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We present here a technique to compute electronic thermal conductivity of fluids using quantum-molecular
dynamics and the formulation of Chester-Tellung for the Kubo-Greenwood formula. In order to validate our
implementation, the electrical and thermal conductivities of liquid aluminum were determined from 70 K
above the melting point up to 10 000 K. Results agree well with experimental data for Al at 1000 K. The
Lorentz number, defined as K /�T, where K is the thermal conductivity, � is the electrical conductivity, and T
is the temperature, is close to the ideal value of 2.44�10−8 for metals, and the Wiedemann-Franz law is
verified.
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I. INTRODUCTION

Transport coefficients are commonly used to characterize
the state of plasma. From the theoretical point of view, there
are many models that predict the electrical and thermal con-
ductivity, using various assumptions about electronic and
ionic structure.1–4 In the partially degenerate strongly
coupled regime, those quantities are difficult to obtain be-
cause ion-ion interaction is screened by the electronic polar-
ization, and there has been no correct model to account for
nonlinear screening. Quantum-molecular dynamics �QMD�
is ideally suited for this type of problem, precisely because
no adjustable parameters or empirical interionic potentials
are needed. Quantum determination of electrical conductivity
using Kubo-Greenwood in the framework of density func-
tional theory has been successfully used on various systems
such as liquid and dense plasmas.5–9

The Lorentz number L is defined as

L =
K

�T
= �

e2

k2 , �1�

where T is the temperature, K is the thermal conductivity,
and � is the electrical conductivity. � depends on the law
of forces responsible for the scattering of the electrons.10

In the degenerate regime �liquids�, � is �2 /3 and L is
2.44�10−8. This is the Wiedemann-Franz law. For the non-
degenerate case �completely ionized gas�, � is 1.5966 �L is
1.18�10−8�.11 In the intermediate region, there is no as-
sumption on the � value, and one cannot use the
Wiedemann-Franz law to deduce thermal conductivity from
the electrical conductivity. A theory that gives directly ther-
mal conductivity is then highly interesting.

In this paper, we present a direct evaluation of thermal
conductivity using quantum-molecular dynamics based on
plane-wave density functional theory and the Kubo-
Greenwood formula in the Chester-Tellung version.10 This
technique has been used to model the electronic transport
properties of quasicrystals12 and of disorded solids13 using
the atomic-sphere approximation of the linear muffin-tin or-

bitals �ASA-LMTO� method. In order to validate our imple-
mentation of quantum computation of thermal conductivity,
we have calculated the electronic transport property of liquid
aluminum near the melting point. Indeed, several experimen-
tal and theoretical data are available near this particular
point. Then, we present a calculation of electrical and ther-
mal conductivity of modeled liquid aluminum at temperature
up to T=10 000 K with a fixed ionic density of 2.35 g/cc,
which is the experimental liquid density near the melting
point. In this regime, the � parameter is expected to be �2 /3.

This paper is organized as follows: In the next section, we
will describe the quantum simulations and Kubo-Greenwood
formulation of Chester-Tellung for electrical and thermal
conductivity. In Sec. III, our results for aluminum at T
=1000 K are checked against experimental results. Finally,
the evolution of electrical and thermal conductivity vs tem-
perature are discussed.

II. THEORETICAL METHOD

QMD simulations for liquid Al were performed at several
temperatures ranging from T=1000 K to T=10 000 K, at ex-
perimentally measured liquid density. 108 particles were
treated in a cubic cell of the size appropriate to the experi-
mental density of 2.35 g/cc. First, ionic structures are gen-
erated with the VASP �Vienna ab initio Simulation Program�
plane-wave code developed at the Technical University of
Vienna,14 in the framework of a finite temperature-density
functional theory. Ion-electron interactions are described
with the projected augmented wave �PAW� method given by
Kresse et al. 15,16 The Perdew and Wang parametrization of
the generalized gradient approximation17 is used for the ex-
change and correlation potential. After thermalization, each
temperature point was simulated for about 1 ps in the micro-
canonical ensemble. Electronics levels are occupied accord-
ing to Fermi-Dirac statistics, with electronic temperature set
equal to that of ions. We consider electronic states occupied
down to 10−6. The QMD calculations are performed using
only the � point for representation of the Brillouin zone, with
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a plane-wave cutoff of 300 eV. The �-point sampling is ex-
pected to be a good approximation for calculating the struc-
ture and dynamics of liquid aluminum, but is not enough for
accurate calculation of electronic properties such as electrical
or thermal conductivity.

