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Binding energies and density profiles of two-dimensional systems of liquid 4He with different geometries are
studied by means of a zero-range density functional adjusted to reproduce the line tension obtained in a
previous diffusion Monte Carlo calculation ��DMC=0.121 K/Å�. It is shown that this density functional pro-
vides accurate results for the binding energy of large clusters with a reasonable computational effort.
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I. INTRODUCTION

Quantum liquids in restricted geometries have attracted a
lot of attention in recent years.1 One interesting feature of
these systems is that their internal structure is more accesible
than in bulk liquids due to the restricted motion of the atoms
in the confining potential. Among these systems the study of
two-dimensional systems has received particular attention.
An example of such a system is liquid helium adsorbed to a
more-or-less attractive flat surface. This kind of system was
observed for the first time by M. Bretz et al.2 in 1973, when
they reported the observation of adsorbed 4He onto the basal
plane of graphite. In the last few years, adsorption properties
of helium on many different substrates �carbon, alkali and
alkaline-earth flat surfaces, carbon nanotubes, aerogels� have
become a fruitful topic of research.

Theoretical microscopic studies with realistic atom-atom
interactions, such as that of Clements et al.,3 have shown that
films with low surface coverages, where all atoms cover the
surface with a thickness corresponding to a single atom, can
be reasonably approximated by a two-dimensional �2D�
model. In connection with these systems, an interesting ques-
tion naturally arises as to how physics depends on the dimen-
sionality of the space.

The homogeneous 2D liquid has been studied using dif-
ferent theoretical methods, such as molecular dynamics4 and
quantum Monte Carlo simulations, either Green’s function5

or diffusion6 techniques.
Recently, two-dimensional clusters of liquid 4He have

been studied using a shadow variational wave function,7 and
also by the diffusion Monte Carlo �DMC� method.8 In these
two references, the binding energies of the 2D clusters were
fitted by means of a mass formula and a line tension of �
=0.121 K/Å� was reported in Ref. 8. However, due to com-
putational limitations, the number of atoms in the clusters

was limited to N�100. In addition, the density profiles of
the clusters, especially for coordinates close to the origin, are
usually obtained in the Monte Carlo method with poor sta-
tistics. Therefore, it seems appropiate to build a density func-
tional suitable to be used in 2D, using the same procedure
which has already been succesfully used to study three-
dimensional �3D� 4He clusters.9,10,12

Density functionals are based on the well-known
Hohenberg-Kohn theorem11 that asserts that the ground-state
energy per particle of a many-body system can be written as
a functional of the density. Once the functional is available,
its minimization brings us to a Euler-Lagrange equation12 for
the density profile ��r�, which allows us to calculate the
properties of clusters. Note that the results obtained with the
density functional will be more reliable for larger clusters, as
it has been constructed to reproduce properties of the homo-
geneous and semi-infinite media.

The density functional we use is the simplest version of
the zero-range functional intensively used in 3D.13 Its param-
eters have been adjusted so as to reproduce some properties
of the ground state of the homogeneous system as obtained
in DMC calculations,6 as well as the line tension extracted
from the mass formula of Ref. 8. This procedure is discussed
in Sec. II, together with the results for the slabs. Section III is
devoted to the study of finite droplets, with a special empha-
sis on those with a large number of atoms. Finally, in Sec. IV,
the main conclusions are summarized.

II. SEMI-INFINITE SYSTEM AND SLABS

Density functionals to investigate surface properties of su-
perfluid 4He were developed during the 1970s.14 At zero
temperature and in the absence of currents, the order param-
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eter of a bosonic system is nothing but the square root of the
one-body density ��r�, so it is natural to think of the energy
of the system as a functional of the helium density.
Stringari13 proposed a zero-range density functional for non-
homogeneous three-dimensional 4He systems of the form

