperature, pressure, and the anisotropy I of the tangle�.
The first two terms in Eq. �1.6� are those appearing in Vin-
en’s equation �1.3�; in particular, the coefficient �1 is given
by Eq. �1.5�. Equation �1.6� describes some of the most rel-
evant observed features of counterflow-rotational superfluid
turbulence in the limit of high rotation.17

Here, we shall study from a more general perspective the
situation of combined rotation and counterflow, incorporat-
ing the effects of the walls. These effects are especially rel-
evant in the limit of slow rotation. In this limit, if also the
counterflow velocity is small, the vortex tangle is nonhomo-
geneous and the influence of walls on vortex formation and
destruction is important, as is shown in the simulations of
Refs. 13,15. Following the lines of thought outlined in Refs.
10,11, we modify the model proposed in Ref. 17 introducing
in it corrective terms depending on � /d, to take into account
the influence of channel walls on the evolution of vortex line
density L. The approach used in this paper is phenomeno-
logical. Our aim is to give some insight into the combination
of parameters that are more relevant in the macroscopic de-

scription of this phenomenon, with the hope that our study
can stimulate research in this interesting field.

The plan of the paper is as follows. Section II provides the
basis for an equation describing the evolution of vortex line
density, which includes the influence of V �counterflow�, �
�rotation�, and d �walls� on the evolution of L �Eq. �2.5��. In
Sec. III, the situations V�0, �=0 �Sec. III A� and V=0,
��0 �Sec. III B� are examined. The flow of superfluid he-
lium between two concentric rotating cylinder is also studied
in Sec. III C. Section IV deals with situations with coupled
V�0 and ��0.

II. DERIVATION OF AN EVOLUTION EQUATION
FOR L IN THE PRESENCE OF COUNTERFLOW

AND ROTATION INCORPORATING THE EFFECTS
OF THE WALLS

Besides lacking the influence of walls, Eq. �1.3� does not
incorporate the effect of angular velocity �, which would be
necessary to have a joint description of coupled rotation and
counterflow. The purpose of this paper is to propose an equa-
tion for L incorporating V, �, and d, which will reduce, in
the suitable limit, to the previous generalization in Ref. 17.

First, we briefly recall Vinen’s original derivation of Eq.
�1.3�. Vinen assumes that

dL

dt
= 	dL

dt



f
− 	dL

dt



d
, �2.1�

and, assuming that the growth of L depends on L, V, and �,
he writes

	dL

dt



f
= �L2� f	 V

�L1/2
 , �2.2�

where � f is a dimensionless function which, by analogy with
the growth of a vortex ring, he supposes linearly dependent
on its argument; further, he determines the form of the
�dL /dt�d term, responsible for the vortex decay, in analogy
with classical turbulence, obtaining

	dL

dt



f
= �1VL3/2, 	dL

dt



d
= − 	�L2. �2.3�

Substituting Eq. �2.3� in Eq. �2.1� one obtains immediately
Vinen’s equation �1.3�.

To derive an evolution equation for L in the presence of
counterflow and rotation, motivated by the fact that the for-
mation of vortex lines is now due to V and �, and taking into
account of the presence of channel walls, following the lines
of thought outlined in Refs. 10, 11, and 17, we model the
formation term in Eq. �2.1� as

	dL

dt



f
= �L2� f	 V

�L1/2 ,
�1/2

��L�1/2 ,
L−1/2

d

 . �2.4�

In the regime of low � �and V�, also the line density L is
small and we cannot neglect the influence of the walls on
evolution of L; therefore, we must incorporate in Eq. �2.4�
terms depending on L−1/2 /d, which take into account these
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effects. Here, for the sake of simplicity, we will not consider
corrections of the destruction contribution, like those pro-
posed in Ref. 10. Indeed, in Ref. 10 it was shown that com-
parison with experiments indicates that wall effects are much
more relevant in reducing the formation term. This is not
evident a priori and, to our knowledge, it is still not com-
pletely understood in microscopic terms, but we take advan-
tage of this fact to focus our attention on the most relevant
features.