For selected statistically independent atomic configura-
tions, a self-consistent ground-state calculation is performed
with the ABINIT code18 to get the detailed electronic struc-
ture. The electronic calculation is done in the gener-
alized gradient approximation with the exchange-correlation
energy functional of Perdew-Burke-Ernzerhof.19 Orbitals
are expanded in plane waves up to a cutoff of 165 eV. A 2
�2�2 Monkhorst-Pack k-points mesh is used in the
Monkhorst-Pack scheme. The total energy convergence has
been checked against the plane-wave cutoff energy and num-
ber of k points to obtain a convergence up to 0.1 meV. The
pseudopotential used in our work is generated by the
Troullier-Martins method20—3s and 3p states are treated as
valence electrons, and we use a d nonlocal part.

The linear response of a system to an electrical field E
and temperature gradient �T is characterized by the electri-
cal and heat current densities, respectively j and jq. These
two quantities are related to the electric field E and to the
temperature gradient �T by �Onsager relations�

�j� =
1

e
�eL11E −

L12 � T

T
� , �2�

and

�jq� =
1

e2�eL21E −
L22 � T

T
� , �3�

where e is the electron charge. The kinetic coefficients Lij
are the key to calculate electronic transport properties theo-
retically. Using Ohm’s law, one obtains the electrical conduc-
tivity �

� = L11. �4�

Electronic thermal conductivity K is

K =
1

eT
�L22 −

L12
2

L22
� . �5�

In the Chester-Tellung-Kubo-Greenwood formulation, the ki-
netic coefficients Lij are given by

Lij = �− 1��i+j� � d��̂����� − ���i+j−2��−
�f���

��
� , �6�

where f��� is the Fermi-Dirac distribution function, and � is
the chemical potential. �̂��� is calculated by means of the
Kubo-Greenwood formula �Refs. 21 and 22�

�̂��� =
he2

	
�
k,k�

�
k	v̂	
k���
k�	v̂	
k����k − �k� − �� , �7�

where 	 is the volume of the cell simulation, �k are the
electronic eigenvalues, and �
k	v̂	
k�� are the velocity matrix
elements.

By using the properties of the Dirac functions, Eq. �6� can
be rewritten as

Lij = �− 1��i+j�he2

	
lim
�→0

f��k�� − f��k�
�

���k� − �k − ��

� �
k�,k

�
k	v̂	
k�
� ��
k�	v̂	
k���k� − ��i−1��k − �� j−1. �8�

Equations �4� and �5� are applied to the energy-dependent
form of the kinetic coefficient. Then, by extrapolating to zero
energy, the electrical and thermal conductivities are obtained.

As the Troullier-Martins potential is nonlocal, we cannot
use the momentum operator to represent the velocity opera-
tor, as is done elsewhere. We use the definition of the veloc-
ity operator

v̂ =
i

�

Ĥ,r� . �9�

Ĥ represents the total Hamiltonian of the system. Then, v̂ is

expressed in terms of �Ĥ /�k. Technical details on the com-
putation of matrix elements can be found in Refs. 23 and 24.

The chemical potential is obtained by fitting the set of
occupation numbers corresponding to the set of eigenvalues
with the usual functional form for the Fermi-Dirac distribu-
tion at finite temperature. The � function must be
broadened—it is replaced by a Gaussian function. The
Gaussian broadening is tested to obtained smooth and well-
converged curves.

III. RESULTS

A. Aluminum at T=1000 K

To support the quality of the QMD simulation, the calcu-
lated radial-distribution function is shown in Fig. 1, com-
pared with experimental data measured by x-ray diffraction
experiments. Radial-distribution functions were averaged
during all the simulations. The present result agrees with the
experimental data. The level of agreement between experi-
ment and theory is comparable to that obtained in previous

FIG. 1. Calculated radial distribution function for liquid Al at
T=1000 K �solid line� compared with experimental data �Ref. 27�
�open circles�.