E��� =� dr� �2

2m

����2

4�
+ b�2 + c�2+� + d����2	 , �1�

which was used to study 4He surface properties15 and
clusters.9

For the two-dimensional systems, we will use the same
functional form. However, the parameters b, c, � character-
izing the functional for homogeneous systems have to be
recalculated by requiring that the functional reproduces some
known properties of the two-dimensional 4He system, such
as the ground-state energy per particle �e0=−0.89706 K�,
saturation density ��0=0.04344 Å−2�, and the compressibility
�or the velocity of sound, s=92.8 m/s�, which were derived
in the framework of the diffusion Monte Carlo method.6 In
addition, the parameter d is obtained by demanding that the
line tension of the semi-infinite system equals that obtained
from DMC calculations for 2D clusters, �=0.121 K/Å.8 The
energy per particle for the homogeneous system provided by
this functional reproduces very well the equation of state
obtained from DMC calcualtions in a wide range of
densities.6 Therefore, as a first step we need to study the
semi-infinite system. In principle, one should solve a Euler-
Lagrange equation for the density profile ��r� which results
from minimizing the energy functional of Eq. �1� after intro-
ducing the Lagrange multiplier ���, which is identified with
the chemical potential,

�2

8m

−

2�2�

�
+

����2

�2 � + 2b� + �2 + ��c�1+� − 2d�2� = � .

�2�

One should also impose the boundary condition, ��x→−��
=�0. However, for the particular case of a zero-range func-
tional, the line tension of the semi-infinite system can be
evaluated in a closed form, without solving for the density
profile

� = 2�
0

�0

d�
� �2

8m
+ �d
�b� + c�1+� − ���1/2

. �3�

Then, imposing �=0.121 K/Å �Ref. 8�, one gets an implicit
equation �=��d� which can be solved numerically, thus fix-
ing the last parameter of the functional. The parameters for
the two-dimensional zero-range functional are listed in Table
I.

Once the functional is defined, one can study any two-
dimensional 4He system. The first systems we have consid-
ered are two-dimensional slabs with varying central density
�c=��0�. A systematic study of three-dimensional 4He slabs

with different density functionals has been presented in Ref.
16. The Euler equation for the slabs is the same as for the
semi-infinite system �Eq. �2��. The changes in the solution of
the equation originate from the different geometry and
boundary conditions which define the slab. Translational
symmetry implies that the density depends only on the coor-
dinate perpendicular to the slab surface, which we call x.
Then, ��=���x� and �2�=���x�, where the prime denotes
derivative with respect to x. In this way, the Euler equation
�Eq. �2�� can be expressed in a more convenient form, in
which now � depends only on x,

�2

8m
� ����2

�2 −
2��

�

 − 2d�� + 2b� + �� + 2�c�1+� = � . �4�

In the next step, one eliminates the second derivative of Eq.
�4� by multiplying both sides of the equation by �� and inte-
grating with respect to x, from the origin to a given value of
x,


−
�2

8m

����2

�
− d����2 + b�2 + c��+2�

0

x

= ����x� − ��0�� .

�5�

Imposing ����=�����=0, and considering that the slab is
symmetric respect to x=0, and therefore ���0�=0, one ob-
tains the chemical potential as a function of the central den-
sity of the slab,

� = b�c + c�c
�+1. �6�

We remark that this chemical potential is constant along the
profile.

Going back to Eq. �5�, and using the fact that ���0�=0,
one obtains

�� =��2�b� + c��+1 − ��
�2/8m + d�

. �7�

This expression for �� is then used to calculate the number of
atoms per unit length along the y axis �parallel to the sur-
face�, i.e., the coverage, in a closed expression, in terms of �,

N

L
= 2�

0

�

��x�dx = 2�
0

��0�

�
d�

����

= 2�
0

��0�

d�� �2/8m + d�

b� + c�1+� − �
. �8�

This integral has a singularity when �→�c, which can be
avoided by performing an integration by parts. The final ex-
pression, free of numerical problems, reads

TABLE I. Parameters of the two-dimensional zero-range
functional.

b
�K Å2�

c
�K Å2�1+���

� d
�K Å4�

−26.35 4.88	105 3.62 359
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N

L
= −

4

b
�−

�2

8m
� − 4�

0

��0�

d�

�b� + c�1+� − ��1/2
d

2
�b + c�1 + ����� − � �2

8m
+ d�
c��1 + ����−1�

�b + c�1 + �����2� �2

8m
+ d�
1/2 .

Also useful is the energy per unit length,

E

L
= 2�

0

�

dx
 �2

8m

����2

�
+ b�2 + c�2+� + d����2� . �9�

Using the Euler equation �Eq. �7�� and the previous defini-
tion of the coverage, one can finally express the energy per
particle e=E /N in terms of the inverse of the coverage, x̃
=L /N,

e�x̃� = ��x̃� + 4x̃�
0

��0�

d��� �2

8m
+ d�
�b� + c�1+� − ��x̃�� .

