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Based on the Zhang-Rice singlet picture, it is argued that the half-skyrmion is created by the doped hole in
the single-hole-doped high-Tc cup rates with Néel ordering. The spin configuration around the Zhang-Rice
singlet, which has the form of superposition of the two different d-orbital hole spin states, is studied within the
nonlinear � model and the CP1 model. The spin configurations associated with each hole spin state are
obtained, and we find that the superposition of these spin configurations turns out to be the half-skyrmion that
is characterized by a half of the topological charge. The excitation spectrum of the half-skyrmion is obtained
by making use of Lorentz invariance of the effective theory and is qualitatively in good agreement with
angle-resolved photoemission spectroscopy on the parent compounds. Estimated values of the parameters
contained in the excitation spectrum are in good agreement with experimentally obtained values. The half-
skyrmion theory suggests a picture for the difference between the hole-doped compounds and the electron-
doped compounds.

DOI: 10.1103/PhysRevB.72.104502 PACS number�s�: 74.72.�h, 75.25.�z

I. INTRODUCTION

In the phase diagram of high-temperature superconduct-
ors, there are a variety of phases: the Néel ordering phase,
the spin-glass-like phase, the d-wave superconducting phase,
and the pseudogap phase.1 This rich phase diagram is con-
trolled by the hole doping concentration x and temperature.
If we focus on the ground state properties, then the funda-
metal parameter is x. In order to understand the physics of
high-temperature superconductivity, it is necessary to figure
out how to describe the doped holes. The goal of this ap-
proach is, of course, to find a unfied description of the doped
holes over the whole range of x.

In this paper, we consider the simplest case: We focus on
the single-hole-doped system. The motivation is the follow-
ing. Although d-wave superconductivity occurs in a moder-
ately doping region, and there is the intriguing pseudogap
phase, it is quite hard to find a reliable description of the
doped holes because of the strong correlation effects between
the holes and background spin fluctuations. In contrast, the
physics of the undoped compound is well established com-
pared with other phases. The system is described by the S
=1/2 antiferromagnetic Heisenberg model on the square lat-
tice and the ground state is the Néel ordered state. Consider-
ing one hole doping upon this well-established phase would
be the first step in understanding the effects of doped holes in
the high-temperature superconductors.

Experimentally it has been known that doped holes oc-
cupy oxygen p orbitals in the CuO2 plane. Between an oxy-
gen p-orbital hole and the nearest neighbor copper d-orbital
holes, there are strong correlations of forming a singlet pair.
The resulting singlet state is called a Zhang-Rice singlet.2

Based on this picture, the t-J model was proposed.
In terms of the t-J model, the single-hole problem has

been discussed extensively.3 However, the focus is mainly on
the frustration effect induced by hopping of the doped hole.
Not so much attention has been paid on the spin configura-
tion around the Zhang-Rice singlet state. In this paper, we
study the spin configuration created around the Zhang-Rice

singlet within effective field theory approaches to the
Heisenberg antiferromagnet.

As an effective theory for the S=1/2 Heisenberg antifer-
romagnet on the square lattice, the nonlinear � model
�NL�M� has been studied extensively:4

S =
�s

2
�

0

�

d�� d2r���n�2 +
1

csw
2 � �n

��
�2� , �1�

where �s is the spin stiffness and csw is the antiferromagnetic
spin wave velocity. �Hereafter we take the unit of �=1.�
Here � is the imaginary time and �= �kBT�−1, with T being
temperature. The unit vector n represents the staggered mo-
ment. This model is derived from the Heisenberg antiferro-
magnet by applying Haldane’s mapping.5 The theoretical for-
mula for the antiferromagnetic correlation length �AF based
on the renormalization group analysis of this model is in
quite good agreement with experimentally obtained �AF.

Another well-known approach is the Schwinger boson
mean field theory �SBMFT�.6 In this theory, the spin S
=1/2 is represented by

S j =
1

2
�zj↑

† zj↓
† ���zj↑

zj↓
� , �2�

with the constraint ��zj�
† zj�=1. The components of � are

Pauli matrices. The antiferromagnetic correlations are de-
scribed by a mean field Aij = 	zi↑zj↓−zi↓zj↑
. This mean field
describes also the pairing correlations of the Schwinger
bosons.7–9 The quasiparticle excitation spectrum of the
Schwinger bosons is given by

	k = �
2 − 4J2A2�k
2, �3�

where �k= �sin kx±sin ky� /2, where the plus sign is for kxky

�0 and the minus sign is for kxky 
0. The parameter 
 is
originally introduced as a Lagrange multiplier to impose the
constraint. In the mean field approximation, the Lagrange
multiplier is taken to be uniform. For the ground state, 
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=2JA. Bose-Einstein condensation of the Schwinger bosons
at k= �±� /2 , ±� /2� leads to Néel ordering.10

