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A logarithmic discretization procedure, alternative to the one traditionally employed in the Numerical
renormalization-group computations of physical properties for impurity models, is introduced. While the tra-
ditional method neglects the coupling of the conduction states most localized around the impurity site to all
other conduction states, this one constructs a nonorthogonal basis that diagonalizes the conduction-band
Hamiltonian and neglects the overlap between basis states. Unlike the traditional procedure, which underesti-
mates the spectral density of the coupling between the conduction band and the impurity, this one requires no
ad hoc renormalization of coupling constants. Numerical examples covering the specific heat for the Kondo
model and the impurity spectral densities for the uncorrelated Anderson model show that, for the same
discretization parameters, this procedure is substantially more accurate than the traditional one.
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I. INTRODUCTION

The numerical renormalization group �NRG� computation
of the magnetic susceptibility for the Kondo model, a break-
through combining analytical arguments with an unconven-
tional numerical approach involving strictly controllable ap-
proximations, finds few parallels in condensed-matter
theory.1 In the three decades that have followed this devel-
opment, one counts numerous calculations of thermodynami-
cal, dynamical or transport properties for different impurity
models, based on the NRG procedure.2–12 The original work
was concerned with universal properties and paid little atten-
tion to irrelevant operators, which in the single-impurity
Kondo Hamiltonian affect the low-temperature properties
only to the extent that they change the Kondo temperature
TK.1 Later interest in nonuniversal curves led to generaliza-
tions, which nonetheless preserved an essential feature of the
method: the logarithmic discretization of the conduction
band. Even those that modified the logarithmic sequence6 left
untouched the association of a discrete basis with the loga-
rithmic mesh, and to justify the discretization, all NRG cal-
culations have relied on rapid convergence of the calculated
physical properties to the continuum.

Many of the above-mentioned generalizations have suc-
ceded in accelerating that convergence, so that calculations
with relatively coarse meshes have yielded physical proper-
ties within a few percent of the continuum limit. An early
landmark was established in Ref. 3, which showed that, to
ensure fast convergence of nonuniversal properties, one must
renormalize all impurity-band couplings by mesh-dependent
factors. That empirical finding received support from the
analytical diagonalization of simple Hamiltonians and the
numerical diagonalization of a number of more complex
ones, including the two-impurity Kondo Hamiltonian, with
its energy-dependent couplings.10

While attempting to compute the specific heat for the two-
impurity Kondo model,13 we were surprised by unusually
slow convergence to the continuum limit. As the data in Sec.
VII will show, in marked contrast with computations for the
single-impurity Kondo model, numerical results for the

impurity-added contribution to the specific heat computed
with coarse logarithmic meshes are in only qualitative agree-
ment with the continuum curves.

A milder version of the same difficulty appears when the
impurity spectral density for the two-impurity Anderson
model is computed with coarse meshes. As the results in Sec.
VIII will show, even for the uncorrelated model, in which
case the two-impurity Hamiltonian decouples into two
single-impurity Anderson Hamiltonians with energy-
dependent impurity-band couplings, the discrepancy between
the coarse-mesh and the continuum spectral densities is sig-
nificant.

These findings prompted us to seek an alternative defini-
tion of the discrete basis, the result of which is the subject of
this paper. Our construction eliminates the ad hoc renormal-
ization of coupling constants and accelerates the conver-
gence to the continuum of physical properties for the two-
impurity model. As an illustration, we show that our method
yields temperature-dependent specific heat curves free from
the artificial oscillations found in those calculated by the
traditional method.13,17

The paper is organized as follows. Section II defines the
model Hamiltonian that will illustrate our presentation. Sec-
tions III and IV compare the construction of the discretized
basis for a linear mesh with that for a nonlinear mesh and
identify the origin of deviations. Section V then shows that
an alternative definition of that basis eliminates such devia-
tions. The two-impurity model is described in Sec. VI, and
numerical results for its specific heat and spectral densities
are presented in Secs. VII and VIII, respectively. Finally,
Sec. IX summarizes our conclusions.

II. MODEL HAMILTONIAN

For definiteness, our discussion of the conduction-band
discretization will make reference to an Anderson model
with energy-dependent coupling, comprising a localized
spin-degenerate orbital cimp and a structureless, half-filled,
noninteracting conduction band with energies �, measured
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from the Fermi level, ranging from −D to D. In standard
notation, the Hamiltonian is

HA =� �c�
†c� d� + A�f0

†cimp + H.c.� + �impn
imp + Un↑

impn↓
imp,

�1�

where nimp�cimp
† cimp denotes the occupation of the localized

level, �imp is the impurity-orbital energy, U is the Coulomb
repulsion between electrons occupying the impurity orbital,
the operator f0 is defined by

Af0 � �
−D

D �����
�

c� d� , �2�

and the constant A ensures that �f0 , f0
†�=1:

