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We discuss the use of the magnetic force theorem using different reference states upon which the perturba-
tive approach is based. Using a fixed spin disordered local moment state one finds good Curie �or Neél�
temperatures, and good energetics for planar spin spirals in the 3d magnets Fe, fcc Co, Ni, Mn, and Cr, though
worse agreement for small � spin spirals. On the other hand, the ferromagnetic reference state provides
excellent energetics for small � spin spirals in Fe, fcc Co, and Ni, and by extension magnon energies under the
assumption of adiabacity. However, planar spin spiral energetics and transition temperatures show worse
agreement. The reasons for this, and for the case of fcc Co where both approaches work very well, are
discussed. We further provide an extension of the mapping of the quantum problem to include longitudinal
fluctuations within force theorem based approaches, and discuss the role they will play in magnetic phase
transitions. This construction is tested using planar spin spirals where q is fixed but the moment is allowed to
relax. It is demonstrated that results from this approach and directly calculated ab initio values agree very well.
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I. INTRODUCTION

Constructions based upon the mapping of the ground state
energetics of a quantum system onto an appropriate classical
model have been found to be of great use in solid state phys-
ics. Direct and accurate quantum mechanical calculations are
still only practically possible for system sizes of the order of
hundreds of atoms, and so in order to explore physics on a
greater length scale than this, the substitution of the quantum
problem by a classical one is necessary. The most prominent
example of such a procedure is probably the Ising model in
alloy physics, and a great deal of progress in understanding
the ground state and phase behavior of binary alloys has
been made in this way.1 In this case the classical variable is
just the site occupation. In the case of magnetic systems the
appropriate classical model is the Heisenberg model, which
in its simplest form reads

E = − �
ij

Jij
�2�si · s j , �1�

where Jij
�2� are the effective exchange interactions and �si�

unit vectors. In this case the emergence of such local mo-
ment variables is not as obvious as in the alloy situation,
where the site occupation is very naturally described by the
Ising variable �i which takes on values of 1 or 0 depending
on whether the site is occupied by an A or B atom, respec-
tively.

In fact the fundamental justification for the usefulness of
such variable comes from a separation of time scales.2 If one
considers a magnetic material at some low temperature, the
moment on a particular site will fluctuate rapidly on a time
scale given by the electron hopping. However, averaged over

longer time scales the expectation value of the site moment
is a more stable quantity. In particular, the magnon frequency
is often orders of magnitude slower. This adiabatic condition
allows the deployment of a classical Heisenberg model to
study the low temperature magnetic dynamics. Given an ac-
curate procedure for mapping between the quantum and clas-
sical regimes the study of the dynamics of complex materials
is facilitated. A further use, in general less justified, is the
study of phase transitions in magnetic systems. Here one
extends the concept of the local moment to high tempera-
tures, and assumes that the statistical mechanics of the high
temperature state is given simply by the classical partition
function of the ground state energy. The validity of this ap-
proach is less secure since it involves the neglect of both
quantum statistics and longitudinal fluctuations of the mag-
netization.

There are several ways of constructing the mapping be-
tween the quantum system and the Heisenberg Hamiltonian,
which can be divided into what are known as structure in-
verse methods and perturbative methods. In structure inverse
methods one extracts the parameters for the Heisenberg
model from the total energies of a set of magnetic structures.
These are most often spin spirals, and there has been some
debate as to whether small � or planar spin spiral structures
should be used.3,4 The alternative perturbative approach
comes from considering the rotation of a pair of spins em-
bedded in some reference state by opposite and vanishing
angles. This leads directly to the parameters of a classical
Heisenberg model. Note that there is no restriction on the
form of reference state in this method.

