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We study the properties of a class of two-dimensional interacting critical states—dubbed algebraic spin
liquids—that can arise in two-dimensional quantum magnets. A particular example that we focus on is the
staggered flux spin liquid, which plays a key role in some theories of underdoped cuprate superconductors. We
show that the low-energy theory of such states has much higher symmetry than the underlying microscopic
spin system. This symmetry has remarkable consequences, leading in particular to the unification of a number
of seemingly unrelated competing orders. The correlations of these orders—including, in the staggered flux
state, the Néel vector, and the order parameter for the columnar and box valence-bond solid states—all exhibit
the same slow power-law decay. Implications for experiments in the pseudogap regime of the cuprates and for
numerical calculations on model systems are discussed.
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I. INTRODUCTION

In the effort to explain the still-mounting puzzles in many
strongly correlated materials, one frequently invoked idea is
that of competing orders. Specifically, it is often appealing to
contemplate the presence of rather slowly varying fluctua-
tions in two or more different order parameter degrees of
freedom. In some cases these orders are not obviously related
to one another—one oft-discussed example is antiferromag-
netism and superconductivity in the cuprate high-Tc
superconductors.1 This kind of situation raises an important
question: are the competing orders controlled, all together,
by the universal physics of a single phase or critical point?
We can also turn this question on its head—rather than phe-
nomenologically introducing some set of slowly fluctuating
orders, we can take a somewhat more microscopic approach
and look for possible quantum states of a given system. Then
we can ask whether competing orders arise naturally in some
such state.

In this paper we shall follow this strategy and show that,
somewhat surprisingly, this physics obtains within a certain
spin liquid state2 of two-dimensional electronic Mott insula-
tors that has been suggested to play a key role in the under-
doped cuprate superconductors.3–8 The particular spin liquid
state we consider has been variously described as a “d-wave”
resonating valence bond �RVB� state or a staggered flux �sF�
state. Here we will use the latter nomenclature and refer to it
as the staggered flux state. It is important to note that the
staggered flux spin liquid possesses no broken symmetries
and is quite distinct from ordered states with a staggered
pattern of orbital currents; instead, it is a specific incarnation
of the RVB idea of Anderson.9

Previous papers have shown that the sF spin liquid is an
interacting critical state and that it may be a stable critical
phase7,10–12—the spin correlations decay as a power of the
distance with a universal exponent, and, while a description
in terms of fractional S=1/2 spinons is natural, they do not
behave as free quasiparticles even at asymptotically low en-

ergy. Furthermore, the dynamic critical exponent z=1. Alter-
natively, the long-distance, low-energy properties are con-
trolled by an interacting, conformally invariant fixed point.
Such states were dubbed algebraic spin liquids �ASL’s� in
Ref. 7. Here we show that, remarkably, several competing
orders are unified within the sF state by an emergent SU�4�
symmetry, and all have the same slowly varying long-
distance correlations.

Two of the competing orders are simply the Néel vector,
and the order parameter for the columnar and box valence-
bond solid �VBS� states—cartoon pictures of these orders are
shown in Fig. 1. To be precise, consider a model Mott insu-
lator on the square lattice with one electron per site at zero

FIG. 1. Cartoon pictures of some of the slowly varying compet-
ing orders within the staggered flux spin liquid state. These are the
Néel state �A� and the columnar �B� and box �C� valence bond
solids. The shaded regions denote those groups of spins that are
most strongly combined into local singlets. Note that in the sF state
these orders fluctuate in both space and time. These pictures de-
scribe the character of some of the important slowly varying fluc-
tuations, but should not be viewed as snapshots of the physics at the
lattice scale, which may be quite complicated.
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temperature, and suppose the system has been tuned into the
staggered flux spin liquid by increasing the magnetic frustra-
tion. This state should be present in the parameter space of
this system at least as a multicritical point but potentially as
a stable phase. A measurement of the Néel correlations will
find the power-law decay

�− 1��rx+ry��Sr · S0� � 1/�r��1+��. �1�

Remarkably the VBS correlations display the same
behavior—for example,

�− 1�rx��Sr+x · Sr��Sx · S0�� � 1/�r��1+��. �2�

This correlator measures the tendency of the system to order
into the columnar dimer pattern shown in Fig. 1�B�. Further-
more, several other �more unusual� competing orders with
the same power-law decay are present. These are the
plaquette-centered spin at q= �� ,��, the density of Skyrmi-
ons in the Néel vector at q= �� ,��, and a kind of triplet
valence bond order that breaks spin rotations but not time
reversal. Also, the uniform spin chirality exhibits slow
power-law decay with an exponent that is likely the same as
for the other orders. It is important to note that the decay
may be quite slow and thus is potentially observable in ex-
periments and numerical simulations—variational wave
function studies13,14 of the Néel correlations provide the
rough guess ��0.5.

This physics may have important consequences for the
pseudogap regime of the underdoped cuprates. It has been
suggested that this part of the phase diagram may be viewed
as a doped sF spin liquid.5–8 In particular, in the spin sector,
the rather high-temperature physics of the pseudogap should
be essentially unchanged from the undoped sF state. The
presence of slowly fluctuating competing orders related by a
large SU�4� symmetry opens up a new possibility for tests of
this hypothesis. The simplest of these to probe is almost
certainly the Néel vector, the fluctuations of which are di-
rectly measured by magnetic neutron scattering at q= �� ,��.
Furthermore, the sF state is described by a critical theory, so
if it is present, this magnetic scattering should exhibit critical
scaling. If this is found, it will be important to think about
whether the other competing orders related to the Néel vector
by SU�4� symmetry can be directly probed. These points are
discussed in more detail in Sec. VI—readers not interested in
following the more technical aspects of our results may wish
to skip to this point.

The sF state is just one member of a class of ASL’s that
also give rise to a variety of competing orders unified by a
large emergent symmetry. Another state of particular interest
is the �-flux ��F� spin liquid3,4 of an SU�4� Heisenberg-like
model on the square lattice. Assaad has recently carried out
quantum Monte Carlo simulations of this model;15 the results
suggest that the �F state may have been observed, but fur-
ther tests are desirable. The results of this paper can be tested
numerically and should significantly aid the resolution of this
issue. We give concrete suggestions along these lines in Sec.
V.

From a formal point of view, the sF and �F states can
both be described at low energies by a field theory of fermi-
onic spinons with massless Dirac dispersion, minimally

coupled to a noncompact U�1� gauge field. This theory is
often referred to as noncompact QED3. There is good evi-
dence that it can flow to a conformally invariant, interacting
fixed point, over which one has control in the limit of a large
number �Nf� of fermion flavors.16,17 This fixed point is the
algebraic spin liquid. Here Nf is the number of two- compo-
nent Dirac fermion fields, and these can be rotated into one
another by an SU�Nf� flavor symmetry—we have Nf =4 for
the sF state and Nf =8 for the �F state of the SU�4� spin
model. It has been shown that, in the large-Nf limit, all rel-
evant perturbations to the �F state are forbidden by symme-
try and it is thus a stable phase.12 The same conclusion is
easily seen to hold for the sF state �see Sec. III B�. It is not
known whether stability continues to hold for the interesting
values of Nf, although the results of Ref. 15 suggest that the
�F state is stable for Nf =8. Even if the sF state is unstable,
it should appear as a zero-temperature critical or multicritical
point and may still be interesting.

In the field theory, the competing orders discussed above
arise as follows: In the simplest scenario, which is suggested
by the 1/Nf expansion, the dominant correlations are those
of an SU�Nf� adjoint Na and a scalar M—these are bilinears
of the fermions. It is a simple matter to work out how these
operators transform under the symmetries of the spin model,
and to find symmetry-equivalent physical observables with
the same transformation properties; these quantities will all
exhibit power-law correlations decaying as 1/ �r�2�N or
1/ �r�2�M, where �N, �M �2 are the scaling dimensions of Na

and M, respectively. �In fact �N=�M to all orders in 1/Nf,
although it is not clear whether this holds at finite Nf.� Note
that 2�N=1+�. Both the Néel vector and the order param-
eter for the columnar and box VBS states are symmetry-
equivalent to particular components of Na; this gives rise to
the power-law decay of Eqs. �1� and �2�.