In order to consider fluctuations about Bose-Einstein con-
densate of Schwinger bosons, it is convenient to use a gauge
field description. Introducing a variable x0=csw�, the action
reads as S=1/2g�d3x���n�2, with g=csw/�s. In terms of

complex field �̄� and �� with ���̄���=1, the vector n is

represented by n= �̄��. Substituting this into the action, we
obtain

S =
2

g
� d3x
����̄������ + ��̄ ����2� . �4�

Performing a Stratonovich-Hubbard transformation at the in-
teraction term, we obtain

S =
2

g
� d3x�

�

���� − i������x��2. �5�

Note that �4� is invariant under a local U�1� gauge transfor-

mation, �→�ei��x� and �̄→ �̄e−i��x�. The field �� is a gauge
field associated with this gauge invariance. As explicitly
shown in Ref. 7, the CP1 model is also derived from SBMFT.

The relation between the fields � and �̄ and the Schwinger
boson fields �2� is given by � j�=zj� for one sublattice and
� j�= z̄ j� for the other sublattice.

In addition to these bosonic models, there is a fermionic
theory. For S=1/2 spins, one can represent them by fermi-
ons,

S j =
1

2
�f j↑

† f j↓
† ��� f j↑

f j↓
� , �6�

with the constraint ��f j�
† f j�=1. Based on a mean field

theory, the �-flux phase was proposed by Affleck and
Marston.11 The excitation spectrum of the quasiparticles in
the �-flux phase is given by

�k = ± v�cos2 kx + cos2 ky , �7�

where v is a mean field parameter of the theory. Fluctuations
about this mean field state can be taken into account through
a gauge field. For the two-dimensional S=1/2 quantum
Heisenberg antiferromagnet, the condition for the dynamical
mass generation is satisfied,12,13 and so the spectrum is modi-
fied as

�k = ± �v2�cos2 kx + cos2 ky� + m2. �8�

The mass m is associated with the ordered staggered
moment.12

For the description of the doped hole, we shall assume
that the hole forms a Zhang-Rice singlet with a copper hole
that was proposed by Zhang and Rice2 from the analysis of
the d-p model,

H = �
j�

�ddj�
† dj� + �

��

�pp��
† p�� + U�

j

dj↑
† dj↑dj↓

† dj↓

− �
j,�,�

� j�tpddj�
† p�� + H.c., �9�

where � j,j−x̂/2=� j,j−ŷ/2=−� j,j+x̂/2=−� j,j+ŷ/2=1. Here dj�
† and p��

†

are the hole creation operator at the copper d-orbital state
and the oxygen p-orbital state, respectively. The vacuum is
defined as Cu�3d� �Ref. 10� and O�2p�.6 Applying a canoni-
cal transformation and omitting unimportant terms, we ob-
tain

HK = �
j

2� tpd
2

U − �
+

tpd
2

�
��dj

†�dj��Pj
†�Pj� , �10�

where Pj�=�����j� j�p�� /2. Constructing the Wannier wave
functions,2 the Zhang-Rice singlet state is created by the fol-
lowing operator:

�ZRj
† =

1
�2

�dj↑
† � j↓

† − dj↓
† � j↑

† � , �11�

where

� j� = �
j�
� 1

N
�
k

exp
ik · �R j − R j���
�1 − 1

2 �cos kx + cos ky�
�Pj��. �12�

In this paper, we study the spin configuration around a
Zhang-Rice singlet. We shall show that a spin texture that is
called a half-skyrmion characterized by half of a topological
charge is created around the Zhang-Rice singlet. The disper-
sion of the half-skyrmion is given by the same form as that
of the quasiparticle in the �-flux phase. The rest of this paper
is organized as follows: In Sec. II, we consider a static
Zhang-Rice singlet. We argue that the spin configuration
around such a static Zhang-Rice singlet is a half-skyrmion.
In Sec. III, we construct the moving half-skyrmion state by
making use of Lorentz invariance of the NL�M. The lattice
action is derived in Sec. IV. We shall compare the dispersion
of the half-skyrmion with the result of angle-resolved photo-
emission spectroscopy �ARPES� on the parent compounds.
The effective theory of the half-skyrmion is obtained by ap-
plying duality mapping in Sec. V. Section VI is devoted to a
discussion. Finally, we summarize the results in Sec. VII.

II. HALF-SKYRMION SOLUTION FOR STATIC
ZHANG-RICE SINGLET

In this section, we consider the spin configuration induced
around a static Zhang-Rice singlet. The spin configuration
for a moving Zhang-Rice singlet shall be discussed in Sec.
III based on the results of this section.