V. RECOULES AND J.-P. CROCOMBETTE PHYSICAL REVIEW B 72, 104202 �2005�

104202-2



quantum-molecular-dynamics studies.25,26 We verified that
the mean-square displacement increases during the simula-
tion, which is characteristic of a liquid state.

Once the ionic-liquid structure is correct, optical conduc-
tivity ��� vs frequency  is computed by averaging over
optical conductivities from six snapshots selected during the
course of QMD simulation. The extrapolation to zero fre-
quency must be performed carefully, since in a finite system,
energy levels are always discrete and ��� falls to zero for
small values of  �Ref. 5�. Therefore, it is more convenient
to use a functional form for extrapolating to zero. In metallic
aluminum, conductivity is carried by free electrons. It has
been shown that a natural functional form for fitting the cal-
culated ��� in this regime is the Drude formula �Ref. 7�

��� =
�

1 + 2�2 , �10�

where � is the relaxation time. Using this fit, the zero-
frequency limit yields the dc conductivity. The value ob-
tained, �dc=40.7�105 	 m−1, is close to the experimental
value, 39.7�105 	 m−1, and close to the value obtained
with a similar technique by Alemany et al.25

For the same six snapshots, Eq. �5� is computed, leading
to a frequency-dependent expression. Thermal conductivity
is evaluated by extrapolating to zero frequency. The value
obtained for thermal conductivity K=98 W m−1 K−1 is in the
range of the experimental values 
between 95 and
98 W m−1 K−1 �Ref. 28� and references therein�.

Using the preceding experimental values, the Lorentz ra-
tio is between 2.40�10−8 and 2.46�10−8. For liquid alumi-
num at T=1000 K, the computed Lorentz number is 2.41
�10−8, which is very close to the ideal value of Lorentz
number predicted by the nearly free electron model. This
model is applicable in cases where scattering of the electrons
by the ions is sufficiently weak to justify the Born approxi-
mation, which is true of simple metals such as aluminum.

B. Temperature-dependent results

Electrical and thermal conductivity are computed for
eight-temperatures ranging from T=1000 K to T=10 000 K.
The volume is kept constant so that there is no vaporization
and the system remains liquid even at T=10 000 K.

From QMD trajectory, the internal energy is extracted.
Figure 2 presents the internal energy for various tempera-
tures. Internal energy variation is linear in T. Using a linear
fit, one can deduce the heat capacity for liquid aluminum.
The value obtained is Cv=25.3±2.0 J mol−1 K−1, which is in
accordance with the literature value Cv=29 J mol−1 K−1

�Ref. 29�.
The electrical conductivity, thermal conductivity, and

Lorentz number as a function of temperature are plotted in
Fig. 3.

As expected for a liquid metal, electrical conductivity de-
creases with temperature, whereas thermal conductivity in-
creases. In metals, one can perform the approximation so that
the first term in Eq. �5� exceeds the second term by a factor
of order �� f /kBT�2, where � f is the Fermi energy. Thus,

K = L22. �11�

We verify that this is true for all temperatures. The fact that
K=L22 in all the domains explored shows the validity of the
technique employed here. For all temperatures, we obtained
a Lorentz number slightly below the ideal value. The calcu-
lated Lorentz numbers are between 2.40 and 2.30 for the
different temperatures. At those temperatures, the Lorentz
number might be constant and equal to the limit value for the
degenerate case. We showed that the Lorentz number is still
close to the ideal value for metals.

FIG. 2. Internal energy variation �solid squares� vs temperature.
The dashed line is a linear fit of data. FIG. 3. Electrical conductivity, thermal conductivity, and Lor-

entz number as a function of temperature. The dashed line is for
readability. For the Lorentz number, the dashed line is the value of
the degenerate limit.
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IV. CONCLUSION

In conclusion, we have demonstrated the feasibility of
calculating thermal conductivity from quantum-molecular
dynamics using the Kubo-Greenwood formula in the
formulation of Chester-Tellung. For liquid aluminum, 70 K
above the fusion point, the computed electrical resist-
ivity and thermal conductivity agree well with experi-
mental data. When the temperature increases up to T
=10 000 K, the Lorentz number is still close to the limit

2.44�10−8 for the degenerate system for all the temperature
domains explored. The technique employed is also appli-
cable for strongly coupled plasma.