The relative merits of such approaches have been well
cataloged in the case of the analogous alloy situation.5 The
structure inverse type methods have the advantage that they
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are in principle limited in accuracy only by the underlying
method used to determine the total energies. On the other
hand, the range and importance of specific interactions
�which may include multisite interactions� is not known be-
forehand, and it is difficult to systematically converge the
method with respect to the range and type of interactions. A
particular problem may arise if the interactions are configu-
ration dependent. In perturbative methods the situation is re-
versed. Within such an approach the convergence of the in-
teraction set is relatively trivial, and by probing different
reference states one can �as will be shown� elucidate the
configuration dependence if any. However, if there are strong
hybridization effects specific to a particular noncollinear
state then these cannot be captured by interactions calculated
from some different reference state. Hence, in general per-
turbative methods will be less accurate than the underlying
electronic structure method used.

The two original formulations of force theorem based
methods used the ferromagnetic6,7 and disordered local mo-
ment reference states,8 and we will refer to these two ap-
proaches as the ferromagnetic magnetic force theorem �FM-
MFT� and disordered local moment magnetic force theorem
�DLM-MFT� throughout this work. The FM-MFT has be-
come widely used in the intervening years but not the DLM-
MFT. This may perhaps be explained as a result of the initial
calculation of the Curie temperature of Fe which turned out
to be 2700 K,8 substantially above the experimental value of
1045 K. However, it was shown recently that this large value
was most likely due to a numerical error in the original work,
a modern calculation giving a value of around 1080 K.5 A
more serious problem with the DLM-MFT is found by con-
sidering it as a procedure for extracting interactions from the
high temperature paramagnetic phase. In this case one is con-
fronted by the fact that the DLM state is manifestly a poor
description of this phase as it neglects both magnetic short
range order and spin fluctuation entropy. A dramatic example
of this failure is that the equilibrium DLM moment for Ni is
zero, in contradiction to experiment where a local moment
may be observed above the Curie temperature.

In contrast, force theorem approaches based on extracting
interactions from the ground state structure, such as the FM-
MFT, have no such problem as modern electronic structure
calculations are known to provide a rather good description
of ground state magnetism. The FM-MFT is known to suffer
from some failures, however. A long standing problem has
been the Curie temperature of Ni which has been found to be
much smaller than the experimental value of 624–631 K in
all works using this method, typically around 300 K. Further,
in a surprising result5 it was recently shown that using an
accurate underlying method for the electronic structure of the
FM reference state resulted in a Curie temperature of 550 K
for bcc Fe in the local spin density approximation, roughly
half the experimental value.

Furthermore the fact that the DLM state is only useful as
a model of the paramagnetic phase in systems with well de-
fined local moments such as bcc Fe would seem to prevent
the widespread application of the DLM-MFT. The problem
results from allowing the DLM state to attain its equilibrium
moment, which is only strictly necessary if one regards the
DLM state as a model of the high temperature paramagnetic

phase. In the context of force theorem based methods the
DLM can be considered as simply another reference state for
the interactions to be calculated from, and not as a model of
the paramagnetic phase. In this case one may construct a
constrained DLM state in which �for example� the local mo-
ments are fixed to the same size as the ground state moment.

This paper addresses the question of the role of the refer-
ence state in the mapping of the quantum problem. In Secs.
II and III we describe briefly the formalism used and give
details of our computations. The usefulness of any MFT ap-
proach is easily determined by a comparison of the MFT
predictions of magnetic energetics with direct quantum me-
chanical calculation. Hence, for a fixed spin FM or DLM
reference state one should compare the MFT results with
direct calculations on structures of identical moment size.
Section IV presents this comparison for the energetics of
planar and small � spin spirals. We then present, in Sec. V,
the results of Curie and Neél temperatures calculated with
both methods. In Sec. VI we introduce an approach for the
inclusion of longitudinal fluctuations in conjunction with
perturbative methods, after which we conclude.