The creation operator for a Zhang-Rice singlet residing at
the site j defined by Eq. �11� suggests that the spin configu-
ration around a static Zhang-Rice singlet is given by super-
position of the two spin configurations: One is the spin con-
figuration created by a spin-up state at the d-orbital state and
the other is the spin configuration created by a spin-down
state at the d-orbital state. We study these states separately;
then we consider the superposition of these states. We as-
sume that the spin state of � j� does not play an important
role. We shall discuss its possible effects in Sec. VI.

In order to study the spin configuration, we use the
NL�M. Note that we cannot apply a linear response theory,
such as a spin wave theory, to obtain the spin configuration.
For the d-orbital spin state at the site j that is the same as that
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of the Néel ordered state of the parent compound before
introducing the hole, the surrounding spins are not so much
affected by the fixed spin state at the site j. However, for the
d-orbital spin state that is in the opposite direction to that of
the Néel ordered state of the parent compound before intro-
ducing the hole, the surrounding spins can change their di-
rections, which are beyond the range of the description of the
linear response theory.

We assume that before introducing the doped hole, the
spin state at the site j is the up-spin state and the staggered
magnetization is in the z direction. Under this assumption,
the spin-up state does not change the directions of the neigh-
borhood spins. If we include quantum fluctuation effects,
then the staggered moments of neighboring spins would be
enhanced because we fix the state at the site j to spin up and
quantum fluctuations is quenched at this site. In other words,
the state is in the subspace of eigenstates of the system with
a spin-up state at the site j d orbital. However, for simplicity
we do not consider quantum fluctuation effects here, and we
restrict ourselves to a classical spin configuration. Quantum
fluctuation effects shall be taken into account through the
renormalization of the parameters. Thus, the spin configura-
tion associated with the spin-up state is n�R��= + êz for any
site �.14

The spin configuration for the spin-down state at the site j
d orbital is nontrivial. We would like to obtain the spin con-
figuration satisfying the following boundary conditions:

n�r� → + êz �r → �� , �13�

and

n�R j� = − êz. �14�

Since we consider the static spin configuration, we are inter-
ested in the spin configuration that minimizes the energy,

E =
�s

2
� d2r��n�2. �15�

The analysis given below follows a general argument for
skyrmion excitations in the NL�M.15 We include the con-
straint �n�2=1 through a Lagrange multiplier:

E =
�s

2
� d2r
��n�2 + 
��n�2 − 1�� . �16�

Taking variation with respect to n, we obtain

�2n − 
n = 0. �17�

The Lagrange multiplier 
 is eliminated by using this equa-
tion and n2=1:

�2n − �n · �2n�n = 0. �18�

By using the identity16

� d2r2
��n ± ����n Ã ��n��2 � 0, �19�

with �xx=�yy =1 and �xy =−�yx=1, we find

E � 4��s�Q� , �20�

where

Q =
1

4�
� d2r n · ��xn Ã �yn� , �21�

is called the topological charge. The equality in Eq. �20� is
satisfied if and only if

��n ± ����n Ã ��n� = 0. �22�

The solution of Eq. �18� is divided into sectors with dif-
ferent Q values. Since the energy in each sector has the
lower bound determined by Eq. �20�, it is enough to solve
Eq. �22� for our purpose. To solve this equation, it is conve-
nient to use a variable w= �nx+ iny� / �1−nz�. In terms of w,
Eq. �22� is

�xw = − i �yw, �xw = i �yw . �23�

Introducing z=x+ iy and z̄=x− iy, we find

�zw = 0, �z̄w = 0. �24�

Therefore, the solution satisfies the Cauchy-Rieman eqation.
The analytic function of z or z̄ is the solution of Eq. �22�. In
terms of w and w̄, the vector n is described by

n = � w + w̄

�w�2 + 1
,− i

w − w̄

�w�2 + 1
,
�w�2 − 1

�w�2 + 1
� . �25�

The boundary conditions of �13� and �14� are

�w� → � �r → �� , �26�

and

w = 0 �r = R j� , �27�

respectively. The solution that satisfies these boundary con-
dition is

w =
z



, �28�

or

w =
z̄



, �29�

up to a phase factor that is associated with a global rotation
of all spins in the plane. Here 
 is a parameter that is asso-
ciated with the size of the spin configuration and R j is taken
to be the origin to simplify the expressions. The vector n
representation of Eqs. �28� and �29� is the following:

n = � 2
x

r2 + 
2 ,
2
y

r2 + 
2 ,
r2 − 
2

r2 + 
2� , �30�

and

n = � 2
x

r2 + 
2 ,−
2
y

r2 + 
2 ,
r2 − 
2

r2 + 
2� . �31�

The topological charge Q is given by
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Q =
1

�
� d2r2 ��̄w̄���w� − ��w̄���̄w�

�1 + �w�2�2 . �32�

For the solutions, Eqs. �28� and �29�, the topological charges
are Q=1 and Q=−1, respectively. These solutions are called
skyrmion. The energy of these skyrmion solution is E
=4��s, which is calculated from the following expression:

E = 4�s� d2r
��̄w̄���w� + ��w̄���̄w�

�1 + �w�2�2 . �33�

Note that there is no solution in the Q=0 sector. In fact,
solutions in this sector satisfy �	=0 and �̄	=0, and we ob-
tain 	=const. Obviously such a solution does not satisfy the
boundary conditions.