Choosing a quadratic dependence of � f on L−1/2 /d, one
obtains the following equation for the evolution of vortex
line density L:

dL

dt
= − 	�L2 + 	�1V + �2

��� − �3
�

d

L3/2

+ 	�2
V

d
+ �3

���

d
− �1� − �4

V��

��
− �4

�

d2
L .

�2.5�

As in Ref. 17, we have chosen the linear term depending on
�� as a production term, while we have chosen the negative
sign in the terms independent of V and ��, because the
influence of walls hinders vortex formations, as was seen in
Ref. 10. Thus, the first term in Eq. �2.5�, namely, −	�L2,
describes the collisions and recombinations of vortex lines
among themselves, whereas the terms −�3�� /d�L3/2 and
−�4�� /d2�L describe the collisions of vortices with the walls
of the container. The term −�1� describes the ordering ten-
dency of the rotation, which tends to straighten out the oth-
erwise irregular vortex lines of the tangle, thus shortening
them and reducing L. The positive terms in ����1/2 are re-
lated to the Donnelly-Glaberson instability of Kelvin waves
near straight vortex lines under counterflow velocities higher
than a critical velocity proportional to ����1/2. Thus, despite
the lack for the moment of a rigorous derivation of the sev-
eral terms in Eq. �2.5�, their general trends may be given a
physical interpretation. Finally, the term in V�1/2 reflects the
nonadditive contributions of the rotation and the counterflow,
discussed at length in Ref. 17.

Compared with Eq. �1.6�, Eq. �2.5� contains the four ad-
ditional coefficients �2, �3, �4, and �4, related to terms char-
acterizing the influence of walls on the evolution of L. We
will see that our analysis is able to reduce this number to
only one independent coefficient, linked to the critical angu-
lar velocity �c needed for the appearance of vortex lines in a
rotating superfluid.

III. UNCOUPLED REGIME

We will study in detail the solutions of Eq. �2.5�, focusing
on the case in which wall effects are important in the pres-
ence of V and �. This is so when � and V are not too high,
because in this case L is small, in such a way that interline
separation, of the order of L−1/2, becomes comparable to di-
ameter d.

First of all, we study the behavior of Eq. �2.5� in the
limiting uncoupled case with �=0 and with V=0, respec-
tively. This is convenient to identify the physical conse-

quences of several terms and to be able to compare, below,
with ensuing modifications when coupling is considered.

A. Counterflow only

In experiments on counterflow superfluid turbulence the
vortex line density L is observed to develop from a low-
density state TI, characterized by a low density of vortex
lines, to a higher-density regime TII, that can be associated
with the fully developed turbulent state. Furthermore, for
small values of V, a laminar regime is also present in which
vortices are absent. In this work, we have focused our inter-
est on counterflow superfluid turbulence in the regime of low
values of L, i.e., in the laminar and TI regimes, when V is
small. For this reason, we neglect here the corrections con-
sidered in Refs. 10 and 11 to explain the transition from TI to
TII turbulent regimes.

For �=0 �no rotation�, Eq. �2.5� reduces to the following
extension of Vinen’s equation:

dL

dt
= − 	�L2 + 	�1V − �5

�

d

L3/2 + 	�2

V

d
− �4

�

d2
L .

�3.1�

Detailed studies of the evolution equation for the line density
L in counterflow only have been made in Refs. 10 and 11.
Here, we observe only that this equation admits the solution
L=0, corresponding to the absence of a vortex array, which
is stable for V lower than a critical counterflow velocity,
which, in this model, is defined by

Vc
H =

�4�

�2d
. �3.2�

The values of this critical velocity depend strongly on tem-
perature; accordingly to the data of Martin and Tough18 they
are Vc

H=123� /d �for T=1.5 K� and Vc
H=93.2� /d �for T

=1.7 K�. Such a strong variation is not surprising, because of
the fast variation of the densities of the two components with
temperature.