We note that the structure of competing orders arising
from QED3 has been discussed previously, from a rather dif-
ferent point of view, in a different physical context.18–20

Also, it was recently observed that Néel and VBS orders can
be unified �at the mean-field level� by a chiral rotation at the
�F saddle point.21

We now outline the rest of the paper. We review the de-
scription of the sF spin liquid in Sec. II. Section II A dis-
cusses the route from the slave-fermion description of the
Heisenberg model to the field theory, and Sec. II B reviews
the use of the large Nf expansion to control the sF fixed
point. In Sec. III A we discuss in detail the symmetries of the
sF state and their associated conserved currents. Section III B
extends the argument of Ref. 12 for the stability of the �F
state at large Nf to the sF state—the only significant differ-
ence is the presence of velocity anisotropy, which is dealt
with in Refs. 22 and 23, and Appendix C. Our main result for
the sF state is the identification of the slowly varying com-
peting orders—this is discussed in Sec. IV A. The same is
done for some components of the conserved currents in Sec.
IV B. In Sec. V we shift gears to discuss an analogous iden-
tification of competing orders for the �F state of an SU�4�
Heisenberg model. Finally, in Sec. VI we discuss the pros-
pects for observation of this physics in the cuprates, and we
conclude in Sec. VII with a discussion of some of the issues
raised by our results.
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II. DESCRIBING THE ALGEBRAIC SPIN LIQUID

A. From the lattice to the continuum

We begin by reviewing the description of the algebraic
spin liquid fixed point, and the staggered flux state in
particular.5–7,10–12,23,24 The starting point is the slave-fermion
mean-field theory of the S=1/2 Heisenberg model on the
square lattice:

H = J �
�rr��

Sr · Sr� + ¯ . �3�

Here J�0 �antiferromagnetic exchange�, and the ellipsis
represents perturbations consistent with the symmetries, such
as further neighbor frustrating exchanges, ring exchange
terms, and so on. We require that the Hamiltonian be invari-
ant under SU�2� spin rotations, time reversal, and the full
space group of the square lattice. Formally we may rewrite
the spin as a bilinear of fermionic “spinon” operators

Sr =
1

2
fr�

† ���fr�. �4�

Here �=1,2, and fr1
† �fr2

† � creates a spin-up �spin-down� fer-
mion. This is an exact rewriting when combined with the
local constraint fr�

† fr�=1. Exploiting the well-known SU�2�
gauge redundancy in spinon variables,25,26 the spin-spin in-
teraction is decoupled with an SU�2� gauge field residing on
the links of the lattice. The mean-field saddle points are then
described by quadratic spinon Hamiltonians; depending on
the structure of the saddle point, the important low-energy
fluctuations enter via an SU�2�, U�1�, or Z2 gauge field mini-
mally coupled to the spinons.27

At the mean field level, the sF state is described by the
Hamiltonian

HsF
0 = − �

r�A
�

r� NN r

	
it + �− 1��ry−ry����fr�
† fr�� + H.c.� , �5�

where the first sum is over sites in the A sublattice and the
second is over the nearest neighbors of r. This describes
spinons hopping in a background staggered flux of �
= ±4 arctan�t /��, where the sign alternates from one sublat-
tice of square plaquettes to the other. The apparent breaking
of translation symmetry is a gauge artifact; the spinons trans-
form under certain lattice symmetries with an additional
SU�2� gauge transformation. Physical operators are gauge
invariant, so their transformation properties are unaffected
and the saddle point possesses the full symmetry of the mi-
croscopic model. This situation is summarized by saying that
the spinons obey a projective symmetry group10 �PSG�. The
action of the PSG on the spinons is specified in detail in
Appendix A.

The low-energy fluctuations about Eq. �5� are encapsu-
lated by a compact U�1� gauge field minimally coupled to
the spinons. The full lattice Hamiltonian takes the form

HsF = h �
�rr��

err�
2 − K�

�

cos�curl a�

− �
r�A

�
r� NN r

	
it + �− 1��ry−ry����fr�
† e−iarr�fr�� + H.c.� .

�6�

Here err� and arr� are lattice vector fields: e is the electric
field and takes integer eigenvalues, while a, the vector po-
tential, is a 2�-periodic phase. On the same link of the lat-
tice, e and a satisfy the canonical commutation relation

a ,e�= i. The second term of Eq. �6� is a sum over square
lattice plaquettes, and �curl a� is the discrete line integral of
the vector potential taken counterclockwise around the given
plaquette. The Hamiltonian must be supplemented by the
gauge constraint

�div e�r + fr�
† fr� = 1, �7�

where �div e�r is the lattice divergence of the electric field.
This gauge theory reduces exactly to the nearest-neighbor
Heisenberg model in the limit K=0 and h / t→	; in this limit
e
0 and the gauge constraint becomes fr�

† fr�=1. We will be
interested instead in a limit where the mean-field theory is
manifestly a good starting point and is valid up to interme-
diate length scales, so we consider K
 t
h. �In both cases
�� t.� The resulting ASL fixed point will control the low-
energy physics for some spin Hamiltonians of the general
form of Eq. �3�. If the fixed point is stable, no fine-tuning
should be necessary to access this part of parameter space,
but the precise microscopic requirements are unknown.

In the limit of interest, the gauge fluctuations are strongly
suppressed by the large Maxwell term; that is, fluctuations in
�curl a� at the scale of the lattice are very small. We can
therefore first write a continuum theory of the long-
wavelength, low-energy free-fermion excitations of Eq. �5�
and then include the gauge fluctuations. The technical details
are outlined in Appendix A; the resulting low-energy theory
consists of four massless two-component Dirac fermions
minimally coupled to a noncompact U�1� gauge field. Micro-
scopically, the gauge field is compact, which means physi-
cally that instanton configurations �magnetic monopoles� are
allowed in the action. Therefore we should view the noncom-
pact theory as a point in the parameter space of the compact
theory where all monopole fugacities have been tuned to
zero—we shall be interested in expanding about this point.
As discussed in Ref. 12, monopoles can �and must� be incor-
porated as perturbations. This is greatly aided by the obser-
vation that the absence of monopoles is precisely equivalent
to the presence of an emergent global U�1�flux symmetry cor-
responding to the conservation of gauge flux, which is only
conserved modulo 2� in the compact theory.28,29

For simplicity of notation, it is convenient to suppress all
fermion indices and work with the eight-component object
�. We express matrices acting on � as tensor products of the
Pauli matrices � i, 
i, and � i. The � i act within the Dirac
space of each two-component fermion, the � i act on SU�2�
spin indices, and the 
i connect the two different nodes. The
imaginary-time action can be written S=�d3xLE, with
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LE = �̄
− i� 
��
 + ia
��� +
1

2e2�



��
���� a��2 + ¯ ,

�8�

where � 
= �� 3 ,� 2 ,−�1� for 
=0,1 ,2, respectively, and �̄

 i�†� 3. The observant reader will notice that we have
dropped any explicit velocity anisotropy for the fermions; it
is instead grouped with the other perturbations consistent
with the microscopic symmetries represented by the ellipsis.

We defer consideration of the perturbations to the first two
terms of Eq. �8� until Sec. III B. For now we simply drop
them. It is immediately clear that the resulting theory has a
much higher symmetry than that of the spin model. In addi-
tion to the U�1�flux symmetry discussed above, there is an
SU�4� flavor symmetry acting on the fermions. This symme-
try is generated by the 4�4 traceless, Hermitian matrices
T a, where a=1, . . . ,15. The T a can be expressed in terms of
tensor products of the � i and 
i Pauli matrices; that is, they
are linear combinations of the basis 	� i ,
i ,� i
 j�. The action
on the fermion fields is given by

� → exp�i�aT a�� , �̄ → �̄ exp�− i�aT a� . �9�

Note that this is a flavor symmetry; that is, it rotates the 4
two-component fermions into one another, but does not af-
fect the Dirac structure. More precisely, 
T a ,�
�=0. The re-
markable consequences of this SU�4� symmetry are the main
focus of this paper.

B. Large-Nf limit

The field theory of Eq. �8� has a nontrivial conformally
invariant fixed point that is not amenable to a direct analyti-
cal treatment. As with other such critical theories in 2+1
dimensions, the best that can be done is to deform the model
to a limit where we do have control and use this to under-
stand as much as possible about the case of physical interest.
A useful and familiar analogy is with the critical fixed point
of the classical O�n� model in three dimensions. To access
this fixed point analytically it is necessary to study it in an �
expansion near four dimensions or in an expansion in 1/n
directly in three dimensions. Both of these expansions simi-
larly provide useful analytic access in the present problem as
well. However, the fixed point that describes the theory in
Eq. �8� has no relevant perturbations 
in contrast to the O�n�
critical fixed point�. Here we will we follow previous
works6,7,11,12,16,24,30 and generalize the theory to a large num-
ber of fermion flavors by adding an extra index to the Dirac
field: �→�a, where a=1, . . . ,Nf /4. With this convention
Nf is the number of two-component Dirac fermions and the
flavor symmetry is enlarged to SU�Nf�. Nf =4 corresponds to
the physical case of SU�2� spin. For Nf sufficiently large, it is
reasonable to treat 1 /Nf as a formal expansion parameter.
Provided we take e2�1/Nf, and in the absence of perturba-
tions, the theory can be solved order by order in 1/Nf. This
can be carried out simply in terms of diagrams and is de-
scribed in Appendix B.

It is believed that the large-Nf expansion describes a con-
formally invariant fixed point to all orders in 1/Nf.