A =��
−D

D ����
�

d� . �3�

III. LINEAR DISCRETIZATION

In order to identify the source of the deviations introduced
by the logarithmic discretization of the conduction band, this
section discusses a more conventional numerical approach to
the computation of the physical properties for the Hamil-
tonian �1�, one in which the conduction band is linearly dis-
cretized. Mathematically, the first term on the right-hand side
of Eq. �1� is equivalent to the Hamiltonian for a lattice with
an arbitrarily large number, 2N, of sites, extending from x
=0 to x= �2N−1�a, with appropriate couplings between the
sites. Upon this lattice, we impose twisted boundary condi-
tions, i.e., require the wave function ��x� to satisfy

��x = 0� = ��2Na�exp�i2�z� , �4�

with an arbitrary twist parameter z in the interval 0�z�1.
We will be interested in momenta in the positive half of

the Brillouin zone, i.e., 0�k�� /a, in which N finely spaced
discrete states are allowed:

k =
�

a
�1 −

n + z − 1

N
	 �n = 1,2,…,N� . �5�

With N→�, momentum sums become energy integrals,
�1/2N�
k,�→�	���d�. To mimic the model in Sec. II, we
will consider a band extending from �k=0�−D to �k=�/a
�D, with a linear dispersion relation, �k= �2Da /���k
−� /2a�. Two spin components accounted for, the per-
allowed-momentum density of states is then constant, 	���
=1/2D.

A coarser discretization requires a mesh analogous to Eq.
�5�:

k1 =
�

a
, �6�

kj =
�

a
�1 −

j + z − 2

2J 	 �j = 2,3,…,2J + 1� , �7�

where M is a large integer such that J�N /2M is also inte-
ger and remains constant as N→�. By letting z run from
zero to unity, we cover all momenta in Eq. �5�. The corre-
sponding points in energy space are

�1
z = D �8�

and

� j
z = D�1 −

j + z − 2

J 	 �j = 2,3,…,2J + 1� �9�

or

� j
z = D − �j + z − 2�
 �j = 2,3,…,2J + 1� , �10�

where 
=D /J is the energy separation defining the mesh.
For each of the mesh intervals Ij = �� j+1

z ,� j
z
�j

=1,2 ,… ,J�, we now consider an orthonormal set of func-
tions:

� jm��� =
exp�2�im�/�� j

z − � j+1
z �


�� j
z − � j+1

z �1/2 �m integer� , �11�

so that

�
Ij

� jm
* ���� jm����d� = �m,m�. �12�

This leads naturally to an orthonormal basis of Fermi opera-
tors:

bjm = �
Ij

� jm���c� d� . �13�

Inverted, Eq. �13� yields the exact relation

c� = 

m=−�

�

� jm���bjm �� � Ij� . �14�

For practical applications, the infinite number of operators
makes the basis of the bjm unwieldy. A more convenient,
albeit incomplete basis results from disregarding all but the
leading operator, bj0, in each interval Ij.

In the negative half of the conduction band, instead of
relying on the twisted condition �4�, we find it more conve-
nient to choose a mesh comprising energies symmetric to the
sequence in Eq. �10� and more practical to denote those en-
ergies by negative indices:

�−j
z � − D + �j + z − 2�
 �j = 2,3,…,J + 1� . �15�

We can now project the model Hamiltonian HA on the
basis of the operators bj0. We postpone the case of energy-
dependent coupling to Sec. VI and will consider, for simplic-
ity, an energy-independent coupling ������, so that the nor-
malization constant A=�2D� /�.

Substitution of Eq. �14� on the right-hand side of Eq. �1�
yields
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HA = 

j=1

J

Ej
z�bj0

† bj0 − b−j0
† b−j0� + �2D�/��f0

†cimp + H.c.�

+ �impn
imp + Un↑

impn↓
imp, �16�

where

Ej
z = �

Ij

� d���
Ij

d� , �17�

i.e.,

Ej
z = �� j

z + � j+1
z �/2 �j = 1,…,J� , �18�

or according to Eqs. �10� and �15�,

E1
z = D − z
/2, �19�

Ej
z = D − �j + z − 3/2�
 �j = 2,…,J� . �20�

Although Eq. �20� would have followed directly from im-
posing the twisted periodic condition �4�, with a twist z
+1/2 instead of z, on a sample with J sites �cf. Eq. �10�
, the
sequence of Eqs. �9�–�20� will prove important, for unlike
the twisted boundary condition, it can generate nonlinear dis-
cretizations.

Before turning to other meshes, we note that the discrete
basis �bj0� satisfies one of the requirements of the NRG
approach,1,2 namely, it is possible to write, exactly, the op-
erator f0, defined by Eq. �2�, as a linear combination of the
basis operators:

f0 = 

j=1

J ��� j
z − � j+1

z �

2D
�bj0 + b−j0� , �21�

so that, while the discretization affects the conduction-band
Hamiltonian, it does not affect its coupling to the impurity.
Moreover, as we shall now show, in the decoupled
conduction-band limit, i.e., for �→0, it does not affect the
spectral density of the operator f0,

	0��,z� = 




��
�f0
†����2��E
 − E� − �� , �22�

where ��� and �
� are the ground state and an eigenstate of
the conduction-band Hamiltonian, with eigenvalues E� and
E
, respectively, calculated for a given twist z.