B. Rotation only

Ion experiments19 in rotating helium II which is slowly
accelerated are sufficiently sensitive for evidencing the entry
of a single vortex line. For a cylindrical container of diam-
eter about d=0.1 cm, the appearance of the first line is at
about �0=1.6 rad/s. Since the minimal vorticity required to
create one vortex is the quantum of vorticity �, it is natural to
expect that no vortex line will appear for situation where
2rv��; taking v=�r it follows that the minimum value of
� for the appearance of one vortex would be, in this naive
approximation, ���2/��� /d2�. A more refined analysis by
Hall and Vinen20 predicts for �ctheor

the value

�ctheor
=

2�

d2 ln
d

2r0
, �3.3�

where r0�r0�1 Å� is the core radius of a single vortex line:
the theoretical value �ctheor

, for the container used in Ref. 19
�where d=d0=0.1 cm� was about �ctheor

�0� =1 rad/s. As one
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sees the � critical value �3.3� depends only on � and r0,
besides d itself.

We will show that Eq. �2.5� predicts a result that agrees
with the behavior predicted by Hall and Vinen. Putting then
V=0 in Eq. �2.5� one obtains

dL

dt
= − 	�L2 + 	�2

��� − �3
�

d

L3/2

− 	�1� − �3

���

d
+ �4

�

d2
L . �3.4�

This equation admits the solution L=0, corresponding to the
absence of vortex lines. We obtain, first of all, the critical
value �c which indicates the formation of the �ordered� vor-
tex array. Thus, we study the stability of the solution L=0.
This is done by perturbing this state with a small perturba-
tion �L and studying its evolution. We have, from Eq. �3.4�,

d�L

dt
= �− 2	�L +

3

2
	�2

��� − �3
�

d

L1/2

− �1� + �3

���

d
− �4

�

d2�L . �3.5�

Substituting L=0 in this equation, we obtain

d�L

dt
= 	− �1� + �3

���

d
− �4

�

d2
�L . �3.6�

Thus, at � very small, the L=0 solution is stable, because
the expression before �L in the right-hand side of Eq. �3.6� is
negative. However, it would become stable again for high
values of �, after a region of values of � for which this
solution would be unstable. Such a range of values, writing
���2� /d2, is

�3 − ��3
2 − 4�4�1

2�1
� � �

�3 + ��3
2 − 4�4�1

2�1
. �3.7�

Thus, we must study also the nonzero steady-state solutions
of Eq. �3.4�, which are

L±
1/2 =

�2� − �3

2	d
±

1

2	d

����2� − �3�2 + 4	��3� − �1�2 − �4� . �3.8�

First note that, in order that L=0 is stable until it is sub-
stituted by the solution �3.8�, the expression �3�−�1�2

−�4 �appearing in Eq. �3.8� as well as in Eq. �3.6�� must
have a double zero, i.e., the coefficients �3, �1, and �4 must
satisfy the relation

�3
2 = 4�1�4. �3.9�

In this case, we will find the solution L=0 �laminar regime�
stable for

� � �c = 	 �3

2�1

2 �

d2 �3.10�

�and also for ���c�. Further, for

� � �c1 = 	 �3
��1 + �3

�	

�2
��1 + 2�1

�	

2

�

d2 , �3.11�

we have also the two nonzero solutions �3.8�, which, under
the hypothesis �3.9�, can be written

L±
1/2 =

�2

2	

�� − ��c

��
�1 ±�1 −

4	�1

�2
2 	�� − ��c

�� − ��*
2 ,

�3.12�

where we have put �*= ��3
2 /�2

2��� /d2�. As is seen, the two
critical angular velocities �c and �c1 �and also �*� are pro-
portional to 1/d2. This result is in agreement with the theo-
retical result �3.3� of Hall and Vinen.

For ���c1 both solutions �3.12� are non-negative and
correspond to values of L1/2 acceptable from a mathematical
point of view. We study therefore their stability. Substituting
Eq. �3.12� in Eq. �3.5�, we deduce that the solution L+ is
stable, where it exists, while L− is unstable.

For high values of �, the stable solution of Eq. �3.5� must
reduce to Eq. �1.1�. This happens if �2+ ��2

2−4�1	�1/2

=2�2	. As a consequence, 	, �1, and �2 must satisfy the
relation �2�2=2	+�1. The result �3.12� generalizes the
known result �1.1� to very small values of � �see Fig. 1�.