II. FERROMAGNETIC AND DISORDERED LOCAL
MOMENT EXCHANGE INTEGRALS

The magnetic force theorem makes use of Lloyd’s for-
mula in Green’s function formalism for the change in the
integrated density of states upon the embedding of some
cluster.6 For the FM-MFT �for simplicity we here consider
systems with one basis atom only� one arrives at the follow-
ing equation for the effective bilinear exchange term in the
Heisenberg model

Jij
�2� =

1

4�
Im�EF

dz TrL��gij
↑�gji

↓ � �2�

with �= P↑− P↓ where P� are the potential functions and gij
elements of the auxiliary Green’s function. Considering now
the DLM state one can model this as an A0.5B0.5 alloy with
the A and B components the +m and −m spins, respectively.2

There will now be three possible effective exchange interac-
tions �Jij

�2��AA, �Jij
�2��BB, and �Jij

�2��AB. However, the symmetry
of the DLM state ensures that �Jij

�2��AA= �Jij
�2��BB=−�Jij

�2��AB.
With the aid of the vertex cancellation theorem9 one can
write the interactions simply by substitution of the coherent
Green’s function for the FM Green’s function

�Jij
�2��xy =

1

4�
Im�EF

dz TrL��x�g̃ij
↑ �xy�y�g̃ji

↓ �xy� , �3�

where x and y label component type. This equation may be
simplified by noting that

tx
� =

�P̃ − Px
��

1 + �P̃ − Px
��g̃0

, �4�
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�gij
↑ �x�y� =

1

1 + g̃0�P̃ − Px
��

g̃ij
1

1 + �P̃ − Py
��g̃0

. �5�

Using these and the symmetry properties of the DLM state
one finally arrives at

�Jij
�2��xx =

1

4�
Im�EF

dz TrL��tg̃ij�tg̃ji� , �6�

where �t= t↑− t↓.
Equation �6� is reminiscent of the corresponding expres-

sion in alloy theory for the calculation of the pairwise inter-
actions Vij

�2� needed in the Ising model, and in that context the
force theorem approach is known as the generalized pertur-
bation method.1 In fact it is easy to show that Vij

�2�

=−1/8�Jij
�2��xx.

The close analogy allows one to write down the exchange
integral required for the calculation of any embedded cluster
of spins in the DLM-MFT

Jij
�n� =

1

4�
Im�EF

dz TrL��tig̃ij�tj…�tkg̃ki� . �7�

Note that due to the symmetry of the exchange interaction10

only even clusters have nonzero energy. The full Heisenberg
expansion is then given by

E = − �
ij

Jij
�2�si · s j − �

ij

Jij
�2−2��si · s j�2 − … − �

ij

Jij
�n−n��si · s j�n

−
1

4!�ijkl

Jijkl
�4� ��si · s j��sk · sl� + �s j · sk��sl · si� + �sl · si�

��s j · sk�� − … , �8�

where Jij
�2� is the bilinear exchange term, Jij

�2−2� the biqua-
dratic exchange term �double scattering�, and Jijkl

�4� a four site
exchange interaction. Higher order pair exchange terms are
indicated by Jij

�n−n�.

III. COMPUTATIONAL DETAILS

The electronic structure calculations were performed in
the Korringa-Kohn-Rostocker �KKR� scheme in the atomic
sphere approximation �ASA� �see Ref. 5, and references
therein�. The basis used contained s, p, d, and f orbitals.
Multipole moment corrections for the charge density up to
lmax=6 were included. The exchange correlation functional
used was the local spin density approximation11 �LSDA� for
Ni, fcc Co, Fe, and Mn, whereas for Cr we used the gener-
alized gradient approximation12 �GGA� since in the ASA ap-
proximation the equilibrium moment with LSDA turns out to
be rather low at 0.30 �B. The integration of the Green’s func-
tion was taken in the complex plane with 16 energy points on
a semicircular contour. The experimental room temperature

lattice parameters were used in all cases expect for that of fcc
Mn where an expanded lattice parameter was used to ensure
an antiferromagnetic solution.

In order to calculate the Fourier transform of our effective
exchange interactions, one needs quite a high cutoff in the
number of shells used, particularly for interactions derived
from the FM-MFT. We use up to 200 shells for this proce-
dure, which in turn requires a quite fine k mesh for the cal-
culation of gij. For the fcc, bcc, and sc structures we found
that 3345, 3080, and 1540 k points, respectively, in the irre-
ducible Brillouin zones was sufficient.

