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We present in this paper exact analytical expressions for the thermodynamical properties and Green’s
functions of a certain family of fermionic Ising spin-glass models with Hubbard interaction by noticing that
their Hamiltonian is a function of the number operator only. The thermodynamical properties are mapped to the
classical Ghatak-Sherrington spin-glass model, while the the density of states �DOS� is related to its joint
spin-field distribution. We discuss the presence of the pseudogap in the DOS with the help of this mapping.
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I. INTRODUCTION

While ferromagnetism is theoretically grounded in models
lying between two extreme pictures, that of localized spins
and that of itinerant-electron theory, the theoretical descrip-
tion of spin-glass systems has been focused mainly on mod-
els of localized spins, whose paradigms are the Edwards-
Anderson �EA� and Sherrington-Kirkpatrick �SK� models.1,2

One reason for this is that, experimentally, most of the
classic magnetic materials presenting spin-glass behavior
correspond to this description of localized spins, another
is that they encapsulate many aspects of theoretical chal-
lenge, while a third is that they relate to or emulate many
problems of wider interest in the statistical physics of com-
plex systems.

However, there do exist spin-glass materials that are more
appropriately described in terms of itinerant electrons, re-
quiring models that treat magnetic and conducting properties
on the same footing. While early models can be found in
Refs. 3 and 4 and the full problem remains to be tackled, our
main goal here is to discuss a restricted class of models de-
scribed by Oppermann et al.5 and normally referred to as
fermionic Ising spin-glass models.6–13

Even within an SK-like �infinite-ranged exchange� itiner-
ant fermionic model, it is a very significant challenge to treat
conducting and magnetic properties together. Hence, as a
first step toward their understanding, simplified models have
been studied in the so-called insulating limit.6–13 This re-
moves the essentially quantum complexity of the model and
allows a classical treatment, albeit still with interesting con-
sequences.

Independently of whether the insulating limit of fermionic
Ising spin-glass models may or may not be useful to better
understand real itinerant spin glasses, it is clear that, at least,
we must fully understand the models arising from this limit.
To this end, our goal is to point out that not only are the
fermionic Ising spin-glass models completely mappable to
classical spin-glass models at the level of the thermo-
dynamics,11 but also the densities of states �DOS�, and hence
the local �quantum� Green’s functions, have a classical deri-
vation and indeed are given by distributions of local fields of
a corresponding classical model, without the need for sophis-
ticated quantum treatment.

Hence we can exploit all the knowledge of classical spin
glasses to shed light on the fermionic Ising spin-glass models
in the insulating limit. In particular, the existence of a
pseudogap in the DOS at half-filling and without a Hubbard
term emerges as an immediate consequence of the mapping,
when account is taken of the well-known fact that at zero
temperature, the local field distribution of the SK spin glass
has such a pseudogap.

In turn, this implies that the observed strong corrections to
the DOS due to steps in the replica symmetry breaking
�RSB�13 do not have a fundamentally quantum origin.

We also notice, in passing, the strong temperature depen-
dence of the DOS, mirroring that of the field distribution of
the SK model.

This paper is organized as follows: In Sec. II the fermi-
onic Ising spin-glass model is presented and some limits as a
function of its parameters are discussed. In Sec. III we map
this model to the Ghatak-Sherrington model and express the
DOS as a function of its joint spin-field distribution. Then, in
Sec. IV we discuss the mappings from a physical perspective
and in Sec. V we discuss the existence of a DOS pseudogap
in the light of the mapping. Section VI presents our conclu-
sions.