Now we consider superposition of the uniform state and
the skyrmion state. Unfortunately, the classical superposition
of the two-spin configuration is not the solution of the field
equation. However, these solutions suggest that the resultant
spin configuration is chracterized by a topological charge Q
with 0
 �Q�
1. The value of Q is determined by making
use of the fact that the Néel ordering state is described by
Bose-Einstein condensation of the Schwinger bosons.10 In
order to examine the value of Q, we use the following rep-
resentation of Q by the CP1 gauge field ��:

Q =� d2r

2�
��x�y − �y�x� . �34�

From this expression, we see that the spin configuration with
Q corresponds to the flux 2�Q in the condensate of the
Schwinger bosons. Since the spin-1 /2 bosons ���x� are con-
fined in the Néel state, all bosons are paired in the low-
energy physics. Because pairs of the bosons carry the gauge
charge two, the flux quantum is �, similar to the conven-
tional BCS superconductors. Therefore, the flux value is not
arbitrary and Q must be in the form of Q=n�, with n being
an integer. Meanwhile, from the constraint 0
 �Q�
1, the
flux associated with the spin configuration satisfies 0

2��Q�
2�. Thus, we conclude 2��Q�=�, or �Q�=1/2.17

Since the topological charge is one-half, we call this spin
configuration a half-skyrmion. The energy associated with
the half-skyrmion spin texture is 4��s�Q�=2��s�E0 be-
cause we can apply Eq. �22� outside the core region. Due to
the limitation of the effective theories, we cannot determine
the core energy. It would be determined from a calculation
based on a microscopic model. The half-skyrmion solution is
also discussed in the ferromagnetic Heisenberg model18 in
the context of quantum Hall systems. Since the value of
�Q�=1/2 is obtained from the calculation of the topological
charge using Eqs. �30� and �31� with excluding the core re-
gion r

, we may use Eqs. �30� and �31� for the expressions
of the half-skyrmion and the anti-half-skyrmion spin tex-
tures, respectively. The half-skyrmion and anti-half-
skyrmion spin textures are shown schematically in Figs. 1
and 2.

III. MOVING HALF-SKYRMION SOLUTION

In the last section, we have argued that the spin configu-
ration around a static Zhang-Rice singlet is the half-

skyrmion. In this section, we construct the moving half-
skyrmion solution from the static half-skyrmion solution by
making use of the Lorentz invariance of the NL�M and the
CP1 model.

The action �1� is written in the Euclidean space time. The
form in Minkowskii space time reads as

S =
�s

2
� dt� d2r� 1

csw
2 � �n

�t
�2

− ��n�2� . �35�

Apparently the action is invariant under Lorentz transforma-
tions with csw being the speed of “light.” Let us consider a
following Lorentz transformation:

x� =
x − vt

�1 − �v/csw�2
, �36�

FIG. 1. �Color online� The half-skyrmion spin texture. Arrows
indicate the staggered moment and the filled circle at the center
represents the Zhang-Rice singlet formed site.

FIG. 2. �Color online� The anti-half-skyrmion spin texture. Ar-
rows indicate the staggered moment and the filled circle at the cen-
ter represents the Zhang-Rice singlet formed site.
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t� =
t − �v/csw

2 �t
�1 − �v/csw�2

. �37�

It is easy to check that the action is invariant under this
Lorentz transformation.

Now we apply the Lorentz transformation �36� and �37� to
the static half-skyrmion solution �30�,

n� = � 2
x�

x�2 + y2 + 
2 ,−
2
y

x�2 + y2 + 
2 ,
x�2 + y2 − 
2

x�2 + y2 + 
2� .

�38�

The excitation spectrum of the half-skyrmion is obtained by
calculating the energy-momentum tensors. We write Eq. �38�
as n�=ns�x� ,y�, where x�=��x−vt� with �=1/�1− �v /csw�2.
The energy-momentum tensors are given by

T�
� = �s ��n ��n −

�s

2
��n ��n ��

�, �39�

where A�B�=A0B0−A·B. The energy is

E =� d2r T0
0 =

�s

2
� d2r� 1

csw
2 ��tn��2 + ��xn��2 + ��yn��2�

=
�s

2
� d2r���2v2

csw
2 + �2���x�ns�2 + ��yns�2�

= ��s� dx� dy��x�ns�2 = �E0, �40�

where we have used that �tn�=−�v �x�ns, �xn�=� �x�ns, dx
=� dx�, and ��x�ns�2= ��yns�2. The x component of the mo-
mentum is calculated as follows:

Px =
1

csw
� d2r T1

0 =
�s

csw
2 � dx dy��tns� · ��xns� = − ��E0/csw,

�41�

Py =
1

csw
� d2r T2

0 =
�s

csw
2 � dx dy��tns� · ��yns� = 0.