If, in addition to Eq. �3.9�, also

�2�3 − 2�3�1 = 0, �3.13�

it follows that �c=�*=�c1.

FIG. 1. Stability diagram of stationary solutions �3.12� of Eq.
�3.4� �a� choosing for the coefficients the values obtained below in
Sec. IV �case �c=�*=�c1; �b� choosing �*=0.95�c.
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The metastability region of the vortex-free regime is not
evidenced in experiments. For this reason, in the following,
we will suppose �c=�*=�c1. Under this hypothesis Eq.
�3.4� becomes

dL

dt
= − 	�L2 + �2

����� − ��c�L3/2 − �1��� − ��c�2L

�3.14�

whose stable nonzero stationary solution is simply

LR
1/2 =

1

2	
	1 +�1 −

4	�1

�2
2 
 ��� − ��c�

��
. �3.15�

We will determine, now, for the container used in Ref. 16
the theoretical value �ctheor

�1� . For the container used in Ref. 19

�where d=d0=0.1 cm�, this value was about �cteor

�0� =1 rad/s.
In the experiment described in Ref. 16, the channel has a
square cross section of side 1 cm. By substituting the square
with a circle having diameter d=d1=1 cm, we find that the
critical angular velocity �ctheor

�1� of Ref. 16 is approximately

�ctheor

�1� = �c
�0�d0

2

d1
2

ln�d1/2r0�
ln�d0/2r0�

; �3.16�

since d1=10d0, one obtains

�ctheor

�1� = 1.15 � 10−2 rad/s. �3.17�

Since the theoretical critical angular velocity �c
�1� is some-

what lower than the lowest angular velocity used in experi-
ments described in Ref. 16, we conclude that in the situations
examined in Ref. 16 the vortex-free regime is not evidenced.

Finally, observe that, in our model the logarithmic depen-
dence of �c on d does not appear. This is right if the con-
sidered values of d are of the same order of magnitude. For
example, from the result �3.17�, using Eq. �3.10� we can
easily determine for the coefficient L= ��3 /2�1�2, in the
range of values of d of the order of 1 cm, the value

Lcylinder = 	 �3

2�1

2

= 11.3. �3.18�

The term ln�d /r0� in Eq. �3.3� is not forbidden in our
analysis, but it cannot be derived from it because it has been
partially based on the dimensional analysis, which is not able
to derive this dimensionless term. One could incorporate it
by comparing Eq. �3.10� with Eq. �3.3�, in which case one
has

Lcylinder = 	 �3

2�1

2

=
2


ln

d

2r0
. �3.19�

This logarithmic dependence should then be taken into ac-
count not only here but also in relations �3.9� and �3.13�—
and also �4.1�—which yield �2, �3, and �4 in terms of
�3 /�1.

C. Rotation between two concentric cylinders

Equation �3.14� should be applicable to other situations
with rotation, as for instance to describe some features of

superfluid turbulence in a Couette flow between two concen-
tric cylinders.6,21–23 To do so, we must take into account that
the value �3.10� does refer in general to the vorticity of the
fluid, rather than to the critical angular velocity of the
cylinder—as is known, in a rotating cylinder �=2�, but
when we consider two concentric cylinders, the vorticity �
depends in a more complicated way on the radii and the
velocities of both cylinders, as we will clarify below. Further,
we must take into account that the minimal vorticity required
to create one single row of vortices inside the annulus de-
pends on the geometry of the system.

Thus, we consider now the laminar flow between infi-
nitely long concentric cylinders rotating at angular velocities
�1 and �2. In this case �as in classical fluids� the flow is
given by a combination of solid body rotation and potential
flow, i.e.,6

v = Ar +
B

r
, �3.20�

where

A =
R2

2�2 − R1
2�1

R2
2 − R1

2 , B = −
R1

2R2
2��2 − �1�
R2

2 − R1
2 . �3.21�

The vorticity � for this flow is given by

� = 2�A� =
2�R2

2�2 − R1
2�1�

R2
2 − R1

2 . �3.22�

We consider first the critical angular velocity for the ap-
pearance of vortices in an annular region of fluid between
cylinders rotating at the same angular velocity. In this case,
the velocity distribution is given by Eq. �3.20� with B=0 and
A=�2=�1=�.