IV. SPIN SPIRALS

The energy of a spin spiral in the Heisenberg model is
given very simply by a Fourier transform of Eq. �8� as

E�q� = − J�2��q� − sin2��J�2��q� − J�2��0�� − J�2−2��q�

− 2 sin2��J�2−2��q� − J�2−2��0�� − sin4��1/2J�2−2��2q�

− 2J�2−2��q� + 3/2J�2−2��0�� − … . �9�

Note that if only bilinear terms are included in the Heisen-
berg expansion then the � and q dependencies decouple and
the difference between a small � spin spiral and a planar spin
spiral becomes simply a matter of scale.

One would intuitively expect that, by virtue of its pertur-
bative nature, the magnetic force theorem would describe
well at least the magnetic energetics for configurations close
to the reference state. Hence, one is not guaranteed to find
good total magnetization energies, which are relative to the
nonmagnetic state, but rather good magnetization energy dif-
ferences between the reference state and some arbitrary spin
configuration close to it. In the case of the FM-MFT one
would expect that states close to the FM state would be well
described. Since the DLM state is a profoundly noncollinear
one, it might be expected that the DLM-MFT would better
treat noncollinear states than the FM-MFT.

Planar spin spirals thus form a useful tool for probing the
regions where the FM-MFT and DLM-MFT work well, since
as a function of q such structures smoothly contain both a
ferromagnetic limit as well as noncollinear limits near the
Brillouin zone boundary. In Figs. 1 and 2 we present the
results of direct calculation of the magnetization energies of
planar spin spirals in Ni, fcc Co, Fe, Mn, and Cr where the
moment of the spiral is constrained to be that of the ground
state moment, and with q vectors in the standard reciprocal
space paths as indicated. Also shown is the evaluation of Eq.
�9� using only bilinear interactions determined via the FM-
MFT and DLM-MFT where the reference states were again
constrained, if necessary, to have the same moment as the
ground state structure. For a unified comparison we show all
energies here measured from the nonmagnetic state, hence,
all energies are magnetization energies. This is achieved sim-
ply by the addition of Edlm to Eq. �9�, a point which we shall
exploit further in Sec. VI.
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These results show that the DLM-MFT provides a better
description of the energetics of the planar spin spirals with q
away from the 	 point. On the other hand, it is seen that near
the 	 point the form of the FM-MFT energy is much closer
to the directly calculated results, and remembering that for a
“fair” comparison one should measure the energy relative to
the FM state in this case, it is clear that the FM-MFT per-
forms better in this limit. For example, spin stiffness con-
stants would be better treated in the FM-MFT, as will be
shown in the next section.

A further point of interest is the dramatic difference be-
tween the MFT results of the ferromagnets Fe, fcc Co, and
Ni. The FM-MFT interactions in the case of Fe are com-

pletely unable to reproduce the energetics of the planar spin
spirals, whereas for fcc Co both the FM-MFT and DLM-
MFT interactions provide a good description for both the
spirals near the 	 point and those near the Brillouin zone
boundary. For Ni the differences are pronounced only at the
	 point.

One possible explanation for this behaviour is the neglect
of higher order terms in Eq. �9�. To check this for the DLM-
MFT case we have converged the Heisenberg expansion us-
ing Eq. �7� and have found that there is no significant con-
tribution from such terms. However, it may still be the case
that higher order terms are necessary for convergence of the
Heisenberg expansion when using the FM-MFT. A possible
reason for this may be found in the asymptotic behavior of
the interactions in the FM-MFT and DLM-MFT. In the
former case for weak ferromagnets �in the Stoner sense� such
as Fe with a large density of states at the Fermi level in both
the minority and majority channels the asymptotic behaviour
is governed by a long range RKKY decay.13 This may also
lead to important multisite interactions. On the other hand,
for strong ferromagnets such as Ni and fcc Co, the
asymptotic behavior of the interactions will show an expo-
nential decay, and this shorter range of interaction would
likely lead to a reduced importance of multisite interactions.
It should be noted that the DLM-MFT interactions will al-
ways show an exponential decay due to the disorder of the
reference state.

