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We reconsider transport experiments in strongly anisotropic high-Tc superconducting cuprates and we find
that the universal Aslamazov-Larkin paraconductivity in two dimensions is surprisingly robust, even in the
underdoped regime below the pseudogap crossover temperature T *. We also establish that the underlying
normal-state resistivity in the pseudogap region is �almost� linear in temperature, with all the deviations being
quantitatively accounted for by Aslamazov-Larkin paraconductivity. The disappearance of paraconductivity is
ruled by the suppression of Gaussian pair fluctuations at an energy scale related to T *.
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I. INTRODUCTION

Recent transport experiments1–3 in high-Tc superconduct-
ing cuprates have shown that the paraconductivity effects in
the normal state above the critical temperature Tc are well
described by the following expressions valid in two and three
dimensions, respectively:

��D=2
exp =

e2

16� d�0 sinh��/�0�
, �1�

��D=3
exp =

e2

16��c0
�2�0 sinh�2�/�0�

, �2�

where d is the distance between the CuO2 layers, �c0 is the
coherence length along the direction perpendicular to the
layers, �� log�T /Tc���T−Tc� /Tc is the dimensionless mea-
sure of the deviation from criticality, T is the temperature,
and �0� log�T # /Tc� is a dimensionless fitting parameter that
is translated into a temperature scale T # by analogy with �.
When the parameter �0 is adjusted to fit the experimental
data, the corresponding temperature scale T # turns out to
increase with decreasing doping and appears to follow the
characteristic crossover temperature T * below which many
different experiments in the cuprates reveal a pseudogap
opening.4 The above expressions, Eqs. �1� and �2�, and the
experimental data that they fit well, display two remarkable
features.

First of all, for temperatures T close to Tc, i.e., for small
values of �, they reproduce the Aslamazov-Larkin �AL� ex-
pression for the paraconductivity,5

��D=2
AL =

e2

16� d�
, �3�

��D=3
AL =

e2

32��c0
��

. �4�

These expressions account well for the fluctuating regime
near Tc both in optimally doped and underdoped cuprates,
with YBa2Cu3O6+x �YBCO� displaying three-dimensional
fluctuations, whereas the other more anisotropic compounds,

La2−xSrxCuO4 �LSCO� and Bi2Sr2CaCu2O8+x �BSCCO�,
have a two-dimensional behavior.

The fact that the paraconductivity in strongly anisotropic
�quasi-two-dimensional� underdoped cuprates is described
by “traditional” AL fluctuations is at odds with the wide-
spread idea that, below the pseudogap formation temperature
T *, particle-particle pairs are formed, which only become
phase coherent at the lower superconducting transition tem-
perature Tc. According to this picture, below the temperature
of pair formation the fluctuations would be vortex driven and
should display a Kosterliz-Thouless behavior, with exponen-
tial temperature dependences.

On the contrary, it seems a well-established experimental
fact that the superconducting fluctuations in the more two-
dimensional-like systems �essentially all, but the YBCO� dis-
play AL power-law behaviors in �.6–11 Remarkably, in D=2
the AL theory of paraconductivity does not allow for any
fitting parameter besides the experimentally well-accessible
distance d between the two-dimensional CuO2 layers, which
translates the two-dimensional conductivity, with dimensions
�−1, in a three-dimensional conductivity with dimensions
�−1 m−1. Therefore the AL paraconductive behavior ob-
served near Tc strikingly shows that the establishment of
superconducting phase coherence in these materials is not
due to a simple condensation of preformed pairs. This by no
means implies that preformed pairs are not present below T *,
but simply means that the superconducting coherence is
driven by the formation of more loosely bound traditional
BCS pairs. Various proposals have already been put forward
based on the coexistence of fermionic quasiparticles �even-
tually forming BCS pairs at Tc� and preformed pairs with a
more or less marked bosonic character.12–15

The second remarkable feature of the experimental data
described by Eqs. �1� and �2� regards the exponential sup-
pression of the paraconductivity when �	�0.16 While it is
quite natural that superconducting fluctuations decay when
moving away from Tc, no longer contributing to the conduc-
tivity, the fact that AL fluctuations are ruled by �and are
suppressed above� a temperature scale related to T * is sur-
prising. In underdoped cuprates this rapid drop in the AL
fluctuations occurring at the temperature scale T #�T *,
which is substantially higher than the superconducting tem-
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perature Tc, implies a wide temperature range for supercon-
ducting fluctuations.