As observed by Donnelly and Fetter,24,6 in the annulus
there is relative motion between normal fluid and superfluid.
In fact, the normal fluid velocity is distributed according to
Eq. �3.20�, while in the absence of vortices, the superfluid
motion is potential. Therefore, on the inner part of the annu-
lus we have vs�vn, while on the outer part vs�vn. Donnelly
and Fetter speculate that, in general, vortices will appear
when their presence can minimize the relative velocity V
between the two fluids. Since vn��R2 and vs��R1, one
deduces that a single row of vortices can appear in the an-
nulus if �R2−�R1�� /d, or

� �
�

d2 �3.23�

with d taken here as d=R2−R1.
A careful calculation was addressed in Ref. 24 by Don-

nelly and Fetter, which, using free-energy minimization,
found the following expression for the critical velocity at
which the first array of quantized vortices appears in the
annulus:

�0 =
�

d2 ln	 2d

r0

 . �3.24�

We can also write
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�0 =
�

d2Lannulus with Lannulus =
1


ln	 2d

r0

 . �3.25�

As one sees, we obtain complete agreement with Eq. �3.10�,
choosing ��2 /2�1�2=Lannulus and neglecting the logarithmic
factor. Taking into account that �=� /2 �see Eq. �3.22��, we
note that in this geometry the minimal vorticity required to
create one single row of vortices inside the annulus is

�crit
annulus =

2�Lannulus

d2 . �3.26�

For example, if we choose d�10−3 m and r0�10−10 m the
logarithmic factor appearing in Eq. �3.3� is ln�d /2r0�=15.4
whereas the logarithmic factor in Eq. �3.25� is ln�2d /r0�
=15.7, while if we choose d�10−2 m these two logarithmic
factors assume the values 17.7 and 18.0, respectively. We
deduce from these results that

�crit
annulus �

1

2
�crit

cylinder. �3.27�

This result can be explained by observing that we are dealing
with two very different geometries: the vorticity �crit

cylinder is
the critical � needed for the appearance of a single vortex in
a rotating cylinder, while the vorticity �crit

annulus is the critical �
needed for the appearance of a row of vortices in the rotating
annulus.

Experiments to detect the appearance of the first row of
vortices in an annulus with second sound were carried out by
Bendt and Donnelly.25 Here we have fitted the experimental
data with the function �3.10� obtaining Lannulus
= ���3 /2�1�2�annulus=4.97. In Fig. 2 are reported the experi-
mental data of Ref. 25 and our results. As one can see, except
for the narrowest gap, the experimental results are in good
agreement with our model.

In Couette flow, it is usual to keep still the outer cylinder
�radius R2� and to make the internal cylinder �radius R1�
rotate at an angular speed �1. This induces in the region
within the annulus a vorticity � of the order of

� =
2R1

2�1

R2
2 − R1

2 . �3.28�

If, as usual in the study of Couette flow, R2−R1� �R1

+R2� /2�R1, the vorticity � is

� =
R1�1

R2 − R1
=

R1�1

d
. �3.29�

According to Eq. �3.29�, the value of the critical �1 of the
internal cylinder needed to produce vortex lines in the annu-
lar region is

�1,crit =
R2 − R1

R1
�crit; �3.30�

since in this case the geometry of the sample is the same as
in the rotating annulus, we use for �crit the value �3.27�. One
obtains

�1,crit �
R2 − R1

R1

1

2
Lcylinder

�

d2 =
2�

R1d
ln

d

2r0
. �3.31�

According to the analyses in Refs. 24–27, the value of the
critical �1 of the internal cylinder needed to produce vortex
lines in the annular region is

�1,c =
R2

2 − R1
2

R1
2

�

d2 ln
2d

r0
�

2�

R1d
ln

2d

r0
. �3.32�

As we have already observed, the two logarithmic factors
appearing in Eqs. �3.3� and �3.25� are very similar. Thus, our
prediction �3.31� for the critical value of the rotating speed of
the inner cylinder is reasonably close to the free-energy pre-
diction �3.32�, having in mind that the macroscopic theory
does not yield the factors inside the logarithm, which require
a more microscopic theory.