In Fig. 2 it can be seen that for the antiferromagnets Cr
and Mn the FM-MFT and, more surprisingly, results using an
antiferromagnetic reference state are in quite poor agreement
with direct calculation. However, for both materials the
DLM-MFT is seen to provide a good description of the en-
ergetics.

It is interesting to observe that in all cases the FM-MFT
and DLM-MFT provide a bound on the magnetization en-
ergy at the 	 point: The FM-MFT consistently underesti-
mates the stability of the FM state whilst the DLM-MFT
consistently overestimates it.

The quantity j0=� jJ0j
�2� is equal to the difference in energy

between the DLM and FM states and thus should be a diffi-
cult quantity to predict accurately using perturbative ap-
proaches based on either the DLM or FM reference states.
This is indeed seen in Table I, where for Ni and Fe the values
from the DLM-MFT and FM-MFT differ quite considerably
from each other and also from the directly calculated result.

We now turn to the calculation of small � spin spirals. As
discussed above it is expected that the FM-MFT should work
very well in this case, and that is indeed seen in Fig. 3. In

TABLE I. j0 �in mRy� for 3d magnets calculated from the bilin-
ear interactions derived using the magnetic force theorem with ei-
ther FM or DLM reference states. Also shown is the value calcu-
lated directly using the KKR-ASA method.

DLM-MFT FM-MFT KKR-ASA

Ni 3.71 9.50 5.60

Co �fcc� 15.51 15.50 15.09

Fe 15.58 9.26 12.13

FIG. 1. �Color online� Planar spin spiral energetics for Fe, fcc
Co, and Ni directly calculated from KKR-ASA method �filled sym-
bols� and evaluated using magnetic force theorem with ferromag-
netic �FM-MFT, dashed lines� and disordered local moment refer-
ence states �DLM-MFT, continuous lines�.

FIG. 2. �Color online� Planar spin spiral energetics for Cr and
Mn directly calculated from KKR-ASA method �filled symbols� and
evaluated using magnetic force theorem with ferromagnetic �FM-
MFT, dashed lines�, antiferromagnetic �AFM-MFT, dot-dashed
lines�, and disordered local moment �DLM-MFT, continuous lines�
reference states.
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this case the energy is measured relative to the FM energy. In
fact, for Ni and fcc Co the method appears to give practically
exact results, whereas for Fe it is slightly off at the H point.
However, this difference might well vanish as �→0 since
the spin spirals shown here actually had �=� /10, and fur-
thermore the difference with the planar spin spiral is most
pronounced at the H point. Near the H point in Fe are clearly
seen effects of the long ranged RKKY nature of the magnetic
interactions in Fe, known as Kohn anomalies. These of
course are completely absent in the DLM-MFT spectrum due
to the exponential decay of the interactions in that case.
From Fig. 3 it is further seen that the DLM-MFT overesti-
mates small � spin spirals by a factor of 2 for Ni and for Fe
near the H point. Again, as was seen in the case of planar
spin spirals, for fcc Co the difference between the FM-MFT
and the DLM-MFT results is rather small.

From a linearization of the Bloch equation of motion the
energetics of small � spin spirals may be simply related to
magnon energies, and hence the FM-MFT appears to provide
an excellent way to calculate magnon spectra. This provides
strong computational support for the recent work by Katsnel-
son et al.14 who find the correction to the FM-MFT provided
recently by Bruno15 not to be needed for the calculation of
magnon energies, although it might be for Curie tempera-
tures. The question as to whether the FM-MFT should be
able to provide correct Curie temperatures, and under what
conditions, will be discussed in the next section.

It is interesting at this point to return to the question of
why there is such a profound difference in the description of
spin spiral energetics provided by the FM and DLM mag-
netic force theorem interactions for the case of Fe and Ni, but
not in the case of fcc Co. Since each reference state provides
a good description of, respectively, the small � and planar
spin spiral limits, another explanation for this behaviour sug-
ests itself.