In principle, one could argue that T * is indeed the tem-
perature below which superconducting Cooper-pair fluctua-
tions arise, and therefore it is not surprising that they con-
tribute á la AL to the paraconductivity. However, upon
underdoping, T * increases, while Tc decreases. If this is in-
terpreted within a standard scheme of strong-coupling pair-
ing, the phase fluctuations would be �the only� responsible
for paraconductivity, in D=2, and one should rather observe
the Kosterliz-Thouless-like condensation of preformed pairs.
A recent calculation of the paraconductivity in the Gaussian-
to-Kosterliz-Thouless crossover regime17 produce a positive
correction to the AL result, which is in disagreement with the
experimentally observed monotonic suppression described
by Eq. �1�.

In this paper we focus on these two main features that
emerge from the analysis of the paraconductivity measure-
ments.

First, in Sec. II, we critically reexamine the AL theory and
the possible occurrence of momentum and/or energy cutoffs
in the critical pair fluctuations. This will provide a different
perspective on the rapid drop of the paraconductivity above
T *, with respect to previous works,18,19 but will leave open
the question of the mechanism allowing for the long survival
of AL fluctuations in the pseudogap region of underdoped
cuprates.

Then, in Sec. III, we focus on the two-dimensional mate-
rials and examine the robustness of the AL paraconductivity
at various doping upon varying the assumed normal-state
resistivity. Again, our scope is neither to provide a micro-
scopic theory for the normal state and its collective excita-
tions, nor to provide a theory for the interplay between
normal-state and pair fluctuations below T *. Our main con-
cern here is rather to extract the most likely form of the
normal-state resistivity in connection to the distinct presence
of paraconductivity. We concentrate our attention on the two-
dimensional case because the universal form of AL paracon-
ductivity renders this analysis more stringent.

Concluding remarks are found in Sec. IV.

II. PARACONDUCTIVITY SUPPRESSION AROUND T *

We discuss the paraconductivity starting by revisiting the
derivation of the standard AL result in D spatial
dimensions,5,20

��D
AL = 
D� dDq

�2��Dq2I��q;T� , �5�

where 
D is a prefactor that acts as a coupling constant of the
collective pair fluctuations with the electromagnetic field and
is related to the fermion loops in the diagrammatic
approach5,20 calculated at zero external frequency �these fer-
mion loops also contribute with the q2 factor� and

I��q;T� � �
−�

+� dz

�

z2

�z2 + �q
2�2�−

�b�z�
�z

	 . �6�

Here �q is the inverse relaxation time of the collective pair
fluctuations with a wave vector q, which at low momenta

takes the hydrodynamic form �q
m+q2 with a “mass”
term m�T log�T /Tc��T−Tc measuring the distance from
criticality, and a characteristic inverse time scale ; b�z�
= �ez/T−1�−1 is the Bose distribution at a temperature T �in
energy units�. Here and in the following q�q, we take �
=1, and measure lengths and inverse wave vectors in units of
the lattice spacing a.

The inverse relaxation time �q is often referred to as the
energy of the collective pair fluctuations. Although this ter-
minology is improper, as the dynamics of pair fluctuations is
relaxational and not propagating, we adopt it hereafter for
the sake of definiteness. To make contact with Ref. 5 the
prefactor within the AL theory is 
D=16e22 /D, the mass
term is m=�−1 log�T /Tc�, and the characteristic inverse time
scale is ��−1�0

2, where �=� / �8T��� / �8Tc� is a charac-
teristic time scale for the damping of pair fluctuations, and �0
is the coherence length �in units of the lattice spacing�. We
point out that the Eqs. �5� and �6� are valid within a
Ginzburg-Landau �GL� context, under quite general condi-
tions, for a generic expression of �q, which may include
corrections to the hydrodynamic expression at higher mo-
menta. For instance, in a lattice system, both the factor q2 in
Eq. �5� and the expression for �q in Eq. �6� are replaced by
suitable generalizations that preserve the lattice periodicity.

The suppression of the paraconductivity could, in prin-
ciple, arise from, e.g., the subleading temperature depen-
dence of the prefactors 
D and from the subleading tempera-
ture dependence of the integral in Eq. �6�. This analysis was
carried out previously,21,22 finding power-law dependencies
in �. However, the suppression of the paraconductivity at a
higher temperature is by far sharper than the one provided by
the temperature as the natural cutoff. We are therefore led to
discuss the role of an intrinsic cutoff for the momentum in-
tegral in Eq. �5�.