�10�

Therefore, given ��0�� �0,�0�, and using the previous ex-
pressions, one can calculate the chemical potential, the cov-
erage, and the energy per particle.

The energy per particle and the chemical potential as a
function of the inverse of the coverage x̃ are reported in Fig.
1. In the limit x̃→0, one recovers the binding energy at �0 of
the uniform system, which in turn coincides with the chemi-
cal potential. The energy per particle has a very clean linear
behavior at the origin, as illustrated by the solid straight line
which provides a very good description of the energy per
particle up to x̃�1.5 Å. The slope of this line can be ana-
lytically derived and turns out to be twice the linear tension.
As a consequence of the linear tension, the binding energy
per particle of the slab decreases with the inverse of the
coverage. Actually, the derivation of the linear behavior of
the binding energy per particle can be obtained starting from
Eq. �10�, which defines the energy per particle as a function
of x̃, by performing an expansion around x̃=0,

e�x̃� = �� + 2
x̃ + ¯ . �11�

For values larger than x̃�1.5 Å the binding energy per
particle starts to bend towards the x̃ axis and becomes a
convex function, which will slowly approach zero. The
chemical potential is very flat at the origin, being determined
by the central density of the slab. The ratio of the central
density to the equilibrium density as a function of the inverse
of the coverage is displayed in the lower panel of Fig. 1. In
agreement with the chemical potential, the central density is
very flat at small values of x̃. The central density of a slab
can never go above the equilibrium density and it is always a
decreasing function of x̃. The flatness of the central density
and the chemical potential for small values of x̃ indicate that
the slab very slowly approaches the limit of the infinite sys-
tem.

The density profiles of the slabs can be obtained from the
following relation:

�
��x�

�c

d�
 �2

8m
1
� + d

b�2 + c�2+� − ��
�1/2

= x , �12�

valid for x�0. Notice also the presence of a divergence
when �→�c which can be again avoided by performing an
integration by parts. The profiles calculated for various cen-
tral densities are plotted in Fig. 2. The size of the slab in-
creases with the central density. A measure of this size is
given by the radius R, defined as the distance from the origin
to the point where the density has fallen to half its central
value. The radius of the slabs as a function of x̃ is shown in
the top panel of Fig. 3. As expected, the radius diverges in
the limit �c→�0 and is a decreasing function of x̃. It also
presents a very shallow minimum around x̃�3.3 Å. The pro-
files are also characterized by the thickness t, defined as the
distance between the points where the density has decreased
from 90% to 10% of its central value. The thickness as a
function of x̃ is reported in the lower part of Fig. 3. Up to

FIG. 1. �Top� Energy per particle �dashed line� and chemical
potential �dot-dashed line� for 4He slabs as a function of the inverse
of the coverage. The solid straight line corresponds to the
asymptotic behavior of the energy per particle and its slope is de-
termined by the linear tension of the semi-infinite system. �Bottom�
Ratio between the central density and the bulk equilibrium density
for 4He slabs as a function of the inverse of the coverage.
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x̃�1, the thickness is a flat function, indicating that the
surface of the slab is very much the same, and is actually the
radius of the slab that grows very fast and diverges when
x̃→0. The thickness is very large for the smaller slabs; as
each particle interacts with very few others, the system ex-
tends to very large distances. When the central density is
increased �x̃ decreases�, the thickness decreases until it has a
minimum at x̃�2.75 Å, with t�8.6 Å. Then, it increases
again approaching a finite value corresponding to the semi-
infinite medium, t�11.03 Å.

III. DROPS AND LINE TENSION

As a next step, we consider finite systems and, in particu-
lar, drops of fixed numbers of atoms N. These were already
studied by DMC techniques in Ref. 8. However, computa-
tional limitations allowed only the study of small values of
N. Here, we will take advantage of the computational feasi-
bility of the density functional calculations and will extend
the analysis to much greater N. In this way it is possible to
study the asymptotic behavior of several quantities which
characterize the drops.