The matrix element on the right-hand side of Eq. �22� will
vanish unless �
�=bj0

† ��� for some j �j=1,… ,J�. It follows
that E
=E�+Ej

z and �
�f0
†���= �bj0 , f0

†�. Equation �21� yields
the anticommutator, and we find that

	0��,z� = 

j

� j
z − � j+1

z

2D
��Ej

z − �� . �23�

The � functions on the right-hand side result in a spiked
spectral density, which reflects the discretization of the con-
duction states. In order to recover the continuum, that is, to
cover all momenta in the conduction band, we must integrate
both sides of Eq. �23� over the twist z. We therefore compute

	0��� = �
0

1

	0��,z�dz , �24�

which yields

	0��� =
� j

z − � j+1
z

2D�dEj
z/dz�Ej

z=�

. �25�

Equations �19� and �20� show that, for −D���D, one
can always find j�j=1,2 ,… ,J � and z�0�z�1� such that
Ej

z=�. The latter equality moreover yields

�dEj
z/dz� = 
 = � j

z − � j+1
z , �26�

and hence

	0��� = 1/2D . �27�

Trivially extended to the continuum, lim
→0 	0���=1/2D,
Eq. �27� is exact for any discretization interval 
. We see
that Eqs. �9� and �15� preserve the spectral density of f0, i.e.,
they preserve the coupling to the impurity. The linear dis-
cretization complies fully with one of the two requirements
of the NRG approach.

Unfortunately, it fails to comply with the other require-
ment, since the discretization interval 
 is an artificial energy
that breaks the scale invariance of the conduction band. This
brings us to the logarithmic mesh.

IV. LOGARITHMIC DISCRETIZATION

The logarithmic mesh, designed to preserve the energy-
scale invariance of the conduction band, comprises two se-
quences, of states above and below the Fermi level,
respectively.1,2,6 For our purposes, it will be sufficient to give
attention to the positive energies, 0���D. We define the
mesh as

�1
z = D �28�

and

� j
z = D�2−j−z �j = 2,3,…� . �29�

The energy intervals Ij
z��� j+1

z ,� j
z
 are then defined, and

we can follow the steps leading from Eq. �11� to Eq. �18�.
For j�2, for instance, the latter becomes

Ej
z = D�2−j−z�1 + �−1�/2 �j = 2,3,…� . �30�

Next, to calculate the spectral density 	0, we start at Eq. �21�,
which leads to Eq. �25�. Now, however, the derivative on the
right-hand is no longer equal to the discretization interval.
For j�2,

�dEj
z

dz
� = D

1 + �−1

2
�2−j−z ln � , �31�

and since

� j
z − � j+1

z = D�1 − �−1��2−j−z, �32�

we find that
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	0��� =
1

2DA�

, �33�

where

A� =
ln �

2

1 + �−1

1 − �−1 �34�

is the renormalization factor introduced in Ref. 3 to acceler-
ate the convergence to the continuum limit of calculated ther-
modynamic properties.

Only in the continuum limit, �→1, does A� equal unity,
and only in that limit does Eq. �33� become exact. For �
�1, the deviation in the spectral density is equivalent to a
renormalization of the constant multiplying f0 in the Hamil-
tonian �1�, i.e., a renormalization of the the level width � by
A� that affects the calculation of all impurity-added
properties.14

Comparison with Sec. III shows that this renormalization
is a consequence of the nonlinear relation between the inter-
val limits � j

z and the twist parameter z. To see this, in the
calculation of dEj

z /dz, differentiate Eq. �17� . Since the lower
and upper limits of the integrals on the right-hand side are
� j+1

z and � j
z, respectively, the differentiation introduces

energy-dependent factors d� j+1
z /dz=−� j+1

z ln � and d� j /dz=
−� j

z ln �, different from the constant d� j+1
z /dz=d� j /dz=−


in Sec. III �cf. Eq. �10�
. This considered, the renormalization
of coupling constants by A� may seem to be an inevitable
undesirable consequence of the logarithmic mesh. Section V
nonetheless shows that an alternative discretization avoids
this problem.