The analytical development within a BCS derivation of
the effective GL theory leads to a natural momentum cutoff
�� 0

−1 for higher momenta. This cutoff can alternatively be
described as the appearance of higher-order terms in the q
dependence of �q, beyond the lowest-order term �q2. How-
ever, neither a strict momentum cutoff q�qC�� 0

−1, nor the
introduction, e.g., of a q4 term in �q, account for the ob-
served behavior of the paraconductivity.23

Based on physical arguments, it was proposed18,19 that,
rather than a strict cutoff on q, a cutoff should be imposed on
the energy �namely, the inverse relaxation time� of the col-
lective pair fluctuations. This cutoff, within the standard
BCS-GL theory, takes the form m+q2�� 0

−2Tc, and leads to
a sharper reduction with respect to a strict momentum cutoff.
This is easily understood by considering that, away from Tc,
m increases, so that a strict cutoff �C on �q
m+q2

amounts to a strict momentum cutoff q2�qC
2 ���C−m� /,

which decreases with increasing temperature, thus shrinking
the region of momenta that contribute to the paraconductiv-
ity. This effect adds on top of the reduction associated with
an increasing mass m, and determines a sharper decrease at
higher temperatures. However, to fit with this energy cutoff
the experimentally determined suppression of the paracon-
ductivity, �Eqs. �1� and �2�� would require a peculiar tem-
perature dependence for �C. In the remaining part of this
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section, we analyze the experimental data within an alterna-
tive framework, which, although related to the presence of an
energy cutoff, rather relies on a model for an effective “den-
sity of states” of the collective pair fluctuations. In this
model we rely on a smooth energy cutoff, which is tempera-
ture independent �but for the subleading temperature depen-
dence of the parameters like �, , and so on�, and rather
encodes the T * energy scale. Indeed, we transform the mo-
mentum integral into an energy integral, by introducing the
effective density of states,24

ND��� =� dDq

�2��Dq2��� − �q� ,

for an arbitrary expression of �q as a function of the mo-
mentum. This includes as particular cases, e.g., the effect of
a higher-order momentum dependence of �q with respect to
the hydrodynamic q2 dependence, and/or the cutoff condition
�q��C.

We point out that the minimum value for �q is m, and
therefore

��D = 
D�
m

+�

d� ND���I��;T� . �7�

This equation is our starting point. For the sake of simplicity
we discuss the case in which I��q ;T� has the leading AL
expression5 I��q ;T�=T / �2�q

3�, but the analysis can be eas-
ily extended to the case in which I�� ;T� assumes a more
complicated dependence on �q that interpolates between the
low-T ��q�T� and the high-T��q�T� regimes.22 This more
refined analysis, however, does not significantly change the
main results discussed hereafter, and only adds standard sub-
leading temperature dependences, which would not account
for the observed suppression of the paraconductivity at
higher temperatures, essentially related to the behavior of the
effective density of states ND��� at higher energies.

A sharp energy cutoff ���C translates into a vanishing
effective density of states, ND����0 for �	�C. We relax
this condition, and only assume that the effective density of
states vanishes at infinity. More precisely, we write the func-
tion to be integrated in Eq. �7� as the derivative with respect
to � of an auxiliary function, 
DND���I�� ;T��−FD� ���,
with T taken as a parameter, and assume that FD��� vanishes
as �→ +�. Then, evidently ��D=FD�m�. Recalling that m
=�−1�, with �� log�T /Tc�, we can extract the leading behav-
ior of the effective density of states ND��� at large � from
the interpolating formula for the paraconductivity proposed
in Refs. 2,3, Eq. �1� for D=2, and Eq. �2� for D=3. Our
procedure here is approximate, as it neglects the parametric
dependence of the effective density of states on the mass, but
captures the main features obtained in Ref. 22 with a more
complicated procedure, which allows to disentangle the para-
metric dependence on the mass. Thus we find