�42�

From Eqs. �40�–�42�, we find

E2 = csw
2 Px

2 + E0
2. �43�

By considering general Lorentz transformations, we find that
the following relation holds:

E2 = csw
2 �Px

2 + Py
2� + E0

2. �44�

Therefore, the excitation spectrum of the half-skyrmion is
given by

Ek = ± �csw
2 k2 + E0

2. �45�

Having obtained the relativistic dispersion �45�, we con-
sider the action of the half-skyrmion. Since the half-
skyrmion is a topological spin texture, one might expect that

Berry phases affect the statistice of the half-skyrmion, as in
the fractional quantum Hall systems. In the fractional quan-
tum Hall systems, the effective theories are characterized by
topological field theory. The Berry phase effect determines
the statistics of quasiparticles. In constrast, the system of the
single-hole-doped antiferromagnet is not characterized by to-
pological field theory. Indeed, a gauge field that describes the
Berry phase effects is massive due to Bose-Einstein conden-
sation. Therefore, the leading term of the gauge field is the
mass term. In such a situation, we do not expect that Berry
phases play an important role in determining the statistics of
quasiparticles. In the absence of the Berry phase effects, the
statistice of the half-skyrmion is fermion simply because the
doped hole that obeys the fermionic statistics sits at the core.

The statistics of the Zhang-Rice singlet is infered from its
field operator. Since the d-orbital hole states constitute local-
ized spin-1 /2 moments and one can choose either a fermi-
onic description or a bosonic description for the spins, the
statistics of the Zhang-Rice singlet is either fermion or bo-
son. However, now we are interested in the Néel ordering
phase. Bosonic descriptions, such as Schwinger boson mean
field theory or NL�M, are suitable for the description of the
Néel ordered state. In this case, the statistics of the Zhang-
Rice singlet is fermion.

The fermion field obeying the relativistic excitation spec-
trum �45� is described by a Dirac fermion action. The action
of the half-skymion may be written as

L = �
s=±

�̄s����� + mcsw
2 ��s, �46�

with �̄s=�s
†�0 and mcsw

2 =E0. The index s is for the sign of
the topological charge. That is, s=+ is for the half-skyrmion
and s=− is for the anti-half-skyrmion. The Dirac fermion �
has four components: There are positive and negative energy
states. These states obey the dispersion �45� with the origin
either at k1= �� /2 ,� /2� or k2= �−� /2 ,� /2�. This is sug-
gested from the fact that the Schwinger bosons are gapless at
four zone centers �±� /2 , ±� /2�. Because Q= �� ,�� con-
nects two points in the diagonal directions, there are two
independent points k1 and k2. The � matrices are 4�4 ma-
trices and satisfy ����+����=2���.

IV. HALF-SKYRMION ON THE LATTICE

The expression on the lattice is derived by discretizing the
continuum Lagrangian, Eq. �46�. After Fourier transforma-
tions, we obtain

L = �
a=1,2

�
�

�̄a��k�

�� mcsw
2 + �� sin kx + i sin ky

− sin kx + i sin ky mcsw
2 − ��

��a��k� .

�47�

By shifting the origin in the momentum space to either k1 or
k2, we obtain
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L = �
�
��̄1��k�� mcsw

2 + �� cos kx + i cos ky

− cos kx + i cos ky mcsw
2 − ��

��1��k�

+ �̄2��k�� mcsw
2 + �� − cos kx + i cos ky

cos kx + i cos ky mcsw
2 − ��

��2��k�� .

�48�

Diagonalization of the matrix leads to the following expres-
sion:

�k
± = ± �csw

2 �cos2 kx + cos2 ky� + �mcsw
2 �2. �49�

Note that there is no fermion-doubling problem, which oc-
curs when one formulates a Dirac fermion on a lattice.19

The parameters csw and mcsw
2 =2��s are determined from

the values for the Heisenberg antiferromagnet. We use Zc
=1.17 and Z�=0.72, which are estimated from quantum
Monte Carlo simulations20 and a series expansion
technique.21 Substituting these values into Eq. �49�, we find
that the bandwidth is �1.5J and m /J�1.13. Meanwhile, an
experimentally estimated bandwidth by Wells et al. is
�2.2J.22,23 This discrepancy would be associated with the
deviation of the real system from the NL�M. For the mass
value, Ronning et al. evaluated it by using the form �k

−

−mcsw
2 . The result is m /J�1.3.24 Some of this discrepancy

might be associated with the mass renormalization due to
antiferromagnetic spin fluctuations. This shall be discussed
in Sec. V.