16 This

fixed point is the algebraic spin liquid. At Nf =	 the theory is
scale invariant and the fermions behave for most purposes as
if they were free. 
That the fermions are not truly free is
apparent from the presence of operators that acquire an
anomalous dimension even at Nf =	; see the discussion of
the gauge charge current in Sec. III A. This is analogous to
the situation with the quadratic “mass” operator in the O�n�
model.� The 1/Nf corrections to this extreme limit corre-
spond physically to incorporating gauge fluctuations, and
one finds that various correlators acquire anomalous dimen-
sions for Nf �	. The usual justification for the presence of a
conformally invariant fixed point comes from a consideration
of the above perturbation theory for an arbitrary correlation
function. Due to the 1/ �q� form of the photon propagator, the
effective expansion parameter for this perturbation theory is
easily seen to be dimensionless. Because there is no longer
any scale in the problem �aside from a short-distance cutoff�,
it is natural to expect that the large-Nf expansion describes a
conformally invariant fixed point. Furthermore, a fermion
mass cannot be generated perturbatively in 1/Nf because all
such terms break either the SU�Nf� flavor symmetry, or par-
ity and time reversal.

Further insight is provided by a renormalization group
�RG� approach perturbative in 1/Nf, which is also very use-
ful as a tool for calculation.11,12,22,23,30 One simply regards
1/Nf as an exactly marginal perturbation to the Nf =	 fixed
point and calculates corrections to the properties of this fixed
point as an asymptotic series in 1/Nf. For technical purposes
it is most convenient to implement a “field theory” RG, and
first calculate some correlation function to the desired order
in 1/Nf with a fixed UV cutoff. Then we demand that this
correlator satisfy the appropriate Callan-Symanzik equation,
which is simply the mathematical statement that we can
equivalently change the overall momentum scale k→e−�k, or
rescale the fields. We can also include perturbations to the
fixed point; then we must also rescale their coupling con-
stants, and the resulting Callan-Symanzik equations allow us
to calculate the flow equations for the couplings.

In this language, the statement that the 1/Nf expansion
describes a scale-invariant fixed-point to all orders can be put
as follows: Set all perturbations to the fixed point theory to
zero. Then we can write a Callan-Symanzik equation for any
correlator involving only the anomalous dimensions of
fields. If these equations can all be satisfied order by order in
1/Nf, then the theory is indeed scale invariant. While it has
not been proven that this is the case, to our knowledge no
inconsistency has been found.

III. SYMMETRIES AND STABILITY OF THE SPIN
LIQUID

A. Symmetries and conserved currents

The above considerations strongly suggest that for suffi-
ciently large but finite Nf, somewhere in its parameter space
the field theory has a conformally invariant fixed point
smoothly connected to the Nf =	 fixed point. It is reasonable,
although not certain, that this fixed point continues to exist
for Nf =4, and that a qualitative picture of its properties is
provided by low-order calculations in the 1/Nf expansion.
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This should be viewed as providing a definition of the alge-
braic spin liquid fixed point.

The ASL then has the symmetry group

SGASL = �conformal symmetry�

� C � P � T � SU�4�flavor � U�1�flux. �10�

This is a much larger symmetry than is present in the micro-
scopic model. In addition to the SU�4�flavor, U�1�flux, and
conformal symmetries discussed above, we also have the dis-
crete symmetries of charge conjugation �C�, parity �P�, and
time reversal �T�. It is important to note that here we are
referring to the symmetries of the continuum theory, and not,
for example, to the time-reversal symmetry of the spin
model. The action of this operation on the field theory de-
grees of freedom will involve the continuum T combined
with other operations.

In Sec. III B we show that, in the large-Nf limit, all al-
lowed perturbations are irrelevant and the staggered flux
ASL is thus a stable phase. For Nf =4 it is then likely that the
sF state either remains stable or has only a small number of
unstable directions. Since the physical case of Nf =4 is of
primary interest, we focus here on this case but use the large-
Nf expansion to control our results.

We wish to put special emphasis on the SU�4� flavor sym-
metry discussed in Sec. II A, which leads to a host of here-
tofore unnoticed consequences. In order to understand the
relationship to the microscopic symmetries, it is useful to
think in terms of the subgroup

SU�2�spin � SU�2�nodal � SU�4� , �11�

where SU�2�spin is the physical spin and is generated by � i.
SU�2�nodal consists of emergent symmetries and is generated
by the Pauli matrices 
i. We refer to this as the “nodal”
SU�2� because these flavor rotations involve the two distinct
nodes arising from the staggered flux band structure and
commute with SU�2� spin rotations. Certain discrete
SU�2�nodal rotations are intimately tied to the microscopic
lattice symmetries; this is apparent upon inspection of the
symmetry transformation laws enumerated in Appendix A.

The conserved SU�4� flavor current is

J 

a = − i�̄�
T a� . �12�

This multiplet of operators transforms as an SU�4� adjoint
and a Lorentz vector. It is easy to show by explicit calcula-
tion in the Nf =	 theory that the two-point function of J 


a

falls off as 1 /x4, and J 

a thus has dimension 2. Since con-

served currents cannot acquire an anomalous dimension, this
must hold for all Nf.

The emergent U�1�flux symmetry also plays an important
role. This symmetry is associated with the conserved gauge
flux current

j

G = �
���� a�. �13�

This current also has scaling dimension 2 for all Nf. The
conservation law �
j


G=0 is violated precisely by magnetic
monopoles, so the emergent U�1�flux symmetry encapsulates
the irrelevance of monopoles at low energies.28,29 Monopole

operators are those carrying a nonzero U�1�flux charge.
There is also a conserved U�1� gauge charge current G


=−i�̄�
� associated with the global gauge transformation
�→ei� �. Since this gauge “symmetry” is not a true sym-
metry but rather the consequence of a redundancy in our
choice of variables, it should not be surprising that G
 is
rather special. Making the infinitesimal change of variables
a
�x�→a
�x�+�
�x� in the functional integral leads via stan-
dard manipulations to the Maxwell equation, which we can
regard as an operator identity:

G
 =
i

e2�
���� j�
G + �more irrelevant terms� . �14�

As with all operator identities, the meaning of this equation
is that in any correlation function G
�x� can be replaced by
the right-hand side of Eq. �14�, as long as the other fields
involved in the correlator are not close to x. This implies that
G
 has dimension 3, as can be verified by explicit calculation
in the Nf =	 theory. Furthermore, G
 should be thought of as
a derivative of j


G and not a new truly independent operator.
We note that this is a manifestation of the fact that the fer-
mions are not quite free, even at Nf =	.

B. Stability of the spin liquid

In order to assess the stability of the sF state at large Nf,
we need only follow the argument of Ref. 12 for the stability
of the �-flux ��F� state of an SU�N� magnet. The field theo-
ries in these two cases are identical, but different perturba-
tions are allowed by the microscopic symmetries. As in Ref.
12, we can group all operators at the sF algebraic spin liquid
fixed point into two classes: those carrying U�1�flux charge
and those that do not. The first class is comprised of the
monopole operators, which are all strongly irrelevant at large
Nf, with scaling dimensions proportional to Nf.

31

The monopole-free sector of the theory must be consid-
ered in more detail, as it contains operators that would be
relevant if allowed by symmetry. As in Ref. 12, the poten-
tially dangerous perturbations are fermion bilinears with zero
and one derivative �“mass” and “kinetic” terms, respec-
tively�. It is a simple exercise to show that all mass terms are
forbidden by symmetry. In fact, this is true even if one only
considers SU�2� spin rotations, time reversal, and x and y
translations.

We must also consider the kinetic terms as these have
dimension 3+O�1/Nf� and are exactly marginal at infinite
Nf. Two such terms are allowed by symmetry. The first is
simply the isotropic kinetic energy

Ks = − i�†
�1��1 + ia1� + �2��2 + ia2��� . �15�

This term has no effect, as it can be absorbed into the fixed-
point theory Eq. �8� by rescaling the time coordinate.

The second term is a velocity anisotropy for the fermions
and cannot be removed by rescaling space and time. It is
therefore important to know the 1/Nf correction to the scal-
ing dimension of this operator, which takes the form
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Ka = − i� �†
3
� 1��1 + ia1� − � 2��2 + ia2��� , �16�

where it should be noted that the coefficient is �. The RG
flow of � can be calculated as a function of 1/Nf and �. This
was done by Vafek, Tesanovic, and Franz22,23 to leading or-
der in 1/Nf and to all orders in �; a more straightforward but
equivalent calculation is discussed in Appendix C and repro-
duces the leading term of their result. We find

d�

d�
= −

64

5�2Nf
� + O��2/Nf,�/Nf

2� , �17�

and the velocity anisotropy is therefore irrelevant for suffi-
ciently large Nf.

Other gauge-invariant operators in the monopole-free sec-
tor of the theory can be constructed by forming polynomials
of the fermion fields and the gauge flux, and inserting cova-
riant derivatives. It is easy to see that all such operators are
trivially irrelevant in the Nf →	 limit, and thus do not desta-
bilize the algebraic spin liquid at sufficiently large Nf.

IV. PHYSICAL OBSERVABLES

In this section we examine two classes of field theory
operators, focusing on their connection to observables in the
spin model. The first class has slowly varying correlations
and gives rise to the competing orders within the algebraic
spin liquid. The second class is comprised of the conserved
currents J 


a and j

G.