ND��� 
 −
1


DI��;T�
d

d�
��D

exp�� = ��� ,

where the derivative with respect to � is taken at constant �0.
Therefore, we are led to the conclusion that the spectrum

of the inverse relaxation time for the collective pair fluctua-
tions is cut off exponentially at higher � and the character-
istic scale for this suppression, �0��−1�0, increases with
decreasing doping, following T *. The presence of this scale
is highly significant and rises the issue of the relation be-
tween Cooper pair fluctuations and the pseudogap.25

Since the microscopic interpretation of this finding is be-
yond the scope of the present work, here we only illustrate
two possible interpretations. Coming from high temperatures
T	T *, one can identify T * as the mean-field-like tempera-
ture for superconductivity, below which the fluctuations
bring the critical temperature down to Tc. The bifurcation
between T * and Tc around optimal doping can be interpreted
in a Gaussian GL scheme within a two-gap model.13

An alternative interpretation can be proposed, starting
from Tc, as the temperature above which pair fluctuations set
in. The disappearance of pair fluctuations above T * can here
be interpreted as due to some additional mechanism of strong
mixing between, e.g., the particle-particle and the particle-
hole channels. In particular, within a scenario with a quan-
tum critical point around optimal doping, the region above
T * is characterized by the presence of quantum-critical fluc-
tuations, which could couple to the superconducting fluctua-
tions, and suppress them. These two possibilities are pres-
ently under investigation.22

III. ASLAMAZOV-LARKIN PARACONDUCTIVITY IN THE
PSEUDOGAP REGION

The occurrence of the AL paraconductivity is particularly
stringent in two-dimensional systems, where the AL paracon-
ductivity does not contain fitting parameters and takes a uni-
versal form with a power-law dependence in � and a definite
prefactor �see Eq. �3��. For this reason, here we concentrate
on two-dimensional BSCCO compounds.

The choice of a normal-state conductivity �n �or resistiv-
ity �n� becomes rather natural around optimal doping, where
�n�T� is linear over a wide temperature range. It is in this
case that the presence of an AL paraconductivity becomes
particularly clear both in D=2 �Refs. 6 and 8–11� and D
=3.2,26,27 Remarkably, since the paraconductivity diverges at
Tc, the choice of a specific �finite� normal-state conductivity
�n�T� affects little the total conductivity ��T�=�n�T�
+��AL�T�, and the divergence of ��AL cannot be missed by
a wrong choice of the normal state.28 However, the choice of
the correct �n becomes crucial for the correct description of
the paraconductivity away from Tc. Therefore here we sys-
tematically investigate how different normal-state resistivi-
ties affect the determination of ��AL in the resistivity data of
Ref. 29. First of all, we notice �see Fig. 2 in Ref. 29� that
above a temperature T * the resistivity is linear in tempera-
ture, while it acquires a downward curvature at lower tem-
peratures. Therefore we assume the normal state resistivity
�n to be described by a straight line above T *, while a qua-
dratic curve is adopted below it:

�n�T 	 T *� = �n
* + A�T − T *� , �8�
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�n�T � T *� = �n
* + A�T − T *� + B�T − T *�2,

where �n
*��n�T=T *�.

To explore the effects of assuming different �n we take
below T * the set of parabolæ reported in Figs. 1�b� and 2�b�.

For each choice of the normal-state resistivity we deter-
mine the paraconductivity,

��D=2�T� =
1

��T�
−

1

�n�T�
,

obtaining the data of Figs. 1�a� and 2�a�. The solid straight
line represents the pure AL paraconductivity in D=2, Eq. �3�.
Rather naturally, if one assumes the normal state to follow
closely the resistivity data �the circles in Figs. 1�b� and 2�b��,

there is little space for the paraconductivity contribution,
which is rapidly suppressed above Tc. Nevertheless, one can
see that approaching Tc the paraconductivity �the circles in
Figs. 1�a� and 2�a�� merges with the �diverging� AL contri-
bution. On the other hand, one can adopt the normal-state
resistivity with an upward curvature �i.e., with a parameter
B	0; the triangles in Figs. 1�b� and 2�b��, which emphasizes
the difference between the resistivity data and the �supposed�
normal-state resistivity. In this case the paraconductivity
must be large to bring the large normal-state resistivity down
to the observed values. The triangles of the Figs. 1�a� and
2�a� represent this large contribution to the paraconductivity.
In this case one sees that ��D=2�T� has the same slope as the
pure AL paraconductivity, but has a nearly constant positive
offset and is rapidly suppressed around ��0.5, correspond-
ing to T�T *. This last effect simply arises from the “per-
fect” matching of the linear resistivity data with the assumed
linear normal state resistivity for T	T *. In between the two
limiting cases described above, there is the choice of normal-
state resistivities with small �or vanishing� curvature repre-
sented by the diamonds in Figs. 1�b� and 2�b�. Quite inter-