The second-sound attenuation data of Swanson and Don-
nelly �see Fig. 1 of Ref. 26� show that the line density L is
proportional to the angular velocity of the inner cylinder. The
stability of this flow has been studied from a theoretical point
of view by Barenghi27 and confirmed by experiments of
Swanson and Donnelly.26 They found a temperature-
dependent critical Reynolds number �linked to the angular
velocity of the inner cylinder� beyond which the Couette
flow is no longer stable. Therefore, the solution �3.15� of Eq.
�3.14� describes the Couette flow between two rotating con-
centric cylinders in this regime.

IV. COUPLED REGIME: LOW VALUES OF �

Swanson and coauthors16 showed that in combined rota-
tion and counterflow the ordered vortex array produced by
rotation becomes unstable when counterflow propagates
along the rotation axis. In the simultaneous presence of
counterflow and rotation, they showed that also a very low
rotation eliminates the counterflow critical velocity Vc

H

present in the absence of rotation.
As was mentioned in Sec. II, the coupled regimes with

low � and V, and consequently with small L, should be
especially sensitive to wall effects because in them the inter-

FIG. 2. Values of �c as a function of d from this work. Points
are experimental data from Ref. 25.
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line separation L−1/2 may become comparable to d.
Experiments16 in this regime show that even the few lines
introduced by very slow rotation �f =0.0073 Hz, i.e., �
=0.0458 rad/s� eliminate the critical velocity Vc

H present in
the absence of rotation. Here, we will study the region of
values of V and � for which the laminar regime �L=0� is
stable. As recalled in Sec. III B, in the container vortex lines
are present only if the angular velocity � is higher than the
critical angular velocity �c defined in Eq. �3.10�. This im-
plies that the vortex production mechanism is active only if
���c. As a consequence, we can make the hypothesis that
Eq. �2.5� can be obtained from Eq. �1.6� by simply substitut-
ing �� with ��−��c. This happens if Eqs. �3.9� and �3.13�
are satisfied and if in addition.

�3�4 = 2�2�1. �4.1�

Under these hypotheses Eq. �2.5� becomes

dL

dt
= − 	�L2 + ��1V + �2

����� − ��c��L3/2

− 	�4

�� − ��c

��
V + �1��� − ��c�2
L �4.2�

and the result is

Vc
H =

�4

�2

�

d
=

�1

�4

���c. �4.3�

Observe that both the coefficients �2 and �4 present a step:
the coefficient �2 in correspondence to the TI-TII transition
�see Ref. 11�, �4 in correspondence to the formation of heli-
cal waves �see Ref. 17�.

A. The vortex-free regime

In combined counterflow and rotation, in order to estab-
lish whether the vortex-free regime is also present, we must
study the stability of the solution L=0. Reasoning as in the
previous cases, i.e., writing the equation for the evolution of
the perturbation �L around L=0, one obtains from Eq. �4.2�

d�L

dt
= ��� − ��c�	 �4

��
V + �1��� − ��c�
�L . �4.4�

Supposing ���c, the stability condition is then

�4V + �1
����� − ��c� � 0. �4.5�

This inequality singles out a region of the plane �V ,���
�placed in the first quadrant�, delimited by a portion of
straight line, which intercepts the axis in correspondence
with the two critical values �c and Vc

H, defined in Eqs. �3.2�
and �3.10�, respectively. Consequently Vc

H and �c
R are the

highest values of V and �, respectively, for which the lami-
nar regime is present. This agrees with the experimental ob-
servation that even a very small angular velocity �but higher
than the critical one� eliminates the critical counterflow ve-
locity Vc

H.

B. The turbulent regime

We study now, using Eq. �4.2�, the counterflow-rotation
superfluid turbulence, for low values of � and V, but outside
of the region of the plane �V ,��� which characterizes the
laminar regime.