Quite generally, any operator in the spin model is con-
nected to the field theory by the relation

Ospin model � �
i

ciOfield theory
i . �18�

The meaning of this expression is that the long-distance cor-
relations of the spin model operator are identical to those of
the sum of field theory operators on the right-hand side. The
ci are nonuniversal coefficients, and generically ci�0 if and
only if Ofield theory

i transforms identically to the spin model
operator under the microscopic symmetries—when this is the
case we say the two operators are symmetry-equivalent.
More precisely, all terms on both sides of Eq. �18� should
transform in the same irreducible representation of the mi-
croscopic symmetry group, and all field theory operators
transforming in this representation will contribute.

A. Fermion bilinears with enhanced correlations

Here we shall be interested in the SU�4� adjoint

N a = − i�̄T a� , �19�

as well as the scalar

M = − i�̄� . �20�

Rantner and Wen calculated the two-point function, and
hence the scaling dimension, of one member of the Na mul-
tiplet to leading order in the 1/Nf expansion11—the operator
they considered is symmetry-equivalent to the Néel vector.

By SU�4� symmetry their result applies to the entire multi-
plet and its scaling dimension is

�N = 2 −
64

3� 2Nf
+ O�1/Nf

2� . �21�

The correlations of these operators are therefore enhanced by
gauge fluctuations—this is physically very reasonable, since
the gauge force tends to bind the oppositely charged � and

�̄ particles.
Although they are not related by any obvious symmetry,

M and Na have the same scaling dimension to all orders in
1/Nf; this is shown in Appendix D. At present it is not clear
if there is a deeper reason �e.g., some hidden symmetry� for
this equality. Therefore, while this statement may hold at
finite Nf, it may also be merely an accident of the large-Nf
expansion that is destroyed by effects nonperturbative in
1/Nf. Whether or not M and Na have the same scaling di-
mension, the large-Nf expansion indicates at least that the
correlations of M are also enhanced by gauge fluctuations.

At large Nf, M and Na are the most relevant operators and
give the dominant long-distance correlations. They are also
in some sense the most natural instabilities of the algebraic
spin liquid, although a proper treatment of this issue requires
consideration of the parameter space around the fixed point
and not only the ASL itself.

It is useful to find physical observables symmetry-
equivalent to Na and M as their correlations may decay
slowly enough to be readily observable. This exercise is eas-
ily carried out making use of the transformation laws of Ap-
pendix A; here we summarize and discuss the results. It is
convenient to group the Na into three classes depending on
their matrix structure:

NA
i = − i�̄
i�� , �22�

NB = − i�̄�� , �23�

NC
i = − i�̄
i� . �24�

Symmetry-equivalent spin operators are listed in Table I.
These operators are order parameters for several slowly

fluctuating competing orders. It is remarkable that these ap-
parently unrelated fluctuations are perfectly balanced within
the algebraic spin liquid. Two of these observables are quite

familiar: NA
3 is the Néel vector, and �� VBS= �Nc

2 ,Nc
1� is the

valence-bond solid order parameter. When �� VBS has an ex-
pectation value along the x or y axis the columnar VBS state

Fig. 1�B�� results, while if it points at 45° from the axes the
resulting state is the box VBS 
Fig. 1�C��. We note that this
unification of Néel and VBS order is quite different from the
situation at the recently elucidated quantum critical point be-
tween Néel and VBS states,28,29 where the order parameters
have different scaling dimensions 
in the case with full
SU�2� spin symmetry� and are not related by symmetry.

The other order parameters are rather unusual and corre-
spond to more exotic ordered states. NB transforms like a
plaquette-centered spin at q= �� ,��. The operators NA

1,2 form
the order parameter for a kind of triplet valence bond solid
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that breaks spin rotations but not time-reversal.
NC

3 is somewhat more familiar. If we denote the slowly
varying Néel field by the unit vector field n, we can define
the density of the familiar topological Skyrmion configura-
tions by writing

�S =
1

4�
n · � �n

�x
�

�n

�y
� . �25�

As usual, if we take periodic boundary conditions in space,
�d2r�S is an integer that changes from one time slice to the
next upon encountering an instanton defect in the Néel field
�a hedgehog�. Now, NC

3 and the corresponding symmetry-
equivalent spin operator transform like the q= �� ,�� compo-
nent of �S.

Finally we turn to M, which is odd under time reversal
and reflections, and does not transform under any of the
other microscopic symmetries; it is thus symmetry-
equivalent to the uniform component of the scalar spin
chirality. Furthermore, under the symmetries of the ASL
fixed point, M transforms exactly like a Chern-Simons term
for the gauge field a
, and if M is added to the Lagrangian
�via spontaneous symmetry breaking�, a Chern-Simons term
will also be generated. The resulting state is a chiral spin
liquid supporting gapped spinons with fractional
statistics.32–34

B. Observables for the conserved currents

Now we shall discuss symmetry-equivalent spin operators
for the two conserved currents J


a and j

G. This is most inter-

esting for the information obtained about the general struc-
ture of the sF state. As discussed in Sec. III A, the corre-
sponding correlations decay as 1/r4 and may be rather
difficult to observe. Furthermore, we will see below that a
given microscopic operator may be symmetry equivalent
both to a member of one of the current multiplets and an-
other, more relevant operator. In order to predict that a par-
ticular correlation function of the microscopic model decays

as 1/r4 we need to know that this does not happen. For
numerical simulations and experiments, it is undoubtedly
better to begin by looking for the stronger correlations dis-
cussed above, and to consider the “fine structure” of the con-
served currents only as a second step.

Rather than systematically considering every component
of the conserved currents, we only highlight some of the
most interesting cases. We begin with the gauge flux current
j

G. In the �continuum� Hamiltonian its components corre-

spond to the magnetic flux �B= j0
G and the electric field Ei

= i�ij j j
G. We find that the electric field is symmetry-equivalent

to a staggered scalar spin chirality, taken along lines of three
adjacent lattice sites:

�− 1��rx+ry�Sr−x · �Sr � Sr+x� � Ex, �26�

− �− 1��rx+ry�Sr−y · �Sr � Sr+y� � Ey . �27�

Labeling as above the four sites of the plaquette with lower-
left corner r by the numbers 1,…,4, two operators symmetry
equivalent to the magnetic flux are

�− 1��rx+ry�
�S1 · S2��S3 · S4� + �S2 · S3��S1 · S4�� � �B

�28�

and

�− 1��rx+ry��S1 · S3��S2 · S4� � �B. �29�

Subtracting Eqs. �28� and �29� we also see that the q
= �� ,�� component of the usual ring exchange operator �i.e.,
that obtained from the Hubbard model at order t4 /U3� is
symmetry-equivalent to �B.

Now we move on to the SU�4� flavor current J

a . The spin

at q= �� ,0� and q= �0,�� is symmetry-equivalent to two spa-
tial components of the current:

�− 1�rxSr � �†��1 + �2�
2�� , �30�

�− 1�rySr � �†�− �1 + �2�
1�� . �31�

Rantner and Wen calculated the leading 1/Nf corrections to
the correlations of these quantities and found no anomalous
dimension.11 This result is explained by SU�4� symmetry
�and conformal invariance�, which implies these operators
have dimension 2 to all orders in 1/Nf �see Sec. III A�.

The two components of the VBS order, which already
made an appearance above in the Na multiplet, are also
symmetry-equivalent to two of the SU�4� conserved densi-
ties:

�− 1�rxSr · Sr+x � �†
1� , �32�

�− 1�rySr · Sr+y � �†
2� . �33�

Note that there is no inconsistency in the fact that the VBS
order appears in two distinct multiplets of the field theory.
This simply means that both field theory operators contribute
to its long-distance correlations—that is,

�− 1�rxSr · Sr+x � c1�†�3
2� + c2�†
1� + ¯ , �34�

where c1,2 are nonuniversal constants as in Eq. �18�. This is

TABLE I. List of observables in the spin model that are
symmetry-equivalent to the Na and M fermion bilinears. For some
of these we label the sites around the plaquette with lower-left
corner at r by the numbers 1,…,4. Precisely, S1=Sr, S2=Sr+x, S3

=Sr+x+y, and S4=Sr+y.

Field theory Spin model

NA
1 , NA

2 �−1�rx+1Sr�Sr+y, �−1�rySr�Sr+x

NA
3 �−1�rx+rySr

NB �−1�rx+ry
�S1+S3��S2 ·S4�+
�S2+S4��S1 ·S3��

NC
1 , NC

2 �−1�rySr ·Sr+y, �−1�rxSr ·Sr+x

NC
3 
S1 · �S2�S4�−S2 · �S3�S1��

+
S3 · �S4�S2�−S4 · �S1�S3��

M 
S1 · �S2�S4�+S2 · �S3�S1��
+
S3 · �S4�S2�+S4 · �S1�S3��
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an example where it is clearly not true that VBS correlations
fall off as 1 /r4 simply because the VBS order parameter
appears in J


a . This possibility must be contemplated for
other operators symmetry-equivalent to conserved currents,
and in general it is necessary to consider symmetry-
equivalent field theory operators beyond the fermion bilin-
ears. In particular, monopole operators carry nontrivial quan-
tum numbers and may play into these considerations.31,35

The skyrmion density �S is symmetry-equivalent to one of
the conserved densities:

�S � �†
3� . �35�

It is very interesting that �S is also conserved at the decon-
fined critical point between the Néel and VBS states, where
it corresponds to the magnetic flux of an emergent gauge
field. We let S
 be the gauge flux current as defined in Ref.
29. There it is denoted as j


G; here we call it S
 to emphasize
that it is quite distinct from the j


G defined in Eq. �13�—in
particular, the two currents are not symmetry-equivalent. We
do find, however, that S
 is symmetry-equivalent to the fol-
lowing components of the SU�4� flavor current:

S0 � �†
3� , �36�

S1 �
i

�2
�†��1 − � 2�
3� , �37�

S2 �
i

�2
�†��1 + � 2�
3� . �38�

The presence of a 45° rotation in the �-matrix structure is to
be expected, since the continuum coordinates of the sF state
are rotated from the lattice axes by 45° �see Appendix A�.
This is not the case for the continuum theory of Ref. 29.