ACKNOWLEDGMENTS

We gratefully acknowledge S. Bernard for supplying the
pseudopotential and J. Clérouin, P. Renaudin, and A. De-
coster for useful discussions.

*Electronic address: vanina.recoules@cea.fr
1 L. Spitzer and R. Harm, Phys. Rev. 89, 977 �1953�.
2 Y. T. Lee and R. M. More, Phys. Fluids 27, 1273 �1983�.
3 G. A. Rinker, Phys. Rev. A 37, 1284 �1988�.
4 H. Kitamura and S. Ichimaru, Phys. Rev. E 51, 6004 �1995�.
5 P. L. Silvestrelli, Phys. Rev. B 60, 16382 �1999�.
6 M. P. Desjarlais, J. D. Kress, and L. A. Collins, Phys. Rev. E 66,

025401�R� �2002�.
7 V. Recoules, P. Renaudin, J. Clérouin, P. Noiret, and G. Zérah,

Phys. Rev. E 66, 056412 �2002�.
8 V. Recoules, J. Clérouin, P. Renaudin, P. Noiret, and G. Zérah, J.

Phys. A 36, 1 �2002�.
9 J. Clérouin, Y. Renaudin, P. Laudernet, P. Noiret, and M. P. Des-

jarlais, Phys. Rev. B 71, 064203 �2005�.
10 G. V. Chester and A. Thellung, Proc. Phys. Soc. London 77, 1005

�1961�.
11 H. Reinholz, R. Redmer, and S. Nagel, Phys. Rev. E 52, 5368

�1995�.
12 C. V. Landauro and H. Solbrig, Phys. Fluids 27, 1273 �1983�.
13 C. Villagonzalo, R. A. Römer, and M. Schreiber, Eur. Phys. J. B

12, 179 �1999�.
14 G. Kresse and J. Hafner, Phys. Rev. B 47, R558 �1993�.

15 G. Kresse and D. Joubert, Phys. Rev. B 59, 1758 �1999�.
16 P. E. Blöchl, Phys. Rev. B 50, 17953 �1994�.
17 J. P. Perdew, Electronic Structure of Solids �Akademie Verlag,

Berlin, 1991�.
18 X. Gonze, J.-M. Beuken, R. Caracas, F. Dutraux, M. Fuchs,

G.-M. Rignanese, L. Sindic, M. Verstraete, G. Zerah, F. Jollet et
al., Comput. Mater. Sci. 25, 478 �2002�.

19 J. P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett. 77,
3865 �1996�.

20 N. Troullier and J. L. Martins, Phys. Rev. B 43, 1993 �1991�.
21 R. Kubo, J. Phys. Soc. Jpn. 12, 570 �1957�.
22 D. A. Greenwood, Proc. Phys. Soc. London 71, 585 �1958�.
23 X. Gonze, Phys. Rev. B 55, 10337 �1997�.
24 X. Gonze and C. Lee, Phys. Rev. B 55, 10355 �1997�.
25 M. M. G. Alemany, L. J. Gallege, and D. J. Gonzàlez, Phys. Rev.

B 70, 134206 �2004�.
26 L. Vocadlo and D. Alfe, Phys. Rev. B 65, 214105 �2002�.
27 Y. Waseda, The Structure of Non-Crystalline Materials �Mc

Graw-Hill, New York, 1980�.
28 W.-K. Rhim and T. Ishikama, Rev. Sci. Instrum. 69, 3628 �1998�.
29 G. R. Gathers, Int. J. Thermophys. 4, 209 �1983�.

V. RECOULES AND J.-P. CROCOMBETTE PHYSICAL REVIEW B 72, 104202 �2005�

104202-4