FIG. 1. �Color online� �a� Paraconductivity data, as obtained by
taking the different normal-state resistivities. The resistivity data
�black circles in Fig. 1�b�� are from Ref. 29 for a BSCCO sample at
doping x=0.217. The symbols of each set of paraconductivity
points corresponds to the symbols of the corresponding normal-
state resistivity curves of Fig. 1�b�. The solid straight line is the
universal two-dimensional AL paraconductivity, Eq. �3�, with no
adjustable parameter. �b� Resistivity data �black circles� and various
hypothetical forms of the normal-state resistivity. All the curves
coincide with a straight line above T *=250 K, while are quadratic
below it �see Eq. �8��. The first curve from top has a positive cur-
vature, B	0; the second, third, and fourth curve have a negative
curvature, B�0, which increases in absolute value from top to bot-
tom. The normal-state hypothetical curves are extended to the re-
gion below the critical temperature to make them more clearly dis-
tinguishable by emphasizing their separation.

FIG. 2. �Color online� �a� Paraconductivity data, as obtained by
taking the different normal-state resistivities. The resistivity data
�black circles in Fig. 2�b�� are from Ref. 29 for a BSCCO sample at
doping x=0.22. The symbols of each set of paraconductivity points
corresponds to the symbols of the corresponding normal-state resis-
tivity curves of Fig. 2�b�. The solid straight line is the universal
two-dimensional AL paraconductivity, Eq. �3� with no adjustable
parameter. �b� Resistivity data �black circles� and various hypotheti-
cal forms of the normal-state resistivity. All the curves coincide
with a straight line above T *=220 K, while are quadratic below it
�see Eq. �8��. The first curve from top has a positive curvature,
B	0; the second, third, and fourth curve have a negative curvature,
B�0, which increases in absolute value from top to bottom. The
normal-state hypothetical curves are extended to the region below
the critical temperature to make them more clearly distinguishable
by emphasizing their separation.
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estingly, one finds that the related paraconductivity closely
follows the pure AL behavior, both for the slope and for the
absolute �universal� value. This shows that the resistivity
data, not only are compatible with a two-dimensional AL
behavior near Tc, but also this behavior extends up to T *

provided a �nearly� linear normal-state resistivity is assumed.
Also in this case, as soon as the temperature reaches T *, the
paraconductivity rapidly drops.

This behavior is suggestive of the fact that below T * the
resistivity would be linear, were it not for the presence of
Gaussian Cooper-pair fluctuations giving AL contributions to
the conductivity. These suppress the resistivity below its lin-
ear behavior all over the region Tc�T�T *.

IV. CONCLUSIONS

In this paper we critically revisited the paraconductivity
data in the cuprates addressing the two main issues: The
existence and robustness of the AL paraconductivity, which
in underdoped systems survives well above Tc, and the rapid
suppression of paraconductivity above T *. Regarding the
second issue, we recast the problem of the cutoff in the pair-
ing collective-mode fluctuations, showing that the rapid sup-
pression of the pairing fluctuations away from Tc can arise
from a rapid suppression of the spectral weight of the pair
fluctuations above a characteristic energy scale, which di-
rectly involves T *, �0��−1 log�T * /Tc�.

As far as the first issue is concerned, we also find the
surprising result that, assuming a �nearly� linear normal-state
resistivity, the measured two-dimensional paraconductivity
in BSCCO closely follows the pure AL behavior. While we
do not have a theory for a linear normal-state resistivity, nor
for the persistence of BCS-like pair fluctuations up to T *, it
seems to us that the coincidence �revealed at all dopings up
to the optimal one� both for the power-law and the universal
prefactors between the extracted paraconductivity and the
AL behavior can hardly be casual. This suggests that the
temperature dependence of the resistivity in BSCCO is given
by a normal-state linear contribution, which is decreased be-
low T * by the two-dimensional AL paraconductivity. If, as it
seems natural, this paraconductivity arises from Gaussian
pair fluctuations, our analysis entails that preformed pairs, if
any, do not provide a separate additional conductivity
channel.
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