V. ALTERNATIVE DEFINITION OF THE DISCRETE
BASIS

Consider again the logarithmic mesh defined by Eqs. �28�
and �29�. For given j, we will now define a set of new basis
functions � jm �m integer�, all but one of which will differ
from the � jm defined in Sec. III. The exception is the leading
function � j0, identical to the one defined by Eq. �11�:

� j0��� � � j0��� = �� j
z − � j+1

z �−1/2. �35�

To construct the remaining functions, we require that they
obey the orthonormality condition with a modified scalar
product:

�
Ij

� jm
* ���g���� jm����d� = �m,m�. �36�

For now, the weight function g��� is constrained only by
the condition

�
Ij

g���d� = � j
z − � j+1

z , �37�

which follows from Eq. �36� with m�=m=0 and our defini-
tion of �m0, Eq. �35�.

We next define a nonorthogonal basis comprising the op-
erators

ajm = �
Im

� jm���c�d� . �38�

The aj0, in particular, are identical to the bj0 defined in Eq.
�13�, and in analogy with Eq. �21�, we have that

f0 = 

j=1

� �� j
z − � j+1

z

2D
�aj0 + a−j0� . �39�

The inversion of Eq. �38� yields

c� = 

m=−�

�

g���� jm���ajm �� � Ij� , �40�

It is then straightforward to project the model Hamiltonian
on the new basis, and we find that

HA = 

jmm�

Amm�
j ajm

† ajm� + �2D�/��f0
†cimp + H.c.� + �impn

imp

+ Un↑
impn↓

imp, �41�

where the conduction-band matrix elements are

Amm�
j =� � jm

* ����g2���� jm����d� , �42�

for j= ±1, ±2,… and m, m�=0, 1,… . Comparison with Eq.
�36� shows that the right-hand side will be diagonal if
�g2����g���, i.e., if

g��� = E j
z/� , �43�

with a constant E j
z determined by the constraint �37�, which

we can write

E j
z =

�
Ij

d�

�
Ij

d�/�

. �44�

The integrals on the right-hand side are easily computed, and
we find that

E±1
z = ± D

1 − �−z

z ln �
�45�

and

E±j
z = ± D

1 − �−1

ln �
�2−j−z �j = 2,3,…� . �46�

It is also straightforward to construct the functions � jm:
substitution of Eq. �43� on the left-hand side of Eq. �36�
yields

E j
z�

ln��j+1
z /D�

ln��j
z/D�

� jm
* ���� jm����d ln��/D� = �m,m�, �47�

which is satisfied by a Fourier series in the variable ln�� /D�:
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� jm��� =
exp�2�i�m�
�E j

z ln �
�m integer� , �48�

where

�m = m ln��/D�/ln � . �49�

We can then compute the overlap between any two basis
functions � jm �m=0,1,…� and � jm� �m�=0,1,…�. In particu-
lar, we find that

��
Ij

� jm
* ���� j0 d�� =

ln �

�ln2 � + 4�2m2
, �50�

which shows that, in the limit �→1, � j0 becomes orthogo-
nal to the other basis functions.

For each interval Ij, we therefore have that �i� since the
conduction-band matrix elements Amm�

j on the right-hand
side of Eq. �41� vanish for m��m, the operators aj0 are
decoupled from the ajm �m�0�; �ii� since, as Eq. �39� shows,
the operator f0 is a linear combination of the aj0, the impurity
is also decoupled from the ajm �m�0�; �iii� although the
basis is nonorthogonal, the overlap �aj0

† ,ajm� �m�0� van-
ishes in the continuum limit. These three findings suggest
that, as an approximation, we neglect the operators ajm�m
�0� in Eq. �41� and write the model Hamiltonian as

HA = 

j

E j
zaj0

† aj0 +�2D�

�
�f0

†cimp + H.c.� + �impn
imp

+ Un↑
impn↓

imp. �51�

We are ready, now, to calculate the spectral density for the
operator f0 in the limit �→0. Notice taken of the similarity
between Eqs. �16� and �51�, we can reproduce the steps lead-
ing from the latter to Eq. �25�, to find

	0��� =
� j − � j+1

2D�dE j
z/dz�Ej=�

. �52�

From Eq. �46� we then evaluate the derivative on the right-
hand side,

dE j
z/dz = D�� j − � j+1� , �53�

which reproduces Eq. �27�:

	0��� = 1/2D . �54�

This improvement over the result �33�, derived in Sec. IV,
is due to the weight function g����1/�. We can interpret the
left-hand side of Eq. �36� as a scalar product calculated with
the variable x���� ln�� /D�, instead of �. Since x�� j�= �2− j
−z�ln �, the function g��� effectively makes the energy lim-
its linearly dependent on the twist parameter. This does not
make Eq. �51� exact, but it treats the impurity-band coupling
as accurately as a linear discretization would.

VI. TWO-IMPURITY MODEL

We now turn to the two-impurity Anderson model, whose
Hamiltonian comprises energy-dependent impurity-band

couplings. We will see that this dependency enhances the
problem that Eq. �33� exposed. As illustrations, we will com-
pare results for the impurity-added contribution to the spe-
cific heat and for the impurity spectral density calculated by
the procedure in Sec. V with ones calculated by the proce-
dure in Sec. IV.