In rotation only, for values of � beyond �c, the stable
stationary solution of Eq. �3.14� is the solution �3.15�. In
counterflow-rotation regimes, the nonzero stationary solu-
tions of Eq. �4.2� are the solutions of the equation

− L + 	 �1

	�
V +

�2

	

�� − ��c

��

L1/2 − 	�4

	

�� − ��c

��
V

+
�1

	

��� − ��c�2

�

 = 0. �4.6�

A fitting with experimental data reported in Fig. 1 of Ref.
16, reported also in our Fig. 3, allows us to obtain the values
for the coefficients appearing in Eq. �4.2�; these values are
reported in Table I. It is seen that, in this regime of slow
rotation, the coefficients �1, �4, �2, and �1 depend on angu-
lar velocity �or, alternatively, on anisotropy, to which we will
not refer, because we do not know about it in detail�.

In the execution of the fitting the quantity �4 /�1 has been
chosen in such a way that the ratio �1 /�4 obtained for the
two values of angular velocities considered is equal: in fact,
from Eq. �4.3� one has ��1 /�4�=Vc

H /���c. The values
�4 /�1=1.645 and �1 /�4=5.886 were obtained.

V. CONCLUSIONS

In summary, we have proposed in this paper an evolution
equation �2.5� for the vortex line density L, which includes

FIG. 3. Values of dL1/2 as function of Vd /�, for f � �a� 0.0073
and �b� 0.05 Hz from this work. Experimental data are from Ref.
16.

TABLE I. Values of the coefficients appearing in Eq. �4.2� ob-
tained from the data of Ref. 16.

f�Hz� �1 /	 �4 /	 �2 /	 �1 /	

0.0073 0.0936 0.154 3.15 0.916

0.05 0.0843 0.139 2.22 0.816
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the influence of counterflow velocity V, angular velocity �,
and channel diameter d. When the effects of � and d are
neglected, Eq. �2.5� reduces to the usual Vinen equation
�1.3�. When the effect of d is neglected we recover the re-
sults in Ref. 17.

We have studied the solutions of �2.5� and their stability
in several regimes, with the main aim of identifying the
physical outcomes of this equation and of evaluating the pa-
rameters by comparison with experimental data. In this work
we analyze situations where V, �, and d are different from
zero, but small, in which case L−1/2 may become comparable
to the diameter of the channel. In particular, we obtained the
region of the plane �V ,��� for which the laminar regime is
stable �L=0� and the solution for L�0 just beyond this sta-
bility region.

Note that in Eq. �2.5� there are nine parameters, which
correspond to the different terms obtained from dimensional
considerations. We have shown that consistency arguments
with qualitative stability trends indicate that only six of such
coefficients are truly independent. For instance, we may take
	 and �1 �the coefficients already appearing in Vinen’s equa-
tion �1.3��, and the four coefficients �1, �2, �3, and �4. The
other three coefficients are determined by the relations �3.9�,
�3.13�, and �4.1�. Note that the three coefficients �1, �2, and
�4 have been introduced in Ref. 17 and concern terms not
related to d, i.e., to the presence of walls. The additional
contributions are the terms related to the walls, i.e., those
where d appears, which are related to coefficients �3, �2, �3,
and �4; it is seen that the relations �3.9�, �3.13�, and �4.1�
ensure that only one of these four coefficients ��3 in our
choice� is actually independent and can be determined from
the value of �c �Eq. �3.10��. The explicit expressions for the
coefficients �2, �3, and �4 are then

�2 =
�3�4

4�1
, �3 =

�2�3

2�1
, �4 =

�3
2

4�1
, �6.1�

and their respective values are �2=0.285, �3=5.829, and
�4=11.492.

We have seen that Eq. �3.14�, with the value of �c corre-
sponding to the different geometry, is able to describe Cou-
ette flow. We think that the more complete equation �4.2�
may be able to describe also the more general phenomenon
of the simultaneous presence of rotation and heat flux in the
flow of helium II between concentric cylinders.

A microscopic understanding of the several terms appear-
ing in Eq. �2.5� is an urgent task. In particular, this task
would be especially challenging and rewarding in two as-
pects: a best knowledge of the effects of the interaction of
vortices with the walls, and an understanding of the physical
mechanism for the coupling of counterflow and rotation.
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