II. MODEL DEFINITIONS

Our starting point is the following model for itinerant
electrons involving frustrated magnetic order:

Ĥ = U�
i=1

N

n̂i↑n̂i↓ − �
i�j=1

N

Jij�̂i
z�̂ j

z − ��
i=1

N

�
s��↑,↓�

n̂is + Ĥrest,

�1�

where the couplings Jij are drawn randomly and indepen-
dently from a distribution

P�Jij� =
1

�2�J2/N
exp�−

N

2J2�Jij −
J0

N
	2
 . �2�

The spin and charge operators are defined by

�̂i
z = n̂i↑ − n̂i↓, n̂is = âis

† âis, �3�

where âis
† and âis are, respectively, the fermion creation and
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annihilation operators. The label s� �↓ , ↑ ���−1,1� indi-

cates the spin state. The Hamiltonian Ĥrest contains those
terms that cannot be expressed as a function of the number
operator only, as, for example, the hopping and the pair-
hopping terms

Ĥhopping = �
�i,j�

�
s��↑,↓�

tijâis
† âjs,

Ĥhopping
pair = �

�i,j�
tij
pairâi↓

† âi↑
† âj↑âj↓, �4�

as well as transverse spin-exchange terms.

The class of models described by �1� with Ĥrest=0 have
been called fermionic Ising spin-glass �FISG� models14 and
may be considered as the insulating limit of the larger class
of itinerant models described by the Hamiltonian �1�. Hence-
forth, we consider this limit.

In the past, these models have been studied using tech-
niques of coherent fermionic states �see, for instance, Ref.
13�. Our purpose here is to point out that quantum techniques
are unnecessary and a classical treatment suffices.

III. MAPPING TO CLASSICAL SPIN-GLASS MODELS

For a general fermionic problem, the coherent-states rep-
resentation is a powerful technique and is likely to be useful
for a treatment of the full quantum Hamiltonian �1�. How-
ever, for the unfamiliar, its use is likely to obscure a simplic-
ity of the insulating case. Hence, here we proceed differently,
in what we consider to be a much simpler way, for the
Hamiltonian

Ĥ = U�
i=1

N

n̂i↑n̂i↓ − �
i�j=1

N

Jij�i
ˆ z� j

ˆ z − ��
i=1

N

�
s��↑,↓�

n̂is. �5�

First, we note that the Hamiltonian is a function of the num-
ber operator n̂is only. We are therefore in the ideal position of
knowing the eigenstates of the Hamiltonian exactly. If we
define

�n = �
i=1

N

�ni↑ni↓i, �6�

then the partition function expressed in this set of states be-
comes

Z��� = �
n

e−�H�n�, �7�

where H�n� is the Hamiltonian �5� with the operators now
just numbers. This Hamiltonian is quite similar to such a
three-state spin-glass model. In order to make this similarity
more apparent, we express the partition function and the
Hamiltonian as a function of the two new variables Si=ni↑
−ni↓ and �i=ni↑+ni↓. After doing the trace with respect to the

variables �i, we end up with the partition function

Z��� = �
S

e−�HGS�S�,

HGS�S� = − �
i�j=1

N

JijSiSj − D�
i=1

N

Si
2

−
N

�
ln�1 + e−�U+2��� , �8�

with

D = � − T ln�1 + e−�U+2��� , �9�

and with notation S= �S1 , . . . ,SN�, Si� �0, ±1�. The Hamil-
tonian �8� is known in classical spin-glass literature as the
Ghatak-Sherrington �GS� model,15 a particular case of the
Blume-Emery-Griffiths-Capel spin-glass model16 without bi-
quadratic interaction.

In the GS formulation, the new spin variables S do not
reflect the difference between unoccupied and doubly occu-
pied sites. It is, therefore, useful to consider the calculation
of the expectation value of the fermion number operator in
this formulation. By defining

n =
1

N
�
i=1

N

�
s=±1

�n̂isHFISG
, � =

1

N
�
i=1

N

�Si
2HGS

, �10�

we can then write the following relation:

n =
2�1 − ��

e��U−2�� + 1
+ � , �11�

with �¯H the thermal average with respect a Hamiltonian
H

�¯ = Z−1���Tr e−�Ĥ�¯� , �12�

where Tr denotes the trace. Thus, half-filling �n=1� corre-
sponds to �=U /2.