The two-impurity Hamiltonian is

HA2 = 

k�

�kck�
†ck� + �imp 


j=1

2

nj
imp + U 


j=1

2

nj↑
impnj↓

imp

+ V�

j,k�

eik�·R� jck�
†cj

imp + H.c.	 , �55�

where the index j �j=1,2� denotes the two impurities, posi-

tioned at R� 1=−R� 2=R� /2, respectively.
Following by now standard procedure, we introduce

parity-conserving conduction-band operators:15

c�+ = �	���
1 + S�

2
	−1/2



k�

ck� cos
k� · R�

2
��� − �k� �56�

and

c�− = i�	���
1 − S�

2
	−1/2



k�

ck� sin
k� · R�

2
��� − �k� , �57�

where

S�k
� sin kR/kR , �58�

and 	��� is the per spin density of states, a constant in our
model.

Expressed on the basis of the c�±, the model Hamiltonian
reads

HA2 = 

p=±
�

−D

D

�c�p
† c�pd� + �imp


p=±
np

imp + U 

j=1

2

nj↑
impnj↓

imp

+�2D�

�


p=±

���̄pf0p
† cp

imp + H.c.� , �59�

where c±
imp= �c1

imp±c2
imp� /�2, and

f0± = �
−D

D
��±���c�± d�/��̄±, �60�

with

�±��� �
1 ± S�

2
, �61�

�̄± � �
−D

D

�±���d� . �62�

and

� � �	V2. �63�

We now follow the discretization procedure in Sec. V, but
instead of Eq. �35�, we introduce functions � j0 �j
= ±1, ±2,…� adapted to Eq. �60�:
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� j0± = � �±���

�
Ij

�±���d��
1/2

, �64�

so that when operators aj0±��Ij
� j0±���c�± d� are defined, a

form analogous to Eq. �39� results:

f0± = 

j
��Ij

�±���d�

�̄±
�

1/2

aj0±. �65�

As in Sec. V, for each interval Ij±�j= ±1, ±2,…�, the
modified orthogonality condition �36� allows the definition
of other functions �� jm± �����m�0�, from which we can con-
struct a nonorthogonal basis

ajm± = �
Ij±

� jm±���c� d� . �66�

This relation inverted, we find expressions analogous to
Eq. �40�:

c�± = 

m=−�

�

g���� jm±���ajm± �� � Ij� . �67�

The projection of the model Hamiltonian on this basis yields

HA2 = 

jmm�p=±

Amm�
jp ajmp

† ajm�p + �imp 

p=±

np
imp + U 


j=1

2

np↑
impnp↓

imp

+�2D�

�


p=±

���̄pf0p
† cp

imp + H.c.� , �68�

with conduction-band matrix elements

Amm�
j± = �

Ij

� jm±
* ����g2���� jm�±���d� . �69�

As in our treatment of Eq. �42�, we choose g���=E j±
z /�, with

E j±
z such that

�
Ij±

�� j0�2���g���d� = 1, �70�

a condition that Eq. �64� turns into an explicit expression for
the E j±

z �j= ±1, ±2,…�:

E j±
z =

�
Ij±

�±���d�

�
Ij±

�±���d�/�

. �71�

Equation �69� then becomes

Amm�
j± = �mm�E j±

z , �72�

and hence, as in Eq. �51�, we keep only the term with m
=m�=0 in the sum on the right-hand side of Eq. �68�:

HA2 = 

jp=±

E jp
z aj0p

† aj0p + �imp 

p=±

np
imp + U


j=1

2

np↑
impnp↓

imp

+�2D�

�


p=±

���̄pf0p
† cp

imp + H.c.� . �73�

Following the standard NRG treatment, we now construct
two orthonormal infinite sequences of Fermi operators
fn± �n=0,1 ,…�, starting with the f0± in Eq. �65�. A Lanczos
transformation16 applied to the first term on the right-hand
side of Eq. �73� then determines the remaining operators and
the diagonal ��n� and codiagonal �tn� matrix elements of the
transformed Hamiltonian:1,2,6,9

HA2 = 

np=±

��nfnp
† fnp + tn�fnp

† fn+1p + H.c.�
 + �imp 

p=±

np
imp

+ U

j=1

2

np↑
impnp↓

imp +�2D�

�


p=±

���̄pf0p
† cp

imp + H.c.� .

�74�

The diagonal and codiagonal coefficients, which have to be
calculated numerically,6,9 diminish rapidly as n increases:
�n�D�−n and tn�D�−n/2.