V. EFFECTIVE THEORY FOR HALF-SKYRMION

In order to include antiferromagnetic spin fluctuation ef-
fects on the half-skyrmion, we shall derive the effective
theory of the half-skyrmion. We make use of a duality
mapping25 for that purpose.

Before the application of the duality mapping, we point
out that a half-skyrmion can be seen as a vortex in the CP1

model. As stated in Sec. II, the topological charge of the
half-skyrmion is represented by the gauge flux with respect
to the CP1 gauge field ��. In the CP1 model, the vector n
reads as

n = ��̄↑�↓ + �̄↓�↑,− i��̄↑�↓ − �̄↓�↑�, �̄↑�↑ − �̄↓�↓� . �50�

Since n is a unit vector, � and �̄ satisfy �̄↑�↑+ �̄↓�↓=1. In

terms of �� and �̄�, the half-skyrmion solution, Eqs. �30� and
�31�, has the following form:

�↑ =
r

�r2 + 
2
exp�±i��exp�i�� , �51�

�↓ =



�r2 + 
2
exp�i�� , �52�

where the minus sign is for the half-skyrmion and the plus
sign is for the anti-half-skyrmion and � is a constant. In
general, the half-skyrmion solution is represented by

��↑

�↓
� = �u − v*

v u* �� �
/�r2 + 
2�

�r/�r2 + 
2�exp�±i��
� , �53�

where u and v are constant complex numbers and satisfy
�u�2+ �v�2=1. The matrix

�u − v*

v u* �
is a global SU�2� transformation. The boundary condition at
infinity is transformed to n→ 
−uv*−vu* ,−i�uv*−vu*� ,
−�u�2+ �v�2�.

In order to see the relation between the half-skyrmion and
a vortex, we take u=v=1/�2. In this case, the half-
skyrmions solution have the following form:

�↑ =

 − r exp�±i��
�2�r2 + 
2�

, �54�

�↓ =

 + r exp�±i��
�2�r2 + 
2�

. �55�

This has a vortex form at r�
:

��↑

�↓
� � exp�±i���− 1/�2

1/�2
� . �56�

Thus, the half-skyrmion is seen as a vortex introduced in the
system. Such a vortex is taken into account in the CP1 model
as follows:

�� = ��
1/2 exp�i�� = ��

1/2 exp�i�0 + i�v� . �57�

Here �0 describes coherent motion of the bosons and �v
describes the vortex. In the case of Eq. �56�, �v is

�v = ± tan−1 y − yv

x − xv
, �58�

with �xv ,yv� representing the coordinate of the vortex.
We rewrite the CP1 model by substituting Eq. �57� into

Eq. �5�:

S =
1

g
� d3x��

�

1

4��

������2 + ��
�

������� − ���2� .

�59�

The amplitude fluctuations would be important only in the
vicinity of the core. We focus on the outside of the core and
assume a constant value for �� :�0���	��
. After introduc-
ing a Stratonovich-Hubbard field J�, we obtain

S =� d3x� g

4�0
J�

2 − iJ�����0 + ���v − ���� . �60�

The field J� is associated with the spin current. Integrating
out �0 leads to ��J�=0. From this equation, we can repre-
sent J� in terms of a gauge field,
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J� =
1

2�
���
 ��A
. �61�

Substituting this equation into the action, and integrating out
��, we obtain

Sd = SA + Sint, �62�

where

SA =
1

4eA
2 � d3x���A� − ��A��2, �63�

and

Sint = − i� d3x A� j�
v , �64�

with

j�
v =

1

2�
���
�� �
�v. �65�

The value of the gauge charge eA depends on the action of
the gauge field ��, which would be massive because of
Bose-Einstein condensation of the Schwinger bosons. Here
we treat eA as a parameter of the theory.

Since J� describes the spin current and A� is related to J�

through Eq. �61�, the gauge field A� is associated with spin
excitations, such as antiferromagnetic spin waves. Indeed,
A� is massless in the Néel-ordered phase and the velocity of
the mode is csw.

By taking into account the fact that the half-skyrmion is
given by Eq. �46�, we obtain the following action for the
half-skyrmion:

S =� d3x��
�

�̄�
����� − iq�A�� + m���

+
1

4eA
2 ���A� − ��A��2� , �66�

where q� is an index for the sign of the topological charge.
Hereafter, we set csw=1.

In order to study the effect of spin fluctuations on the
half-skyrmion, we formulate the theory on the square lattice.
The lattice form of �66� is given by

L = �
a

�
j

�
�
�1

2
��̄ ja��e−iq����j�� j+�̂,a

− �̄ j+�̂,a��eiq����j�� ja� + m�̄ ja� ja�
+

1

2eA
2 �

j
�
��

�1 − cos
���j + �̂� − ���j�

− ���j + �̂� + ���j��� . �67�

We expand exp 
±iq����j�� with respect to ���j�. The first-
order term L�1� is

L�1� = − i�
a

�
�

�
k,q

q��̄k+q,a�����q��k,ae−iq�/2 cos�k� +
q�

2
� .