Remarkably, then, the conserved Skyrmion current that
plays such a key role at the Néel-VBS critical point is also a
conserved current of the sF algebraic spin liquid. Further-
more, it is contained within the larger structure of the SU�4�
flavor symmetry. It would be interesting to see if there is a
natural route between these two fixed points—the U�1�flux

symmetry would have to be broken by monopole prolifera-
tion, and the SU�4�flavor would need to be broken down to
SU�2�spin�U�1�, where the U�1� corresponds to Skyrmion
number conservation at low energies. On an even more
speculative note, perhaps other interesting fixed points, so far
undiscovered, also have the seeds of their structure hidden
within the algebraic spin liquid.

V. CONSEQUENCES FOR THE �-FLUX STATE OF AN
SU(4) HEISENBERG MODEL

Recently, Assaad has carried out a quantum Monte Carlo
study of an SU�4� Heisenberg antiferromagnet on the square
lattice.15 The results available to date are consistent with ob-
servation of the �-flux algebraic spin liquid, first studied in
the large-Nf limit by Affleck and Marston.3,4 This state has a
very similar structure to the sF ASL considered up to now in
this paper—the primary difference is that now we have a

microscopic SU�4� spin symmetry, and the microscopic lat-
tice symmetries act differently on the continuum Dirac fields.
Here there is an emergent SU�8� flavor symmetry, and there
are 64 fermion bilinears which have correlations enhanced
by gauge fluctuations. One of these is the SU�4� analog of
the Néel vector—Ref. 15 found that its correlations fall off
very slowly, as 1 /r�, where ��1.1–1.2.

The SU�8� symmetry allows us to make the highly non-
trivial prediction that certain other observables should have
the same long- distance correlations. This will hold in the �F
state provided that the most relevant operators for Nf =8 are
indeed the fermion bilinears discussed below, as is suggested
by the large-Nf expansion. If some other multiplet of opera-
tors is more relevant, a similar set of predictions will hold,
but for different observables. It is particularly important to
consider monopole operators in this context, since they carry
nontrivial quantum numbers31 and may have relatively low
scaling dimension; this issue will be considered in more de-
tail in a forthcoming paper.35 With this one caveat in mind,
the results of this paper can be tested numerically, and it
should thus be possible to determine rather conclusively
whether or not the �F state has indeed been observed in the
model of Ref. 15.

The model is defined in terms of the slave fermions fr�,
where �=1, . . . ,4, and we choose the local constraint
fr�

† fr�=2. Here the SU�4� spin rotations are a microscopic
symmetry, again generated by the 4�4 matrices T a, with
a=1, . . . ,15. The action of an SU�4� spin rotation on the
fermions is fr�→ 
exp�i�aT a����fr�. We define the Hermitian
SU�4� spin operator

Sr
a = fr�

† T ��
a fr�, �39�

and the Hamiltonian takes the form

HSU�4� = J �
�rr��

S r
aS r�

a , �40�

with J�0.
The quartic spin-spin interaction can be decoupled with a

compact U�1� gauge field, and one can consider a mean-field
theory �exact at infinite Nf� where this gauge field becomes a
nonfluctuating classical background. In the mean-field �F
state there is a gauge flux of � through every plaquette, and
the mean-field Hamiltonian has the same form as Eq. �5�
with t=�. The discussion now proceeds almost identically to
that for the staggered-flux state above. The universal physics
of the �F state, including fluctuations, is encapsulated in the
lattice gauge theory Hamiltonian

H�F = h �
�rr��

err�
2 − K�

�

cos�curl a�

− t�
r�A

�
r� NN r


�i + �− 1��ry−ry���fr�
† e−iarr�fr�� + H.c.� .

�41�

The low-energy effective field theory can be described by
eight massless two-component Dirac fermions minimally
coupled to a noncompact U�1� gauge field. The field theory
is thus the same as for the sF state, except that now Nf =8.
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There are some differences between the �F and sF states.
First of all, the microscopic symmetries of the lattice model
act rather differently on the continuum Dirac fields—for the
�F state, the symmetries are enumerated in Appendix A of
Ref. 12. Also, the SU�2� spin version of the �F state is not a
U�1� spin liquid at all, but instead has a gapless SU�2� gauge
boson.10 Finally, the model Eq. �40� has an additional dis-
crete global “charge-conjugation” symmetry �called C� with
no analog in SU�2� spin models. C is defined as a particle-
hole transformation of the spinon operators: fr�→ fr�

† . 
Note
that in an SU�2� spin model this is equivalent to a particular
SU�2� spin rotation and is thus not a distinct symmetry.�

The �F state has an SU�8� flavor symmetry, and there is
again a useful decomposition into the subgroup

SU�4�spin � SU�2�nodal � SU�8�flavor. �42�

The spin SU�4� is generated by the Ta, and the nodal SU�2�
is generated by the 
i Pauli matrices. We define the genera-
tors of SU�8� to be T A, where A=1, . . . ,63. The T A can be
expressed as tensor products of the T a and 
i. Proceeding as
in the sF state, we define the 16-component fermion field �,
with all the flavor and Dirac indices suppressed. 
The nota-
tion here is identical to that of Ref. 12, except for the very
minor difference that here the SU�4� spin index is suppressed
and � is written instead of ��.� The action of the SU�8�
symmetry is then �→exp�i�AT A��. As above, we can form
the 64 bilinears with correlations enhanced by gauge fluctua-
tions:

NA = − i�̄T A� , �43�

M = − i�̄� . �44�

As for the sF state, it it convenient to break the NA operators
into three classes:

N A
a,i = − i�̄T a
i� , �45�

N B
a = − i�̄T a� , �46�

NC
i = − i�̄
i� . �47�

The goal here is to find microscopic operators with the same
transformation properties as the continuum bilinears under
the microscopic symmetries—this is easily accomplished by
making use of results in Ref. 12. It should then be possible to
numerically measure the correlations of these observables.

At this point, it would be natural to find spin operators
built from Sr

a that transform as the various components of NA

and M. However, this is not the most convenient way to
proceed, since the simulation of Ref. 15 works directly in
terms of the slave fermions and the microscopic gauge field
used to decouple their quartic interaction. If we restrict our
attention to spin operators, most of the resulting observables
are products of two or more Sr

a and are therefore of quartic or
higher order in the fermions. This is undesirable, most sim-
ply because such operators are rather difficult to deal with
numerically. Furthermore, it is conceivable �because Nf =8
may be rather large� that the microscopic slave fermions are
good variables and rather accurately represent the long-
wavelength degrees of freedom. If this is the case, an opera-
tor quartic in fr� will have very little overlap with the con-
tinuum bilinears NA or M—precisely, the coefficient of these
operators in Eq. �18� will be dominated by that of an appro-
priate four-fermion term. So while the bilinears should in-
deed give the dominant long-distance correlations, it may be
necessary to go to unreasonably large distances to overcome
the small prefactor.

To avoid these problems, we instead consider bilinears of
the lattice slave fermions.48 In most cases these involve prod-
ucts of fermions on different lattice sites, so in order to write
gauge invariant operators it is necessary to include an appro-
priate dependence on the vector potential. In Table II we
enumerate lattice bilinears and their continuum counter-
parts—in addition to transforming identically under the mi-

TABLE II. Continuum fermion bilinears with enhanced correlations and their lattice counterparts for the
�-flux state of the SU�4� Heisenberg model discussed in the text. The factors Wr,r� encode the dependence on
the lattice vector potential and are defined in the text. As in Table I, for NB

a and M we consider the plaquette
with lower-left corner at r and label the sites around it with the numbers 1,…,4, proceeding counterclockwise
from r.