In this case, Eq. �2� for the profile can be rewriten in the
form of a Schrödinger-like equation for �,

H� � −
�2

4m

�2� −

����2

2�2 � + 2b� + �2 + ��c�1+� − 2d�2�

= �� . �13�

As the number of atoms is a well defined N, one would
need to be very careful in determining the central density
��0� so that the chemical potential adjusted exactly to N.
However, it turns out that this equation is more efficiently
solved by means of the steepest descent method.17 An initial
trial ��r� is projected onto the minimum of the functional by
propagating it in imaginary time. In practice, one chooses a
small time step �t and iterates the equation

��r,t� � ��r,t� − �tH��r,t� �14�

by normalizing � to the total number of atoms at each itera-
tion. The time step that governs the rate of convergence
should be taken appropriately small in such a way that Eq.
�14� is a valid approximation. Convergence is reached when
the chemical potential has a constant value independent of
position.

The energy per particle �empty circles� and the chemical
potential �full circles� of each drop are reported in Fig. 4 as a
function of N−1/2. Also shown are the DMC results �empty
squares� and their quadratic fit reported in Ref. 8. The calcu-
lated energies of the droplets can be represented very accu-
rately with a mass formula of the type

e�N� = 
b + 
lz + 
cz
2 + ¯ , �15�

with z=N−1/2. The two first coefficients of this expansion are
the bulk energy 
b and the line energy 
l, out of which the
line tension � is defined by 2�r0�=
l. Here r0 is the unit
radius, defined as the radius of a disk whose surface is equal
to the inverse of the equilibrium density of the 2D bulk liq-
uid, i.e., �0�r0

2=1. Finally, 
c can be related to the so-called
curvature energy. Contrary to the DMC calculations where
the largest droplet that we studied had 121 atoms, here we
have considered droplets with up to 10 000 atoms. In this
way we can accurately study the behavior of the energy per
particle for small values of z. Doing a quadratic fit to the
calculated energies per particle for N�512 and including
also the bulk binding energy for z=0, one gets

FIG. 2. Density profiles for 4He slabs with central densities
�c /�0=0.05, 0.1, 0.25, 0.5, 0.75, 0.9, 0.95, where �0 is the equilib-
rium density of the bulk. The horizontal dotted line corresponds to
the bulk density �0.

FIG. 3. Radius �top panel� and thickness �lower panel� of 4He
slabs as a function of x̃. The symbols are the calculated data while
the lines are cubic splines to guide the eye.

MUR-PETIT et al. PHYSICAL REVIEW B 72, 104513 �2005�

104513-4



y = − 0.897 + 2.0587z + 0.66466z2, �16�

which is plotted by a solid line in Fig. 4. One sees that 
b
accurately reproduces the bulk energy per particle, which
was used to fix the parameters of the functional. The value of

l=2.0587 corresponds to a line tension �=0.121 K/Å,
which is the same as the value of the line tension of the
semi-infinite system, used to build the density functional.
Note that this fit, even if it has been calculated for N�512, is
rather accurate down to N=36. Obviously, one cannot expect
a good agreement for N=16. The linear behavior of the
chemical potential as a function of z is easy to understand
using the mass formula �Eq. �15�� and the thermodynamic
definition of the chemical potential �=�E /�N, where E is
the total energy of the droplet. Using this prescription, the
slope of the chemical potential as a function of z results in

l /2. A similar plot for the energy per particle in the three-
dimensional case in terms of N−1/3 would provide a behavior
of the chemical potential for large N, dominated also by a
linear component with a slope at the origin given by 2
s /3,
where 
s is the surface energy associated to three-
dimensional clusters.9

Also interesting is the fact that the coefficient of z2 is
positive. This sign corresponds to the expected loss of bind-
ing energy associated with the curvature of the contour of the
cluster. This is in contrast to the value of 
c obtained by
fitting DMC results, as was done in Ref. 8. However, in that
case the number of particles in the clusters used to build the
fit was much smaller, with N=121 the largest number of
particles and going down to N=8 for the smallest one. In the
present fit we have explicitly avoided the clusters with a
small number of particles which can easily distort the results,
and we have considered only the cases with N�512.