�68�

The second-order term is

L�2� = −
i

2 �
k,q,q�

�
�

�
a

�̄k+q+q�,a�����q����q��

��k,ae−i�q�+q�� �/2 sin�k� +
q� + q��

2
� . �69�

We evaluate the self-energy �k
�I� that comes from the

second-order term of L�1� and �k
�II� that comes from the first-

order term of L�2�. The self-energy �k
�II� is given by

�
k

�II�

=
i

2�
�

q
�Dq�� sin k�, �70�

with Dq=1/ 
�i	n�2−	q
2�. The mass renormalization due to

this self-energy is

m

1 −
1

2�
�

q
�Dq

=
m

1 − 0.123eA
2 . �71�

The self-energy �k
�I� is given by

�k
�I� = −

2

�
�

q
���DqGk+q�� cos2�k� +

q�

2
� . �72�

Substituting the explicit form of Gk,

Gk =
1

sin2 k� + m2 �− i�� sin k� + m� , �73�

we obtain

�k
�I� = −

2eA
2

� �
q

�

i�� sin�k� + q�� + mc2�cos2�k� +

q�

2 � − 2i�� sin�k� + q��cos2�k� +
q�

2 �
sin2 q�
sin2�k� + q�� + m2�

= − meA
2 � d3q

�2��3

�
�

cos2�k� +
q�

2 �
��

�

sin2 q����
�

sin2�k� + q�� + m2� . �74�
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Since the dominant contribution comes from the region of
q��0 and q���� ,��, we make an approximation for evalu-
ating the integral,

�k
�I� � − 2meA

2 � d3q

�2��3

1

q2

�
�

cos2 k�

�
�

sin2 k� + m2

= −
meA

2

�

�
�

cos2 k�

�
�

sin2 k� + m2
. �75�

At the zone centers, the energy is shifted by −2eA
2 / ��m�.

VI. DISCUSSION

On the description of the half-skyrmion spin texture for-
mation, it is essential that the Zhang-Rice singlet state has
the form of superposition of the d-orbital spin-up state and
the d-orbital spin-down state. However, each of the d-orbital
spin states accompanies the oxygen p-orbital hole state. As
argued by Aharony et al.,26 there is the possibility of replac-
ing the antiferromagnetic superexchange interaction with a
ferromagnetic interaction on the bond where the doped hole
occupies the oxygen p-orbital state. In the picture of the
Zhang-Rice singlet where a copper site hole spin forms a
singlet state with the Wannier state of the symmetric combi-
nation of the four oxygen p-orbital hole states surrounding
the copper site, the interactions between the nearest neighbor
spins could be replaced with ferromagnetic interactions. If
this is the case, the skyrmion spin texture would be formed
for the opposite spin state compared with the antiferromag-
netic interaction case. However, obviously this does not af-
fect the conclusion on the half-skyrmion formation. Another
possibility on the effect of the oxygen hole state would be
related to the core structure of the half-skyrmion. The dis-
cussion on the core structure is beyond the description of the
effective theories. For the investigation of this effect, one
would require a microscopic model, such as the d-p model.

As argued in Sec. V, the half-skyrmion spin texture can be
seen as a vortex introduced in the Bose-Einstein condensate
of the Schwinger bosons that describes the Néel ordering.
Generally, vortices disturb the phase coherence of conden-
sate. Rapid suppression of Néel ordering by hole doping
could be understood by this picture.27 We expect that this
effective Néel order suppression is absent in the electron
doping case. Our picture for the half-skyrmion formation is
based on the fact that the Zhang-Rice singlet has a form of
superposition of the spin-up and spin-down states. This sug-
gests a picture for the difference between the hole doping
and the electron doping. In the electron doping case, the
doped electrons occupy copper sites. The occupied copper
site has spin zero. However, the electronic state at this site
does not have a form of superposition of different spin states
but is simply given by a doubly occupied site. Therefore, we
do not expect the half-skyrmion formation for the electron-
doped systems. Similar arguments can be applied to Zn dop-
ing. If we replace the copper with Zn, the electronic state at

that site does not have the superposition of different spin
states. Since vortices are not induced by either the electron
doping or the Zn doping, those dopings are not so effective
to destroy the Néel ordering, as observed experimentally. By
contrast, if we replace a copper with Li, then a hole is intro-
duced. That hole is believed to occupy an oxygen p-orbital
state. If we assume the Zhang-Rice singlet formation be-
tween the hole spin and a copper site spin, the half-skyrmion
would be created. This is consistent with the experiments
that report that the critical Li doping concentration for the
destruction of the Néel ordering is almost the same as that of
the hole doping concentration.28 A skyrmionlike spin
texture29 formation for the Li-doping case was discussed by
Haas et al.30