Field theory Lattice

NA
a,1 �−1�ry	exp
�−1�rx+ry3i� /4�Wr,r+yfr�

† T��
a fr+y,�+H.c.�

NA
a,2 �−1�rx	exp
�−1�rx+ryi� /4�Wr,r+xfr�

† T��
a fr+x,�+H.c.�

NA
a,3 �−1��rx+ry�fr�

† T��
a fr�

NB
a �−1��rx+ry�
�W1,3f1�

† T��
a f3�+H.c.�+�W2,4f2�

† T��
a f4�+H.c.��

NC
1 �−1�ry	exp
�−1�rx+ry3i� /4�Wr,r+yfr�

† fr+y,�+H.c.�

NC
2 �−1�rx	exp
�−1�rx+ryi� /4�Wr,r+xfr�

† fr+x,�+H.c.�

NC
3 �−1��rx+ry�fr�

† fr�

M �−1��rx+ry�
�W1,3f1�
† f3�+H.c.�+�W2,4f2�

† f4�+H.c.��
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croscopic symmetries, the lattice observables also have the
desirable property that they reduce exactly to the correspond-
ing continuum operator upon taking the naive continuum
limit. It is important to note that the form of these operators
depends on the presence of the explicit background flux in
the Hamiltonian, Eq. �41�. This background is not present in
Ref. 15; this is simply due to a different choice of gauge
field, which we denote ãrr�. The two gauge fields are related
by

ar,�r+x� = ãr,�r+x� + �− 1�rx+ry��

4
� ,

ar,�r+y� = ãr,�r+y� + �− 1�rx+ry�3�

4
� . �48�

In terms of ãrr�, the hopping term in the Hamiltonian Eq.
�41� becomes

− �2t �
�rr��

�fr�
† e−iãrr�fr�� + H.c.� . �49�

The factor Wr,r� in Table II is a function of the vector
potential included to keep the lattice bilinears gauge invari-
ant. For r and r� nearest neighbors we simply have the usual
exponential

Wr,r� = exp�− iar,r�� . �50�

We also need to define W for r and r� next-nearest neighbors.
In that case, to retain as much symmetry as possible we must
sum over the two shortest paths connecting r and r�. That is,
if r�=r+x+y, we define

Wr,r� = exp�− iar,�r+x� − ia�r+x�,�r+x+y��

+ exp�− iar,�r+y� − ia�r+y�,�r+x+y�� . �51�

While it is not directly useful for obtaining numerical re-
sults, it is interesting to discuss the orders in the �F state in
more physical terms. It is easily seen that NA

a,3 is the SU�4�
version of the Néel vector. Also, NC

1,2 together form the order
parameter for the columnar and box VBS states, as in the sF
case. Specifically one finds

�− 1�rySr
aSr+y

a � NC
1 , �52�

�− 1�rxSr
aSr+x

a � NC
2 . �53�

NC
3 is an order parameter for a kind of C-breaking state that

has been studied for a large class of SU�N� magnets.36 It
should be noted that NC

3 breaks time reversal as defined in
Ref. 12 �there time reversal sends Sa→−Sa�, but does not in
the conventions of Ref. 36. Finally, as in the sF case, M
transforms identically to a Chern-Simons term for the gauge
field, and if spontaneously generated will lead to a chiral spin
liquid.

VI. CONSEQUENCES FOR UNDERDOPED CUPRATES

In our view, one of the more promising routes toward a
theoretical understanding of the underdoped cuprates views

the pseudogap regime as a doped spin-liquid Mott insulator.
This line of thinking began with the ideas of Anderson2 and
has subsequently been developed by many others.37,38

The current state of these ideas has been discussed re-
cently by Senthil and Lee.8 For our present purposes, the key
point of this picture is the close proximity of the underdoped
d-wave superconductor to a Mott transition to a spin liquid
insulator. This is most clearly understood by thinking about
the phase diagram as a function of hole chemical potential
and temperature, as shown in Fig. 2 �from Ref. 8�. Consider
an underdoped material in the superconducting state, and
imagine raising the temperature—this is represented by the
dashed line in Fig. 2. Above Tc there is a region that can be
described as a phase-fluctuating d-wave superconductor �la-
beled by “FS” in Fig. 2�, and at still higher temperatures the
physics is controlled by the quantum critical point between
the spin liquid and the superconductor. We shall be interested
in this “high- temperature pseudogap” region.

We take the Mott insulator in question to be the staggered
flux algebraic spin liquid.5–7,11 Furthermore, we consider the
simplest scenario where this state is a stable phase. In this
case, the Mott insulating part of the phase diagram is con-
trolled by a critical state with a dynamic critical exponent z
=1. The Mott transition is described by the condensation of a
doubly degenerate parabolic band of charge e bosonic ho-
lons. An important point is that the charge sector essentially
has z=2, and at long distances the holon velocity goes to
zero while the spinon and photon velocities go to a constant.
This means that the holons move very slowly and couple
only weakly to the spin sector without strongly influencing
it. Therefore the spin sector of the quantum critical regime
should not change substantially from the finite-temperature
physics of the algebraic spin liquid. It is very important to
note that this conclusion will hold only at temperatures
above the crossover to the fluctuating superconductor �or
“FS”� regime. Below this temperature, the coupling between
the spin and charge sectors will be very important.

It should then be possible to test whether the staggered
flux algebraic spin liquid is relevant to the cuprates by prob-

FIG. 2. Schematic temperature-chemical potential phase dia-
gram of an underdoped cuprate superconductor. For 
�
c the
holes are gapped and the ground state is a spin liquid Mott insulator,
while when 
�
c a finite density of holes has entered the system
and the ground state is a d-wave superconductor. The regime la-
beled “QC” is controlled by the Mott quantum critical point sepa-
rating these two phases, while the FS regime is best thought of in
terms of fluctuating d-wave superconductivity. The dashed line rep-
resents the finite-temperature behavior of a real underdoped mate-
rial �with a superconducting ground state� at fixed doping.
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ing the high-temperature pseudogap for signatures of the
ASL fixed point. What are the upper and lower temperature
scales defining this region? Physically, one needs a large
window of length scales where the spin sector is coherent
and controlled by the ASL fixed point, but the charge sector
is rather incoherent and sufficiently far from condensing that
it does not substantially influence the spin sector. Presumably
the upper temperature is the pseudogap scale T *, below
which the Knight shift decreases, signaling the formation of
spin singlets. Because the uniform magnetization is a con-
served density �one of the J 


a �, it can be seen by a standard
scaling argument that the Knight shift in the ASL is expected
to decrease linearly with decreasing temperature.49 The
lower temperature scale is presumably bounded below by T�,
the onset temperature for the Nernst signal.39,40 The onset of
the Nernst signal can probably be identified with the onset of
a substantial degree of phase coherence in the charge sector.

To take a specific example, in YBa2Cu3O6+x T� is about
110 K for x=0.5,41 while, for an x=0.53 sample, the Knight
shift increases linearly from this temperature up to 300 K
�the highest temperature measured�.42 So in this material it is
reasonable to look for algebraic spin liquid physics at least in
the range 110 K�T�300 K and perhaps at even higher
temperature. This window is expected to grow with under-
doping, which increases T* and decreases T�.40

Within this temperature range the properties of the alge-
braic spin liquid can be probed by looking at the dynamic
correlations for frequencies ��cJ. The energy cJ, where J
is the exchange energy and c is a number of order unity,
plays the role of a high- energy cutoff above which the phys-
ics is presumably nonuniversal. If one further restricts to
frequencies �
T, it is possible to probe the zero-
temperature critical ground state and avoid complicated is-
sues of critical dynamics. Furthermore, various quantities
will exhibit critical scaling for all frequencies ��cJ. It is
likely that the simplest test of this physics would be to look
for scaling in the Q= �� ,�� magnetic neutron scattering.
Specifically the imaginary part of the dynamic spin suscep-
tibility at �� ,�� is expected to satisfy

���q,�,T� �
1


�q − Q�2 + �2��2−��/2 f� �q − Q�
T

,
�

T
� . �54�

The exponent � is not known. A rough guess may be ob-
tained from studies of variational wave functions for the sF
spin liquid. In particular the well-studied projected nearest-
neighbor d-wave BCS state might be expected to capture the
physics of the sF spin liquid. From the known result13,14 on
the equal-time spin correlations in that wave function one
extracts ��0.5. The scaling form above also has direct im-
plications for the NMR relaxation rate 1 /T1 at the Cu site

which is sensitive to the �� ,�� spin correlations�. We have
1/T1�T� with � roughly about 0.5.

If this type of scaling is seen, it would be important to
think about whether the SU�4� symmetry can be explicitly
tested by probing the other observables with enhanced cor-
relations. In particular the power law VBS correlations can
possibly be looked for.

Very recently, scaling in the Q= �� ,�� magnetic neutron
scattering has been observed in underdoped samples of
YBa2Cu3O6+x, for both x=0.5 �Tc=59 K� and x=0.35 �Tc

=18 K�.43 In both samples � /T scaling is seen in
���q ,� ,T� /���q ,� ,T=0�. Further analysis of the data is
needed to understand whether this scaling may be related to
algebraic spin liquid physics.

We note that scaling has also been reported in very lightly
doped La2−xSrxCuO4 �Refs. 44 and 45� and more recently in
Li-doped La2CuO4 �Ref. 46�. Specifically the q-integrated
scattering intensity �which is dominated by the signal near
Q� shows � /T scaling. However, the prefactor decreases
with increasing frequency unlike that expected from the scal-
ing form above.50 Further, there is no sign of scaling in the
momentum dependence of the scattering. We therefore think
it unlikely that the � /T scaling reported in Refs. 44–46 is
due to any underlying algebraic spin liquid. However, it
would be very interesting to look for scaling in moderately
doped samples in the high-temperature pseudogap regime �as
opposed to the very lightly doped samples studied in Refs.
44 and 45�.