The next things to analyze are the density profiles which
are reported in Fig. 5 for different numbers of atoms. Con-
trary to the slabs, the central density of the droplets can be

higher than the saturation density, which is indicated in the
figure by a horizontal line. The profiles are well adjusted by
a function of the type

��r� =
� f

�1 + e�r−R�/c�� , �17�

which has an associated central density ��0�=� f / �1+e−R/c��.
The parameters defining the profiles for the different num-
bers of atoms are provided in Table II, together with the
thickness and root-mean-square radius obtained from these
fits.

The upper part of Fig. 6 reports the central density of the
different droplets as a function of z. For large values of N,
the central density is larger than the saturation density, i.e.,
the central part of the droplet is more compressed than the
bulk system, which is sometimes referred to as a leptoder-
mous behaviour.9 Of course for N→� the central density
tends to the equilibrium density of the homogeneous liquid.
First, the central density grows almost linearly with z,
reaches a maximum for N�60, which would correspond to
the most compressed droplet, and then decreases. Finally for
N�25 the central region of the droplets becomes less com-
pressed than the bulk system.

FIG. 4. Energy per particle �empty circles� and chemical poten-
tial �full circles� of 4He droplets as a function of N−1/2. Also shown
is a quadratic fit �see text� of the results with N�516 �solid line�.
The straight short-dashed line is obtained when the mass formula
�with terms up to z2� is used to calculate the chemical potential. The
empty squares are DMC results from Ref. 8 and the dotted line
corresponds to the quadratic fit to these results reported in the same
reference.

FIG. 5. Density profiles for 4He droplets for N=16, 64, 121,
512, 1024, 2500, and 10 000 atoms. The continuous lines are gen-
eralized Fermi profiles �Eq. �17�� fitted to the data �see Table II�.
The dotted horizontal line indicates the equilibrium density �0.

TABLE II. Parameters of a generalized Fermi-profile fit �Eq.
�17�� to the density profiles obtained with the zero-range density
functional. All lengths are in Å and � f is in Å−2. The parameter � is
adimensional.

N � f R c � t �r2�1/2

16 0.04321 13.2718 3.22067 2.13417 11.746 9.66

36 0.04494 19.1852 3.22054 2.37516 11.548 12.793

64 0.04974 24.6826 3.16845 2.37072 11.364 16.28

121 0.04441 32.8314 3.12302 2.33636 11.226 21.72

512 0.04392 64.4245 3.08867 2.32368 11.112 43.533

1024 0.04378 89.8497 3.08584 2.32997 11.097 61.342

2500 0.04366 138.628 3.08552 2.33826 11.090 95.678

10000 0.04355 274.026 3.08653 2.3467 11.088 191.276
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The mean square radius is shown in the lower panel of
Fig. 6 as a function of N1/2. The expected linear behavior,
associated to a constant average density,

�r2�1/2 =
1

�2��0

N1/2, �18�

is rather apparent. The fit to the calculated values, from N
=16 to N=10 000, provides a �0=0.0434 Å−2 in very good
agreement with the equilibrium density used to define the
parameters of the density functional.

IV. CONCLUSIONS

We have constructed a density functional suitable to study
nonhomogeneous two-dimensional 4He systems. First, we
have considered two-dimensional slabs to study the energy
per particle, the central density, radius, and density profiles
as a function of the coverage. We have analytically shown
that the extracted linear tension from a mass formula adapted
to this type of geometry is consistent with the value of the
linear tension of the semi-infinite system which was used to
build the density functional. The thickness and the central
density of the slabs approach from below the values corre-
sponding to the semi-infinite system while the radius di-
verges.

We have also studied the energetics and structure of two-
dimensional clusters. In particular, we have considered clus-
ters with a very large number of atoms to study the behavior
of the mass formula and to establish how the system ap-
proaches the bulk limit. The central density of the clusters
when N→� approaches the saturation density from above,
and therefore the internal regions of the clusters are more
compressed than the bulk system, while the external regions
have densities which would correspond to negative pressures
or even below the spinodal point for a uniform system.

The profiles of the clusters are very well fitted by a gen-
eralized Fermi function. The thickness of the cluster slowly
approaches the thicknes of the semi-infinite system, as it also
happens in the case of the slab geometries, but in this case
from above. Finally, we have analyzed the linear behavior of
the rms radius of the droplets in terms of N1/2, and recovered
the saturation density from the slope of this fit. The proposed
density functional can be used with a very small computa-
tional effort for large clusters where the value of N is pro-
hibitive for a Monte Carlo calculation.
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