This mapping between the fermionic Ising spin-glass
model �1� and the classical SG model �8� was noticed and
used fruitfully in Ref. 11, but unfortunately these authors
appear not to have noticed that the Green’s function, and the
DOS that can be derived from it, can also be obtained simply
from the classical model.21

Instead of using the fermionic path integral definition for
the DOS, let us start with the standard definition for the
retarded Green’s function

Gij
ss��t − t�� = − i	�t − t����âis�t�, âjs�

† �t��� , �13�

with �Â , B̂�� ÂB̂+ B̂Â and the creation and annihilation op-
erators given in the Heisenberg representation

âis�t� = e�i/
�Ĥtâise
−�i/
�Ĥt. �14�

Using the set of states �n, and after some standard manipu-
lations, the retarded Green’s function takes the form
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Gij
ss��t − t�� = �i,j�s,s��

−�

� d

2�
e−i�t−t��Gi

s�� , �15�

with

Gi
s�� = Z−1����

n,m
��n�âis�m�2

�
e−�H�n� + e−�H�m�

 − �H�m� − H�n��/
 + i�
. �16�

Notice that the preceding expression is fully general for any
Hamiltonian system depending on the number operator only.
Even though we could continue with the general calculation
quite easily, at this stage we believe it to be helpful first to
analyze the family of fermionic Ising spin-glass models
without Hubbard interaction, which have been studied exten-
sively with coherent-state methods.9–12

A. Fermion Ising spin-glass model without Hubbard
interaction

Due to the presence of ��n�âis�m�2 in Eq. �16�, the only
states that contribute have

H�m� − H�n� = − shi�S� − � , �17�

with hi�S�=� j��i�
N JijSj, the local field at site i. Hence, after

some algebra, we can write

Gi
s�� =� dh

 + �� + sh�/
 + i�

�Z−1����
n

e−�H�n���h − hi�S�� . �18�

Notice that all the spin dependence is in the last term. We
proceed as before, changing variables Si=ni↑−ni↓ and
�i=ni↑+ni↓ and tracing out the dependence on the �’s. We
can then rewrite the preceding expression as

Gi
s�� =� dh

pi
GS�h�

 + �� + sh�/
 + i�
, �19�

with pi
GS�h� the density of local fields at site i

pi
GS�h� = ���h − hi�S��HGS

. �20�

Defining the DOS as the imaginary part of the spectral
density function averaged over all sites, over spin orienta-
tion, and over the disorder, denoting the latter by an overline
and using the identity 1 / �x+ i��=P�1/x�− i���x� and shift-
ing the energy levels �=
+�, we obtain finally

�DOS��� = −
1

2�N
�

s=±1
�
i=1

N

Im Gi
s�� =

1

2 �
s=±1

pGS�s�� ,

�21�

with the definition

pGS�h� �
1

N
�
i=1

N

pi
GS�h� �22�

If J0=0, then we have that the distribution of fields is an
even function, i.e., pGS���= pGS�−��, and therefore the ex-
pression �21� reveals that the DOS in the fermionic Ising
spin-glass model without Hubbard interaction is exactly the
distribution of local fields in the corresponding classical
Ghatak-Sherrington model for any value of the chemical po-
tential and temperature.

B. Fermion Ising spin-glass model with Hubbard interaction

The fermionic Ising spin-glass model with Hubbard inter-
action was studied in Ref. 13. Again, due to the term
��n�âis�m�2, in Eq. �16�, we can replace

H�m� − H�n� = Unis̄ − shi�S� − � , �23�

to yield

Gi
s�� = �

�=0,1
� dh

 + �� + sh − �U�/
 + i�

� Z−1����
n

�nis̄,�
e−�H�n���h − hi���� , �24�

where s̄�−s. We proceed as before and map to the GS
model. This calculation is a bit more involved but fairly
straightforward and, after some algebra, we arrive at