One notes that in the FM state majority and minority
bands are orthogonal and may cross each other, whereas in

noncollinear states these bands are no longer orthogonal and
will, to a greater or lesser degree, repel each other creating
hybridization gaps and a change in the electronic structure.
Such hybridization may be expected to be important in the
case of weak ferromagnets, where there is a large density of
states �DOS� in both the spin up and spin down channels at
the Fermi level EF, and not so important in the case of strong
ferromagnets, where the spin up channel will a low DOS at
EF. Clearly, this effect can only be accounted for in the per-
turbative approach by its inclusion in the reference state. One
can then view the DLM and FM as representing strong hy-
bridisation and no hybridisation limits for the reference state.

So in the case of weak ferromagnets highly noncollinear
states such planer spin spirals will be far more accurately
treated in interactions taken from the DLM reference state
than those from the FM reference state, whereas for nearly
collinear magnetic configurations such as small � spin spirals
the situation will be the opposite. On the other hand, for
strong ferromagnets with weak hybridization effects upon
changes in the spin configuration, both reference states
should provide a good description. Thus one can naturally
understand relative importance of the reference state in the
case of Fe and fcc Co.

For the case of Ni another explanation must be found, but
one readily suggests itself. In this case a difference with Fe
and fcc Co is that Ni is a rather itinerant ferromagnet with a
large magnetization density in the interstitial region. The
electronic structure would be expected to be much more sen-
sitive to changes in the spin configuration that in the case of
very good local moment magnets. In the next section a
physical manifestation of these two effects will be discussed.

V. CURIE TEMPERATURE AND SPIN STIFFNESS
CALCULATIONS

At second order magnetic transitions, where the long
range order parameter goes to zero at the critical temperature
TC, the spin configurations of relevance will be much closer
to the DLM state than any ground state magnetic structure.
The appropriate reference state for extracting interactions is
then the DLM state. In the light of the above discussion, it is
thus interesting to investigate the different Curie tempera-
tures one obtains for Fe, fcc Co, and Ni using the FM and
DLM reference states. The interactions derived may be used
in Monte Carlo calculations to determine the magnetic tran-
sition temperature. Results of this procedure are shown in
Table II.

The arguments given above explain the result for Fe
found in Ref. 5, however, they also allow for the following
criteria for the FM-MFT to provide accurate Curie tempera-
tures to be formulated: The FM-MFT should work for strong
local ferromagnets, where it will agree with DLM-MFT, and
not otherwise. The results of Table II show that this is indeed
the case, with the Curie temperatures for fcc Co being close
in both approaches but there existing a large difference for
Ni and Fe. The effect of the reference state amounts to 500 K
in each of these cases. One notes that a large body of work
exists where Curie temperatures have been calculated via the
FM-MFT for half metallic systems, such as dilute magnetic

FIG. 3. �Color online� Small � spin spiral energetics for Fe, fcc
Co, and Ni directly calculated from KKR-ASA method �filled sym-
bols� and evaluated using the magnetic force theorem with ferro-
magnetic �FM-MFT, dashed lines� and disordered local moment
�DLM-MFT, continuous lines� reference states.
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semiconductors. However, these materials are expected to be
a case where neither hybridization or itinerancy effects will
be important, and so the use of the FM-MFT or DLM-MFT
should make little difference.

It is extremely interesting that the Curie temperature for
Ni comes out to be 820 K which is higher than the experi-
ment. The reason for the overestimate of the Curie tempera-
ture comes back to the imposition of a fixed spin moment
constraint on the DLM state. This is necessary for the use of
the DLM as a reference medium for the force theorem argu-
ment, but is artificial for Ni near the Curie temperature.
There the local moment will certainly be lower than the
ground state moment and, hence, it is that which should be
used, and this will have the effect of lowering the Curie
temperature from that obtained with the ground state mo-
ment. Thus if the moment was allowed to take on its true
value, the agreement between experiment and theory may be
quite reasonable for Ni. Of course, the DLM state has zero
equilibrium moment for Ni and so it cannot simply be al-
lowed to be a free parameter, as works well for Fe.5 A way in
which progress can be made is described in the next section.