To calculate a physical property at a temperature T or an
energy �, then, we choose a dimensionless parameter 
�1
and neglect all �n and tn for n�N, where N is the smallest
integer such that

D�−N/2 � 
kBT , �75�

where kB is Boltzmann’s constant, or

D�−N/2 � 
� , �76�

respectively.
We then define a truncated, scaled Hamiltonian18

HA2
N = �


n=0

N



p=±

�nfnp
† fnp + 


n=0

N−1

tn�fnp
† fn+1p + H.c.�

+ �imp 

p=±

np
imp + U 


j=1

2

nj↑
impnj↓

imp

+�2D�

�


p=±

���̄pf0p
† cp

imp + H.c.�	��N−1�/2

D
, �77�

so that the smallest scaled codiagonal coefficient on the
right-hand side is of the order of unity: tN−1��N−1�/2 /D�1. In
the limit N→�, we recover the discretized Hamiltonian
HA2=�−�N−1�/2HA2

N .
The numerical, iterative diagonalization of the truncated,

scaled Hamiltonian gives access to the L lowest eigenvalues
and eigenvectors of HA2

N �N=0,1 ,… ,Nmax�, and to matrix el-
ements between those eigenstates.2 The computational cost
grows as the cubic power of the parameter L and linearly
with the parameter Nmax. The former fixes the accuracy of
the resulting physical properties and the latter, the minimum
energy or temperature at which properties can be calculated.
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VII. SPECIFIC HEAT

As a first example, we describe the computation of the
impurity-added contribution to the specific heat. At a given
temperature T, Eq. �75� yields the iteration number N at
which the specific heat is to be calculated:2,4,17

Cimp�T� = kB�2��E2� − �E�2 − �E2�0 − �E�0
2� , �78�

where �=1/kBT and the angular brackets denote thermal av-
erages, e.g.,

�E� =
tr�exp�− �HA2

N �HA2
N 


tr�exp�− �HA2
N �


�79�

and

�E�0 =
tr�exp�− �H0

N�H0
N


tr�exp�− �H0
N�


, �80�

where H0
N is the conduction-band Hamiltonian, i.e., the sum

of the first two terms on the right-hand side of Eq. �77�.
Figure 1 compares the specific heats for the two-impurity

Anderson model, in the Kondo limit, calculated with the dis-
cretization procedures in Secs. IV �insert� and V �main plot�.
In each case, the impurity-added contribution to the specific
heat, calculated with Eq. �78� for �=10 and given z �not
shown�, exhibits artificial oscillations with amplitudes of the
order of unity and period ln �. In order to eliminate those
oscillations, we have averaged the results over four z’s, z
=0.25, 0.5, 0.75, and 1.0. As the inset shows, even after
averaging, the traditional procedure yields specific heat
curves with remanescent oscillations, ultimately due to its
inaccurate handling of the operators f0±. By contrast, the
alternative procedure in Sec. V yields the well-defined peaks
shown in the main plot, whose physical interpretation has

been presented in Ref. 13. Although, at temperatures below
10−10D, deviations from the universal Kondo peak19 are still
visible, the discrepancies are substantially smaller than those
in the inset and can be eliminated by averaging the results
with curves obtained with different �’s. In particular, the
specific heat temperature dependencies reported in Ref. 13
resulted from averaging curves calculated with �=10 and 9.

VIII. IMPURITY SPECTRAL DENSITIES

As a second illustration, we turn to the even and odd
impurity spectral densities 	±

imp for the uncorrelated �U=0�
model, a choice dictated by two practical considerations: �i�
the continuum limit of 	±

imp can be computed analytically; �ii�
in numerical computations of 	±

imp for ��2, only the dis-
cretization introduces significant deviations. It follows that
the difference between the numerical results and the con-
tinuum limit measures the accuracy of the discretization pro-
cedure.

When U=0, the continuum Hamiltonian, Eq. �59�, is de-
coupled into an even and an odd terms, each of which can be
diagonalized analytically. The �per spin� impurity spectral
densities, which in the notation of Eq. �22� are defined as

	±
imp��� = �





��
�c±
imp����2��E
 − E� + �� �� � 0� ,






����c±
imp�
��2��E
 − E� − �� �� � 0� ,�

�81�

can accordingly be expressed in closed form:

	±
imp��� =

1

�

�±���
�±

2��� + �� − �±
*���
2 , �82�

where

�±��� � 2��±��� �83�

is the effective, channel-dependent impurity width, and

�±
*��� = �imp − P� 1

�

�±����
�� − �

d�� �84�

is the self-interaction-corrected impurity energy.
When U=0, moreover, the numerical procedure is also

simplified. The Hamiltonian �77� decouples into an even
component HA+

N and an odd one HA−
N , each a quadratic form:

HA±
N = F†H±

NF , �85�

where F is a vector comprising N+2 Fermi operators:

F � �cimpf0f1 ¯ fN� , �86�

and H±
N, is an �N+2�� �N+2� matrix

FIG. 1. Specific heat for the symmetric two-impurity Anderson
model with the parameters �=5� /4D, �imp=−50D, U=100D, and
kFR=� /2, chosen so that the model maps onto a two-impurity
Kondo model with �antiferromagnetic� coupling J=0.1D. The open
circles in the main plot �in the inset� show the specific heats that Eq.
�78� yields with the alternative procedure in Sec. V �with the tradi-
tional procedure�. In the inset, the solid lines guide the eye. In the
main plot, the solid line is the universal curve for the specific heat
of the single-impurity Kondo model �Ref. 19�. In each case, the
Hamiltonian was diagonalized with �=10 and four z’s, z=0.25, 0.5,
0.75, and 1.0, and the calculated specific heats were averaged over
z.
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H±
N = �

�imp �2D��̄±

�
0 … 0

�2D��̄±

�
�0± t0± … 0

0 t0± �1± … 0

0 0 t1± … 0

] ] ] ] ]

0 0 0 … �N±

���N−1�/2

D
.