Gi
s�� = �

�=0,1
�

�=0,±1
a�

��s� � dh
pi

GS��,h�
 + �� + sh − �U�/
 + i�

,

�25�

where we have introduced the joint spin-field distribution at
site i of the GS spin glass

pi
GS��,h� = ��Si,�

��� − hi�S��HGS
, �26�

with

a�
��s� = ��,0

�0,� + �1,�e−�U+2��

1 + e−�U+2�� + �0,���,s + �1,���,s̄. �27�

From here, we have that the DOS is given by

�DOS��� =
1

2 �
s=±1

�
�=0,1

�
�=0,±1

a�
��s�pGS��,s��U − ��� , �28�

with

pGS��,h� �
1

N
�
i=1

N

pi
GS��,h� �29�

In this case, we have again an intimate relationship between
the DOS in the fermonic Ising spin-glass model and the joint
spin-field distribution of the classical GS spin-glass model.

IV. PHYSICAL MAPPING OF DOS TO FIELD
DISTRIBUTIONS

Complementary to the formal mathematical mappings dis-
cussed earlier, in this section we describe how the preceding
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connection between the classical and quantum systems also
appears naturally, based solely on physical arguments. For
the sake of simplicity, we restrict the discussion to zero tem-
perature and J0=0.

Let us consider initially that U=0 and �=0, i.e., half-
filling. In this case, the number of fermions Nf is equal to the
number of sites Nsites. It is a reasonable ansatz, which we
shall later show to be true, that in the ground state every site
will carry a single fermion, whose spin can be either up or
down. It is immediately clear that this is nothing but the
usual classical SK model. Consequently, the ground state of
the fermionic Ising spin-glass model is the same as that of
the classical SK model, and the DOS of the former system is
simply

�DOS��� = pSK�− ���� , �30�

where

pSK�h� =
1

N
�
i=1

N ���h − ��
j

Jij� j�	�
HSK

. �31�

Next, let us consider further the ansatz that each site is
singly occupied. Were a site to be unoccupied, then clearly it
would contribute no energy to the ground state. Neither
would a doubly occupied site, since the two spins would both
see the same effective field due to the other spins and they
would contribute cancelling energies. However, we also
know that in the ground state of the SK model all local fields
are finite and spins are oriented to yield negative energies. It
follows that removing a fermion from one singly occupied
site and depositing it on another already favorably singly
occupied site incurs two energetic penalties. Furthermore,
since the distribution of local fields in the SK model goes to
zero at zero field and any single-spin-coupling strength
scales as N−1, the loss cannot be compensated by further
readjustments on other sites.

For ��0, account must be taken of the fact that in the
fermionic model, some sites must be unoccupied for ��0 or
doubly occupied for ��0. In both cases, the system behaves
energetically as though it were a diluted classical SK model
with spins absent on the sites of either zero or double occu-
pancy in the fermionic model. Furthermore, the location of
these holes is chosen so as to minimize the total ground-state
energy, i.e., the system behaves as though one has an effec-
tive Hamiltonian

H��,n� = − �
i�j=1

N

Jij�i� jninj − �̃�
i=1

N

ni,

� = ± 1, n = 0,1 �32�

with two types of annealed variables, Ising spins �character-
ised by the �� and “quasiparticles” �characterized by the ni
and not to be confused with the real fermions of number
operator n̂is�. We shall refer to this system as the anneal-
diluted SK model �ADSK�. The two chemical potentials, of
Eqs. �32� and �1�, are related by

�̃ = − ��� . �33�

The DOS is given by

�DOS��� = pADSK�− ����, ��� � ��̃� , �34�

where pADSK is defined analogously to pSK but with the sum
over only the singly occupied sites and averaged over the
ADSK Hamiltonian �32�.

It is tempting to think that the truncation of site occupa-
tion might modify the DOS of the �=0 case by simply mov-
ing the Fermi level of the �DOS��� corresponding to the pure
SK model so as to occupy only the lowest states up to �̃, but
this does not take account of the loss of contribution to the
fields of the unoccupied sites of �32�. In fact, computer stud-
ies of the Thouless-Anderson-Palmer �TAP� equations have
shown that �DOS��� now goes to zero at �= �̃, in a manner at
least qualitatively similar to what happens at �=0 for the
case of �=0 �Ref. 10�. A replica symmetric analysis of �
close to �= �̃ also behaves analogously to the corresponding
replica symmetric study for the undiluted SK model near �
=0; the full replica symmetry breaking calculation has not
yet been done explicitly.