Near the 	 point the magnon spectra behaves as Dq2 and
this fact is easily used to show that D can be expressed in
terms of the interactions as

D =
2

3m
�

j

J0jR0j
2 , �10�

where m is the magnetic moment of the ferromagnetic state.
Results for the spin stiffness of the ferromagnetic 3d metals
are shown in Table III. The FM-MFT provides values in
reasonable agreement with experiment, as expected, however
the DLM-MFT also does for fcc Co and Fe. For fcc Co this

may be expected from the arguments above, however, for Fe
it is more surprising since there are pronounced differences
between the interactions in the FM and DLM states. Due to
the long ranged nature of the interactions derived from the
FM-MFT, D was evaluated from the derivative of the mag-
non spectra at the 	 point directly. For the DLM-MFT inter-
actions Eq. �10� may be used due to their much quicker
decay in real space.

VI. INCLUSION OF LONGITUDINAL FLUCTUATIONS

The essential reason for the overestimate of the Curie
temperature was that the classical Heisenberg Hamiltonian
allows for only transverse fluctuations. This means there is
no way for the size of the Ni moments to respond to the
energy cost of orientational disorder by reducing the ex-
change splitting. A number of authors have proposed ways to
lift this constraint.4,20 The crucial step is the addition of an
on-site term to the energy expression, which for our purposes
can be written as

E��si�,�mi�� = �
i

Ji
�1���mi�� − �

ij

Jij
�2���si�,�mi��si · s j .

�11�

The inclusion of this on-site term then brings the energetics
of the coupling between the local intrasite exchange and the
nonlocal intersite exchange into the Hamiltonian. In Ref. 4
the coefficients of Eq. �11� were found by deploying the
structure inverse method using as the basis a set of planar
spin spirals with different constrained moments. However,
what we wish to point out here is that the coefficients of this
equation may be found using the perturbative scheme dis-
cussed so far in this paper.

The key observation is that if the energy of the DLM state
of fixed spin moment m is calculated from Eq. �11�, the
vanishing of the spin product results in the expression

Edlm�m2� = �
i

J�1��m2� , �12�

here the dependence is on m2 and not m due to the m=−m
symmetry of the DLM state. Thus if the DLM state is used as
a reference state then the m dependence of J�1� is given by
the m dependence of the DLM state itself. Further, an inspec-
tion of the equation for Jij

�2� in the DLM state shows that it is
very easily generalised to the case where one embeds two
spins of moments mi and mj in a DLM state composed of
random local moments of size m̄. This may be achieved by
the use of the CPA impurity formula. Equation �6� may now
be written schematically as

Jij
�2��m̄,mi,mj� =

1

4�
Im�EF

dz TrL��ti�m̄,mi�g̃ij�m̄�

��tj�m̄,mj�g̃ji�m̄�� . �13�

One has now obtained expressions for both the intrasite and
intersite parts of Eq. �11� which can now be written as

TABLE II. Transition temperatures �in K� for 3d magnets cal-
culated using the Monte Carlo method and experimental transition
temperatures.

DLM-MFT FM-MFT Exp.

Ni 820 320 624–631

Co �fcc� 1350 1120 1388–1393

Fe 1190 550 1044–1045

Mn 450 -

Cr 421 321

TABLE III. Spin stiffness constants �in mRy Å2� for Fe, fcc Co,
and Ni directly calculated from KKR-ASA method and evaluated
using magnetic force theorem with FM and DLM reference states.

DLM-MFT FM-MFT Exp.

Ni 1796 541 555a, 420b

Co �fcc� 520 480 580a, 510b

Fe 313 322 280c, 330a

aSee Refs. 16 and 17.
bSee Ref. 18.
cSee Ref. 19.
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E = �
i

JDLM
�1� �mi

2� − �
ij

Jij
�2��m̄,mi,mj�si · s j . �14�

Thus including the magnetization energy of the DLM refer-
ence state as well as the exchange integrals calculated from
that state, allows for the inclusion of longitudinal fluctuations
in approaches based on the magnetic force theorem.