It is important to note that, even in this relatively simple
picture where the algebraic spin liquid is stable, the critical
scaling may be modified by the presence of weakly irrelevant
perturbations. Particularly worrisome is the fermion velocity
anisotropy, which is known to be rather large in the super-
conductor. However, it is not at all clear that the low-
temperature anisotropy in the superconductor is to be identi-
fied with the anisotropy in the spin sector at high
temperatures. It may well be the case that the spin sector
flows close to the isotropic ASL fixed point, but at lower
temperatures the charge sector could induce the anisotropy
that obtains in the ground state. Similar issues arise regard-
ing the location of the nodal points in momentum space—in
the sF state these are fixed at q= �� /2 ,� /2�, but this is not
the case in the superconducting state. While these issues re-
main somewhat mysterious at present, we would like to em-
phasize that the whole approach of thinking about the under-
doped cuprates in terms of an algebraic spin liquid is only
useful to the extent that one comes near the fixed point,
which is isotropic.

VII. DISCUSSION

In the analysis of this paper, we have assumed that the
most relevant operators in the sF and �F spin liquids are the
Na and M fermion bilinears; these operators therefore give
rise to the dominant power-law correlations. While this sce-
nario will certainly hold for sufficiently large Nf, it is not
known whether it continues to hold for the interesting cases
of Nf =4 or 8. In particular, monopole operators carry non-
trivial flavor �and other� quantum numbers,31,35 and if some
such multiplet of operators becomes more relevant than, say,
Na, it will dominate the long-distance correlations. We note
that if this does in fact happen, the main features of the
results discussed here will still hold. Specifically, there will
be a set of superficially unrelated and slowly varying com-
peting orders all exhibiting the same power-law decay and
unified the by the emergent SU�Nf� symmetry. The observ-
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ables involved will, however, be different from those dis-
cussed here. Furthermore, even if Na and M do not give rise
to the dominant competing orders, they will still give rise to
slowly decaying correlations. It should be noted that these
issues do not affect the prediction of � /T scaling in the q
= �� ,�� magnetic scattering.

Many aspects of the staggered flux spin liquid state are
very reminiscent of the physics of the more familiar one-
dimensional critical spin liquids. The most striking similarity
is perhaps in the criticality itself; indeed, the staggered flux
and other algebraic spin liquids can be stable critical phases
in two dimensions, much like their better-known one-
dimensional counterparts. In both cases the spin correlations
are described by nontrivial power laws with large anomalous
dimensions. More technically, as discussed in detail in this
paper, the sF spin liquid is conveniently analyzed in terms of
fermionic S=1/2 spinon variables. Similarly, a fermionic de-
scription is often a useful technical device in analyzing the
physics of one-dimensional spin liquids. Finally, there is
similarity in how the semiclassical instantons are represented
in terms of the fermions. In d=1, for instance in the antifer-
romagnetic XXZ S=1/2 model, the semiclassical instantons
are just 2� phase slips. In a fermionic representation �ob-
tained via Jordan-Wigner transformation� these are umklapp
processes where a right mover becomes a left mover or vice
versa. In the d=2 spin model, the semiclassical instantons
change the Skyrmion number associated with the Néel vector
configuration. In the staggered flux spin liquid these are
again described as operators that move a fermionic spinon
from one node to the other �the northeast movers to the
northwest movers, for instance�. Perhaps these similarities
can be exploited toward deepening our understanding of
such nontrivial two-dimensional algebraic spin liquids.

We note that the spin-charge-separated variables used to
describe the algebraic spin liquids considered here have no
obvious a priori connection to the pattern of competing or-
ders arising within these states, and it is remarkable that they
lead to this kind of physics. In fact, the observables with
slowly varying fluctuations correspond to bilinears of the
fermions. It is not known how to formulate a field theory for
the sF state where these variables are in some sense the fun-
damental fields. This points out that, in doing phenomeno-
logical modeling of strongly correlated systems, one should
be cautious about simply introducing new fields by hand for
the slowly fluctuating observables—these are not necessarily
the variables that will naturally lead to a correct description
of the underlying physics.

Many theoretical issues remain to be addressed if a solid
connection is to be made between the picture advocated here
and experiments in the cuprates. We feel the most serious of
these involve coupling to the charge sector, which so far has
not been carefully taken into account. Specifically, it will be
important to understand the physics of the doped algebraic
spin liquid at all temperatures, not only in the range where
the spin sector should be controlled by the undoped fixed
point. The zero-temperature fate of a doped ASL is a ques-
tion that also merits further exploration. The most common
view has been that d-wave superconductivity obtains imme-
diately at T=0 upon introduction of a finite density of charge
carriers. It is particularly intriguing to ask whether some of

the exotic character of the ASL can survive down to T=0
even in the presence of doped holes, possibly leading to ex-
otic metallic states.
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APPENDIX A: CONTINUUM FIELDS AND MICROSCOPIC
SYMMETRIES

Here we provide a discussion of the continuum limit of
the staggered-flux mean-field state, and the resulting action
of the microscopic symmetries on the continuum fields. The
same procedure was discussed in Appendix A of Ref. 12 for
the SU�N� �-flux state. Much of the analysis is identical, but
for completeness we reproduce it here. It is important to note
that the final results differ because the symmetries in the �F
and sF states act differently on the lattice spinons and hence
also on the continuum fields.

The starting point is the mean field Hamiltonian of Eq.
�5�. We choose the four-site unit cell labeled by �R , i�, with
R=2nxx+2ny y and r�R , i�=R+vi, where

vi = �
0 , i = 1,

x , i = 2,

x + y , i = 3,

y , i = 4.
� �A1�

The spinon operator at site �R , i� is denoted fRi�.
It is a trivial exercise to go to momentum space and solve

Eq. �5�; in the reduced Brillouin zone kx ,ky � 
0,�� one finds
gapless Fermi points at Q0
�� /2 ,� /2�. Near this point the
dispersion can be described by 4 two-component Dirac fer-
mions. It is convenient to denote these by �a�

A �R�. Here a
=1,2 and �=1,2 are the SU�4� flavor indices 
� is simply
the SU�2� spin index�. Also, A=1,2 labels the two compo-
nents of each spinor �this is usually suppressed�. These fields
are related to the lattice spinons as follows:

�1�
1 �R� �

1

2�2�
eiQ0·R�fR1� + fR3�� , �A2�

�1�
2 �R� �

− i

2�2�
eiQ0·R�fR2� − fR4�� , �A3�

�2�
1 �R� �

− e−i�/4

2�2�
eiQ0·R�fR2� + fR4�� , �A4�
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�2�
2 �R� �

− e−i�/4

2�2�
eiQ0·R�fR1� − fR3�� , �A5�

where � is the lattice spacing.
We can now set t=� to remove the velocity anisotropy,

and put it back in as a perturbation as discussed in Sec. III B.
Note that the above results do not depend on t /� and are
identical to the case of the �-flux state. In momentum space
the continuum Hamiltonian takes the form

Hc =� d2q

�2�2�
�a�

† �q��q1� 1 + q2� 2��a��q� , �A6�

where we have chosen units to set the velocity to unity, and
� i are the usual Pauli matrices acting in the two-component
Dirac “spin” space. Here we use the following rotated coor-
dinates:

q1 =
1
�2

�qx + qy� , q2 =
1
�2

�− qx + qy� . �A7�

It is convenient to work with the eight-component object

� =�
�11

�12

�21

�22

� . �A8�

The generators of flavor SU�4� can be expressed as tensor
products of SU�2�spin and SU�2�nodal generators �see Sec.
III A�. Using the convention specified in Eq. �A8� this can be
expressed in matrix notation—for example,

� i
 j = ��
 j�11�
i �
 j�12�

i

�
 j�21�
i �
 j�22�

i � . �A9�

We now quote the action of the microscopic symmetries
on the lattice and continuum fields, including the spinons as
well as the magnetic flux and electric field. To simplify the
form of the results, we often make an additional global gauge
transformation fr�→ei�fr� in going from the lattice to the
continuum transformation laws. The lattice symmetries dis-
cussed below generate the full space group of the square
lattice.

x translations. Translations by one site in the x direction
act on the lattice spinons as follows:

fr� → �r�i�2��� fr+x,�
† , fr�

† → �r�i�2��� fr+x,�, �A10�

where

�r = �+ 1 r � A ,

− 1 r � B .
� �A11�

The resulting continuum transformation law is

� → 
�†�i�1��i� 2��T, �† → 
�i�2��i�1���T. �A12�

The electric field and magnetic flux both change sign under
translation by one lattice site.

Rotations. We choose to make a � /2 counterclockwise
rotation about the point �x+y� /2, which lies at a plaquette

center. Under this operation we have r→r�= �−ry +1,rx�, and
the action on the spinons is

fr� → �rfr��. �A13�

In the continuum

��R� → exp� i�

2 �
1 + 
2

�2
��exp� i�

4
� 3���R�� . �A14�

Under this operation, the electric field is a vector, and the
magnetic flux is a scalar.