�87�

For the N’s of interest, typically well below 50, the numeri-
cal diagonalization of the H±

N is trivial. From the resulting
eigenvectors, one can easily calculate the matrix elements
needed to compute the impurity spectral densities �81�. Un-
like the iterative diagonalization, which keeps a limited num-
ber of states L at each step and hence introduces truncation
errors, the diagonalization of the quadratic form �85� consid-
ers all the states on the basis of the operators cimp, fn
�n=0,1 ,… ,N�, and is affected only by the discretization.

For given z, thus, we diagonalize the matrix on the right-
hand side of Eq. �87� numerically. The resulting eigenvectors
vm±��
imp

m± �z� ,
0
m±�z� ,… ,
N

m±�z�
 �m=1, ,… ,N+2� yield
the Fermi operators

gm±
z = 
imp

m± �z�cimp + 

n=0

N


n
m±�z�fn, �88�

which diagonalize HA±
N .

Inversion of Eq. �88� yields

c±
imp = 


m=1

N+2


imp
m± gm±, �89�

and substitution in Eq. �81� leads to the z-dependent spectral
density

	imp��,z� = 

m=1

N+2

�
imp
m± �z��2��Em±�z� − ���
 . �90�

As in Sec. IV, we now have to integrate over the twist pa-
rameter to eliminate the spikes on the right-hand side:

	imp��� � �
0

1

	±
imp��,z�dz , �91�

which yields

	imp��� = 

m=1

N+2 �
imp
m± �z��2

�dEm±/dz�Em±�z�=�

. �92�

Figures 2 and 3 depict the impurity spectral densities
	±

imp��� for the two-impurity Anderson model with the fol-
lowing parameters: width �=9��10−4D, impurity energy
�imp=−0.01D, impurity separation R=� /2kF, and U=0. The
former shows the odd spectral density in the energy range
−10−4D���−10−1D, which surrounds the resonance in Eq.
�82�. Since at such low energies the parameter S� in Eq. �58�

is approximately 0.6, the effective width �− is substantially
smaller than �, and the odd spectral density shows an en-
hanced, narrow peak. As indicated by the crosses, the NRG
diagonalization of the model Hamiltonian discretized by the
procedure in Sec. IV, with a renormalized impurity-level
width �numerical=A��, yields spectral densities in good agree-
ment with Eq. �82�. The inset shows deviations separating
the crosses from the solid line that are smaller than 1% of the
peak, hence well within the standard tolerance—3% of the
maximum—for NRG computations.

Although the traditional procedure yields relatively small
deviations, the alternative procedure is remarkably more ac-
curate. The circles in Fig. 2, which represent the energy de-
pendence of the odd spectral density resulting from the NRG
diagonalization of the model Hamiltonian, with unrenormal-
ized parameters, discretized by the method in Sec. V, are
indistinguishable, on the scale of the inset, from the exact
curve.

FIG. 2. Odd impurity spectral density for the uncorrelated
Anderson Hamiltonian Eq. �59� for U=0, with the parameters �
=9��10−4D, �imp=−0.01D, and kFR=� /2. The solid line repre-
sents the exact density Eq. �82�. The crosses and the circles are the
results of NRG diagonalizations of the model Hamiltonian dis-
cretized with the procedures in Secs. IV and V, respectively. In the
former diagonalization, the parameter � was multiplied by the fac-
tor A�, defined by Eq. �34�. With enhanced vertical resolution, the
inset shows the low-energy tail of the curves to make visible the
deviations separating the numerical results from the exact curve.

FIG. 3. Even impurity spectral density for the Anderson Hamil-
tonian, with the parameters and symbols defined in Fig. 2. The
broader, less pronounced peak reflects the larger effective impurity
width �+��. With enhanced resolution, the inset displays the low-
energy tail of the curves.
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Figure 3 follows the same symbol convention to display
the even spectral density in the same energy interval. The
even effective width �+ is close to �, so that the peak near
�=�imp is broader and lower than the one in Fig. 2. The two
NRG curves again agree well with Eq. �82�. As demonstrated
by the blown-up view of the low-energy region in the inset,
the deviations separating the crosses from the solid curve are
now 1% of the peak density and hence fit less comfortably
within the standard NRG tolerance; for larger impurity
widths, the deviations would exceed that tolerance. By con-
trast, the circles display excellent agreement with the exact
curve.