For �DOS��� with ���� ��̃�, it is necessary to calculate the
local field distribution hi=� jJij� j at sites of �32� where there
is no quasiparticle so that such sites do not contribute to the
total energy or the field or spin orientation at other sites.
With this extension, �34� applies for all �.

For U�0, the mapping of �32� continues to apply with �̃
appropriately chosen. Again, if ��U /2, there are
�Nsite−Nf� unoccupied sites, and for ��U /2, there are �Nf

−Nsite� doubly occupied fermion sites. Consequently, in both
cases, there are ��Nf−Nsite�� sites without quasiparticles. �̃ is
given by �Ref. 22�

�̃ = �� , � � U/2

U − � , � � U/2
� , �35�

and �DOS��� is given by

�DOS��� = �pADSK�− ���� , � � 0

0, 0 � � � U

pADSK�− �� − U�� , � � 0.
� �36�

These mappings may be related to those of the preceding
section by noting that Hamiltonian �32� is also another way
of writing the GS model of �8� with �̃=D−T ln 2.16

V. EXISTENCE OF A PSEUDOGAP IN FERMIONIC ISING
SPIN GLASSES

Having demonstrated the mapping between DOS and the
distribution of fields, we can draw some conclusions and
speculate about the nature of the pseudogap in the DOS at
the Fermi energy.13 First, let us notice that the nature of the
pseudogap and of the strong corrections of different steps of
replica symmetry breaking can only be of classical origin.
The strong corrections to the DOS from RSB corrections
found in fermionic Ising spin-glass models are common in
classical spin glasses.
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In particular, it has been shown for some time from
� –RSB calculations17,18 and Thouless-Anderson-Palmer
equations19 that the field distribution at zero temperature in
the SK model vanishes with h→0 as pSK�h�=a�h� �See also
Ref. 20�. This, therefore, predicts the existence of a
pseudogap for the fermionic Ising-spin glass model without a
Hubbard term and at half-filling.14

The distribution of fields for fermionic SK models with-
out Hubbard interaction for ��0 was studied numerically
using a TAP approach in Ref. 10 for ��0, indicating that it
seems to vanish, again quasilinearly, at h= ±�, implying that
the DOS also presents pseudogaps.

We might note also that the field distribution is very tem-
perature dependent and the pseudogap becomes filled in as
the temperature rises. Therefore �and unusually�, the density
of fermionic states will mirror this strong temperature depen-
dence.

VI. CONCLUSIONS

In this paper, we have shown that the fermionic Ising
spin-glass model �with SK-like interactions� is mappable to
the classical GS spin-glass model not only at the level of the
free energy but also at the DOS, the latter being given ex-
actly by the local field distribution of the GS model in the
case without Hubbard interaction and obtainable from it
when a Hubbard term is present. By using known results

from spin-glass models, we can show the existence of a
pseudogap, from full RSB and TAP approaches. It should be
noted that the pseudogap and strong corrections in the differ-
ent steps of RSB are purely classical effects and not due to
quantum fluctuations. It would be interesting to see how this

picture changes when the Hamiltonian Ĥrest is switched on
and also when one passes to a more realistic �but also more
difficult to solve and controversial� model with short-range
interactions.

We have concentrated on single-fermion Green’s func-
tions and their averages. A similar procedure to that outlined
in Sec. III can be applied to higher-order Green’s functions,
mapping into higher-order field distributions, and for aver-
ages of products of Green’s functions.

Finally, we note that the GS model has a first-order phase
transition at a critical negative-valued Dc�T� and beneath a
tricritical temperature T3, between a magnetic state ���Si�
�0� and a nonmagnetic ���Si�=0� solution. This reflects in
the FISG to a critical �c for magnetic breakdown.14,23
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