Reflections. We consider the reflection r→r�= �−rx ,ry�.
The spinons transform trivially:

fr� → fr��, �A15�

resulting in the continuum expression

��R� → �i
2�exp� i�

2 � �1 + �2

�2
����R�� . �A16�

Note that in rotated coordinates R= �R1 ,R2�→R�= �R2 ,R1�.
The electric field transforms as a vector under reflections,
and the magnetic flux as a pseudoscalar.

Time reversal. Time-reversal symmetry is implemented by
the antiunitary operation

fr� → �r fr�
† , fr�

† → �r fr�. �A17�

The resulting continuum operation is

� → 
�†�i�3��i
3��T, �† → 
�i�3��i
3���T. �A18�

The electric field is odd under time reversal, while the mag-
netic flux does not transform. This reverses the more familiar
situation of real electromagnetism, where electric charge is
invariant under time reversal but magnetic charge is odd.

APPENDIX B: LARGE-Nf DIAGRAMMATICS AND
RG

The starting point for the large-Nf expansion is simply
naive perturbation theory in the gauge interaction vertex. The
fermion propagator is

�B1�

where we have introduced the notation k”=k
�
. The bare
photon propagator takes the form

�B2�

The rather unusual momentum dependence of the numerator
is due to our choice of a “nonlocal” gauge—this choice is
made purely for technical convenience as it results in a sim-
pler form for the photon propagator at leading order in 1/Nf.
Finally we have the vertex

�B3�
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The next step in constructing the large Nf perturbation
theory is to calculate the leading order photon propagator.
Recalling that e2�1/Nf, it is easy to see that the leading
contribution represented by the geometric series

�B4�
Upon summing the series and taking the limit of small q, the
full photon propagator is

�B5�

The perturbation series for any desired correlator is then
easily built out of the 1/Nf photon propagator, Eq. �B5�, the
fermion propagator, and the vertex. For example, the fermion

Green’s function ���k��̄�k���= �2��3��k−k��G�2��k� is rep-
resented as

�B6�

As discussed in Sec. II B, we can implement a renormal-
ization group using the large-Nf expansion. As an example,
consider the fermion Green’s function and suppose we have
added a single perturbation to the Lagrangian, represented by
the coupling g. It is most convenient to explicitly keep track
only of the anomalous part of the scaling—that is, we im-
plicitly subtract off all contributions to the Callan-Symanzik
equation that give rise to the engineering dimensions of
fields and coupling constants. This is denoted by writing
primed versions of the appropriate quantities; for example,
the engineering dimension of � is unity, so, denoting the
scaling dimension of � by ��, we write ��=1+��� . The
Callan-Symanzik equation then takes the form

�− � �

��
��

+ 2��� + � �g

��
�� �

�g
�G�2��k� = 0. �B7�

APPENDIX C: IRRELEVANCE OF THE VELOCITY
ANISOTROPY

In this appendix we show that the velocity anisotropy for
the fermions is irrelevant at the algebraic spin liquid fixed
point, at least to leading order in 1/Nf. We do this by calcu-
lating the coefficient of � /Nf in d� /d�. In Refs. 22 and 23,
the same RG flow was calculated to leading order in 1/Nf
but for arbitrary �. Our calculation is essentially equivalent
to that of Refs. 22 and 23; the only difference is that we are
interested here only in local stability and can work perturba-
tively in � from the beginning, which simplifies some tech-
nical aspects and makes the presentation more straightfor-
ward. Our results are in complete agreement with those of
Refs. 22 and 23.

We employ the renormalization group approach discussed
in Sec. II B. We need to calculate the Green’s function

G�2��k�, keeping terms of order �, 1 /Nf, and � /Nf, and then
apply the appropriate Callan-Symanzik equation to deter-
mine d� /d�. For ease of presentation we work in Feynman
gauge ��=1�. We have also carried out these calculations in
an arbitrary covariant gauge with no effect on the final result.

The anisotropy was discussed in Sec. III B, and the per-
turbation to the Lagrangian can be written

Ka = − i��̄
3�̂
��
 + ia
�� , �C1�

where we have introduced the notation �̂
=�1�
,1−�2�
,2.
This term is represented by two vertices. The first is the
correction to the fermion kinetic energy:

�C2�

Here k”̂ 
�k1�1−k2�2�. The second is the correction to the
vertex:

�C3�

We need to calculate the order 1 /Nf contributions to the
fermion self-energy, up through linear order in �. These are
given by a sum of four diagrams

��1/Nf��k� = �
i=0

3

�i�k� . �C4�

Here �0 is the isotropic �i.e., �=0� contribution

�C5�

The other three diagrams are the anisotropy contributions.
We suppress the momentum labels since the momentum
structure is the same as Eq. �C5�. We have

�C6�

�C7�

�C8�
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We evaluate these integrals using dimensional regulariza-
tion, which introduces a mass scale 
 that roughly plays the
role of a UV cutoff. Keeping track only of the logarithmi-
cally divergent parts, the results are

�0�k� =
8

3�2Nf
k” ln��k�/
� �C9�

and

�1�k� + �2�k� + �3�k� = −
152�
3

15�2Nf
k”̂ ln��k�/
� . �C10�

We can now calculate G�2��k� to the appropriate order and
use the following Callan-Symanzik equation to determine the
flow of the anistropy:

�− � d

d�
��

+ 2��� + �d�

d�
�� �

��
�G�2��k� = 0. �C11�

The diagrams contributing to the Green’s function are

�C12�

and therefore

G�2��k� =
1

k”
�1 +

8

3�2Nf
ln��k�/
��

− �
31

k”
k”̂

1

k”
�1 +

232

15�2Nf
ln��k�/
�� . �C13�

Noting that �d� /d���= �d� /d�� because � is marginal at
infinite Nf, it is straightforward to apply Eq. �C11� to obtain
��� =−4/3�2Nf and

d�

d�
= −

64

5�2Nf
� . �C14�

APPENDIX D: TWO-POINT CORRELATIONS OF Na AND
M TO ALL ORDERS IN 1/N

In this appendix we show that the fermion bilinears Na

=−i�̄T a� and M =−i�̄� have the same scaling dimension
to all orders in the 1/Nf expansion. It is simplest to do this
by a direct consideration of the two-point functions of these
operators, defined by

CM�x� = ���̄���x���̄���0�� , �D1�

C N
ab�x� = ���̄Ta�̄��x���̄Tb���0�� . �D2�

Precisely, we shall show that

C N
ab�x� = �� abCM�x� , �D3�

where � is an unimportant proportionality constant.
Diagrammatically, all contributions to both these correla-

tors can be represented in the form shown in Fig. 3. In the
case of CN

ab the left and right dark circles represent the flavor
matrices Ta and Tb, respectively, while for CM they are sim-
ply the identity matrix. The important point is that in both
cases these matrices are trivial in the Dirac �-matrix space.

The shaded region represents an arbitrary combination of
the elements of the large-Nf perturbation theory. These are all
trivial in flavor indices, so by SU�Nf� symmetry the shaded
region can only give a contribution proportional to either
�������� or ��������. Let us consider these two possibilities
in turn.

The first of these corresponds to the � fermion line ex-
tending through the shaded area and eventually joining onto
the � line on the same side, and similarly for the �� and ��
lines. So each of the external dark circles lives on a separate
closed fermion loop, which is decorated with photon lines
inside the shaded area. However, because the fermion bilin-
ears are trivial in the Dirac space, it is easy to see that these
fermion loops necessarily involve a trace over an odd num-
ber of � matrices, which vanishes. Therefore there are no
contributions of this form.

Next we consider the second possibility, where the
�-fermion line extends into the shaded area and emerges on
the other side to join the �� line, and similarly for the � and
�� fermion lines. In this case the two dark circles reside on
the same closed fermion loop, which will involve an even
number of � matrices and can be nonzero. Every diagram
contributing to either correlation function will be of this

FIG. 3. Representation of an arbitrary diagram contributing to
the two-point function of a fermion bilinear. The two dark circles
represent the bilinear’s matrix structure and are positioned at the
points where the bilinear is inserted into the diagram. The shaded
region is built from the ingredients of the large-Nf perturbation
theory described in Sec. II B—fermion and photon lines, and the
gauge vertex. The pairs �� , i� denote the SU�Nf� flavor ��
=1, . . . ,Nf� and Dirac spin �i=1,2� indices of the fermions.
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form. Furthermore, for every diagram contributing to CM,
there is a unique diagram contributing to C N

ab that differs
only by the structure of the trace over this one-fermion loop.
In the case of CM this trace will have the form Tr��1�2�,
where �i is some matrix trivial in the flavor space. For C N

ab

we have instead

Tr�T a�1T b�2� = Tr�T aT b�Tr��1�2� = �� abTr��1�2� ,

�D4�
where � is a constant that is chosen once and for all by fixing
a normalization for the SU�Nf� generators. This means that
Eq. �D3� holds diagram by diagram, so N a and M have the
same dimension to all orders in 1/Nf.
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