In Sec. IV, we have argued that the dispersion �49� is
qualitatively in good agreement with the ARPES result on
the parent compounds. A similarity between the dispersion
�49� without the mass term and the ARPES result was first
pointed out by Laughlin.31 However, in the absence of the
mass term, cusp structures appear around the �±� /2 , ±� /2�
points, which does not agree with the experiment. This dis-
crepancy is corrected by including the mass term. A recent
estimation of the mass term32 reports a value that is close to
the theoretical prediction, as discussed in Sec. IV. Another
point of view has been suggested based on a self-consistent
Born approximation3 of the t-J model. The analysis of the t-J
model predicts a relatively flat dispersion along the ��, 0�
point to the �0, �� point, whose bandwidth is much smaller
than the ARPES result. This discrepancy is improved by tak-
ing into account next and third nearest neighbor hopping
terms. In contrast, the dispersion �49� predicts the same dis-
persion along the �0, 0� point to the ��, �� point and the ��,
0� point to the �0, �� point. This seems consistent with the
experiment by Ronning et al.32

The quite broad peaks observed by ARPES would be as-
sociated with the coupling to some bosonic modes. The ques-
tion is what boson mode plays the major role for this broad-
ening. A scenario based on an electron-phonon coupling has
been proposed by Mischenko and Nagaosa.33 It is argued that
the electron-phonon coupling is in the strong coupling re-
gime for the quasiparticles in the t-J model. The quasiparticle
dispersion in the t-J model is associated with the antiferro-
magnetic spin wave effects, whereas in the half-skyrmion
picture, the dispersion is given by the soliton character of the
half-skyrmion in the spin system. The antiferromagnetic spin
fluctuations can play some role for the broadening of the
spectrum. This issue will be examined in the future publica-
tion. This effect comes from the coupling between the half-
skyrmion and the gauge field that is associated with the an-
tiferromagnetic spin fluctuations, as discussed in Sec. V. Of
course, this just suggests another possibility for the broaden-
ing of the spectrum.

Ng argued34 that the vortex excitations in the Schwinger
boson mean field theory correspond to the quasiparticles in
the �-flux phase. Similarities between the skyrmionlike spin
texture29 and the quasiparticle of the �-flux phase was
pointed out by Gooding,35 based on a numerical simulation.
These seem to be consistent with the half-skyrmion picture.
In the context of the spin-charge separation,36 Baskaran
argued37 that the half-skyrmion can be seen as a deconfined
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spinon from the analysis of the n-skyrmion solution of the
NL�M.

The half-skyrmion picture may be extended to the slightly
doped regime. If we increase the number of holes, then the
interaction between the half-skyrmions becomes important.
A half-skyrmion lattice state might be possible in an appro-
priate doping concentration. We expect that a skyrmionlike
spin texture is formed, even in the magnetically disordered
phase. Since the antiferromagnetic correlation length �AF is
finite, the topological charge that characterizes the spin tex-
ture is given by

Q =
1

2�
�




�AF

d2r��x�y − �y�x� . �76�

Probably the term “topological” is not appropriate in the dis-
ordered regime because the index Q would be no longer
quantized. If doped holes accompany a spin texture with
nonzero Q, then we can apply a mechanism of d-wave su-
perconductivity based on a skyrmion like spin texture.38

VII. SUMMARY

To summarize, it has been argued that the half-skyrmion
spin texture is created by doping a hole into the CuO2 plane.
The picture is based on the Zhang-Rice singlet. The Zhang-
Rice singlet wave function has the form of superposition of
different d-orbital spin states. The half-skyrmion formation is
the result of superposition of the skyrmion spin texture and
the trivial uniform state associated with each of d-orbital spin
states.

The excitation spectrum of the half-skyrmion is qualita-
tively in good agreement with ARPES experiments on the
parent compounds. Although the theory is based on the ef-
fective theories, such as the NL�M and the CP1 model, an
estimation of the parameters in the dispersion gives us the
values close to experimentally obtained values.

Since the half-skyrmion picture is based on the superpo-
sition nature of the Zhang-Rice singlet wave function, the
picture is not applicable to the electron-doped systems,
where the description of the doped electrons is not expected
to have that character.

An interesting extension of the half-skyrmion picture
would be to examine whether the picture can be applicable to
a slightly doped regime, where the interaction between the
half-skyrmions is not negligible. It would also be interesting
to examine whether the skyrmionlike spin texture is formed
in the disordered spin state. In the absence of the Néel order-
ing, the topological charge could be arbitrary. However, we
expect that strong antiferromagnetic correlations can stabi-
lize a skyrmionlike spin texture created by a doped hole with
nonvanishing topological charge.
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