The discrepancies between the crosses and the solid line
in the insets of Figs. 2 and 3 reflect a shortcoming of the
traditional procedure, which yields impurity self-energies
that converge slowly to the continuum limit. To see this,
consider the even and the odd self-energies at the Fermi
level, derived from Eq. �59�:

�imp±�� = 0� = − P�
−D

D 2��̄±

�

�c�
†, f0±�2

��
d��. �93�

When the anticommutator in the integral on the right-hand
side is computed from Eq. �60�, we find the continuum-limit
self-energies:

�imp±�� = 0� = −
2�

�
P�

−D

D �±����
��

d��. �94�

Consider, next, the computation of the self-energies for
the discretized Hamiltonian �73�, again with U=0. Instead of
Eq. �94�, we now have that

�imp±
NRG�� = 0� = − 


j=−�

�� 2��̄±

�

�aj±
† , f0±�2

E j±
, �95�

where the prime reminds us that the j=0 term is excluded
from the sum on the right-hand side. The anticommutator on
the right-hand side computed from Eq. �65�, and the right
side of Eq. �71� substituted for the energies E j±, we find that

�imp±
NRG�� = 0� = −

2�

�



j=−�

�� �
Ij

�±����
��

d��. �96�

Since the juxtaposition of the intervals Ij reproduces the con-
duction band, Eqs. �94� and �96� are equivalent; for any �
and z, the procedure in Secs. V and VI yields exact self-
energies.

In the traditional approach, while f0± is still related to the
the discrete conduction operators aj± �j= ±1, ±2,…� by Eq.
�65�, the discrete conduction energies are no longer given by
Eq. �71�. Instead, in analogy with Eq. �17�, we have that

Ej± =

�
Ij±

��±���d�

�
Ij±

�±���d�

�j = 1,2,…� . �97�

Substitution of these energies for the E j± on the right-hand
side of Eq. �95� then leads to the self-energies calculated by
the traditional procedure:20

�imp±
trad �� = 0� = −

2�

�



j=−�

�� ��
Ij

�±����d���2

�
Ij

�±����d��/��

. �98�

Only in the continuum limit does this relation reproduce
Eq. �94�. For ��1, the right-hand side depends on both �
and z. Spectral densities computed with the traditional pro-
cedure deviate from the continuum limit; moreover, since
spectral densities at different energies � are computed with
different z’s �cf. Eq. �92�
, the deviations depend on �, as the
crosses in the insets of Figs. 2 and 3 show.

Although our discussion of the impurity spectral densities
has been restricted to the U=0 model, it is in principle
straightforward to apply Eqs. �81� and �91� to the correlated
model.4 In practice, however, in addition to coupling HA+ to
HA−, the correlation makes quadratic factorizations such as
that on the right-hand side of Eq. �85� impossible. As a re-
sult, the model Hamiltonian must be diagonalized iteratively.
Since the number of eigenstates �
� that Eq. �81� requires at
each iteration is substantially larger than that required by
Eqs. �78�–�80�, even the coarse logarithmic mesh ��=10� in
Sec. VII is insufficient to bring the necessary numerical ef-
fort within the limitations of our current computational re-
sources. We therefore defer to future work the computation
of the spectral densities for the correlated two-impurity
Anderson model.

IX. CONCLUSIONS

An essential ingredient of NRG computations is the pro-
jection of conduction-band Hamiltonians on an incomplete
discrete basis, an approximation controlled by the discretiza-
tion parameter � and justified by the remarkably rapid con-
vergence of calculated physical properties to the continuum
limit. Fast convergence, it has long been realized, requires ad
hoc renormalization of the impurity-band coupling by the
factor A�, defined in Eq. �34�.2 As shown by Eq. �33�, this
correction is needed to compensate for a shortcoming of the
logarithmic discretization, which underestimates the spectral
density 	0 associated with the coupling. Energy-dependent
couplings, such as those found in the two-impurity Anderson
Hamiltonian, make the renormalization energy dependent,
and hence push the problem beyond the scope of ad hoc
corrections.

Section V introduced an alternative discretization that
evaluates 	0 correctly and hence allows computations of the
physical properties for models with energy-independent cou-
plings based on the bare values of the coupling constants.
For energy-dependent couplings, it guarantees fast conver-
gence to the continuum limit. The alternative expression for
the discretized energies, of which Eq. �44� is an illustration,
is therefore superior to the standard formula, illustrated by

ALTERNATIVE DISCRETIZATION IN THE NUMERICAL… PHYSICAL REVIEW B 72, 104432 �2005�

104432-9



Eq. �17�. Since the integrals involved in the former expres-
sion are no more demanding than those in the latter, this
procedure is as practical as and more accurate than the tra-
ditional one.
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