The effectiveness of this theory may be tested by again
calculating planar spin spirals but with the magnetic moment
allowed to take on the equilibrium value. Equation �14�
should then reproduce the ab initio equilibrium moments and
relaxation energies. For practical calculations one must pa-
rameterise the quantities JDLM

�1� and Jij
�2�. In the case of homo-

geneous structures such as spin spirals all spins have the
same moment size and so this is easily done by fitting poly-
nomials to values calculated for several different m. We find
that the best fitting is achieved with polynomials between
order 6 and 10. Since the theory is based on the DLM as the
reference state it is interesting to see initially how well it
works in the FM limit, which should be the worst case. Us-
ing Eq. �14� one may calculate the equilibrium moments of
the ground state structures, which are either ferromagnetic or
antiferromagnetic. These results are presented in Table IV.
As expected the fcc Co moment is well reproduced, but more
surprisingly there is a reasonable agreement in all other cases
too. The worst cases, as would be expected from the discus-
sion in previous sections of this paper, are Fe and Cr.

In Fig. 4 are shown the equilibrium moments of the planar
spin spirals. As can be seen the agreement between ab initio
results and Eq. �14� is quite reasonable in all cases. In Fig. 5
is shown the relaxation energy of the spin spirals, defined
simply as the difference of the energy between the spin spiral
with its equilibrium moment and the spin spiral with the
moment fixed to that of the equilibrium ground state struc-
ture �either FM or AFM�. Again the agreement is seen to be
very reasonable, though slightly worse for Fe, in particular
on the linear path between the N and 	 special points. How-
ever, this is to be expected in the light of the discussion in
Sec. IV. Since Fe is a weak ferromagnet, hybridization ef-
fects will be important in the noncollinear state and may be
expected to differ according to the particular noncollinear
state considered, i.e., they will change with the q vector of
the planar spin spiral. Perturbative approaches based on a
particular reference state will neglect these q dependent hy-
bridization effects completely, leading to the greater errors
for Fe in Fig. 5.

It must be stressed that the results obtained are based only
on the DLM reference state, but nevertheless this allows one
to capture the energetics of the ferromagnetic state, as well
as planar spin spirals. The method thus seems to include
within it an accurate enough treatment of the m and orienta-
tional dependence of the magnetization energy to calculate
the equlibrium moments of a variety of structures. Using this
energy expression within the classical partition function one
would then expect to be able to calculate a Curie temperature
with the moment responsive to the orientational disorder.
Further work along these lines is now in progress, in particu-
lar the relation of our work to spin fluctuation theory,20 and
the role of short range order in the paramagnetic state.

TABLE IV. Magnetic moments �in �B� of ground state struc-
tures of 3d magnets calculated directly from KKR-ASA and from
magnetic force theorem.

Model Hamiltonian KKR-ASA

Ni 0.69 0.62

Co �fcc� 1.62 1.62

Fe 2.35 2.22

Mn 2.86 2.79

Cr 1.09 0.87

FIG. 4. Relaxation of the magnetic moment of planar spin spi-
rals in Ni, fcc Co, Fe, Mn, and Cr. Shown are both the results of
direct calculation via KKR-ASA method �open circles� and evalu-
ation from the m-dependent magnetic force theorem approach.

FIG. 5. �Color online� Relaxation energy of planar spin spirals
in Ni, fcc Co, and Fe. Shown are both the results of direct calcula-
tion via KKR-ASA method �open and filled symbols� and evalua-
tion from the m-dependent magnetic force theorem approach
�dashed lines�.
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VII. CONCLUSIONS

We have presented a study of the effect of the choice of
effective medium in approaches based on the magnetic force
theorem. We find that for weak or itinerant ferromagnets it is
essential to use the DLM-FM reference state for planar spin
spiral calculations and Curie temperatures, but that for strong
local moment ferromagnets both approaches may be used
interchangeably. We find that the FM-MFT provides an ex-
cellent description of the energetics of small � spin spirals,
and hence, magnon spectra. We have further proposed a
method whereby longitudinal and well as transverse fluctua-

tions may be incorporated into methods based on the mag-
netic force theorem. We have demonstrated the accuracy of
this latter method by comparison with ab initio results.
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