
Critical behavior of an elastic Ising antiferromagnet at constant pressure

Xiaoliang Zhu, F. Tavazza, and D. P. Landau
Center for Simulational Physics, The University of Georgia, Athens, Georgia 30602, USA

B. Dünweg
Max Planck Institute for Polymer Research, Ackermannweg 10, D-55128, Mainz, Germany

�Received 16 June 2005; published 2 September 2005�

We perform Monte Carlo simulations of a model for a binary alloy exhibiting superstructure formation with
two sublattices, in the constant-pressure semigrand canonical ensemble. This corresponds to an elastic antifer-
romagnetic Ising model, where spins sit on a distortable diamond net and the interaction is described by the
Stillinger-Weber potential. We find a phase transition line separating the disordered from the ordered phase.
The finite-size scaling analysis of the critical behavior shows no deviations from three-dimensional Ising
behavior. This would be expected in the rigid limit of the model, while for the compressible case, as realized
by our model, theory predicts a weak, first-order transition.
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I. INTRODUCTION

The Ising model is among the most important and most
intensely studied models of statistical physics. Its critical be-
havior is quite well understood, based on different ap-
proaches like renormalization group, � expansion, series
expansions,1–4 and Monte Carlo �MC� simulations,5,6 which
have all provided quite accurate values for critical param-
eters. Although the model is formulated in a “magnetic” lan-
guage, it is only rarely applicable to real magnetic systems.
This is due to the scalar nature of the order parameter. Typi-
cal Ising-type transitions therefore include, for instance, the
gas-liquid transition, and unmixing in liquids, where the
composition corresponds to the magnetization, and the
chemical potential difference to the magnetic field.

In a solid, important phase transitions with a scalar order
parameter �and hence possible candidates for Ising-type be-
havior� are �i� the unmixing of a binary alloy �corresponding
to ferromagnetic ordering�, and �ii� the formation of a simple
superstructure which is described by just two sublattices
�corresponding to antiferromagnetic ordering�. However, tak-
ing into account the elastic deformability of the lattice, i.e.,
the coupling of the compositional and translational degrees
of freedom, the phase transitions need not necessarily remain
Ising-type. Due to the long-range nature of the elastic inter-
action, fundamentally different kinds of behavior are pos-
sible, including first-order transitions, Fisher renormalization
of the critical exponents, and mean-field behavior. This
“zoo” arises from certain details �see below� playing an im-
portant role, such that various cases need to be distinguished.
The main source of our current understanding of these phe-
nomena is theoretical reasoning based on simple �usually
field-theoretic� Hamiltonians. To our knowledge, it has not
been attempted to attack these questions experimentally in a
systematic fashion. This is understandable, since rather high
resolution would be necessary; furthermore, some of the
theoretically interesting situations are hard if not impossible
to realize. Numerical simulations of these systems,7–14 which
are significantly more complicated than the “bare” Ising
model, could only attain the necessary resolution within

�roughly� the last decade. It is in this field where the present
study attempts to make a contribution.

One of the present authors has recently15 attempted a sur-
vey of the pertinent theoretical literature, in order to obtain
an overview over the possible cases and various predictions.
For a sketch of the underlying reasoning, and references to
the original papers, see the Appendix. So far, the following
aspects have been identified as being important for the criti-
cal behavior of elastic alloys: First, the nature of the coupling
is crucial. Depending on the order parameter symmetry, the
lowest-order coupling term can either be written as a product
of order parameter and strain, or square of the order param-
eter and strain. The former case applies to unmixing, the
latter to superstructure formation—in this case, a sign change
of the order parameter just corresponds to an exchange of
sublattices, which is a valid symmetry operation, and hence a
linear term is prohibited. Second, the critical behavior is in-
fluenced by macroscopic constraints, or the thermodynamic
ensemble �plus boundary conditions�. Since it turns out that
the macroscopic fluctuations �i.e., those at wave number k�
=0� are crucial for the critical behavior, it makes a difference
whether the ensemble permits these fluctuations or not. For
example, the constant-pressure ensemble allows fluctuations
of the overall volume, but the constant-volume ensemble
does not. Similarly, a simulation of a binary alloy in the
semigrand canonical ensemble allows k� =0 fluctuations of the
composition �or magnetization, which is the order parameter
in the case of unmixing�, while they are suppressed in the
canonical ensemble. The resulting nonequivalence of en-
sembles was first noticed by Vandeworp and Newman.12 This
is intimately related to the difference between coherent and
incoherent phase coexistence as it is well known from
metallurgy.16,17 A coherent alloy is one characterized by a
single crystal with well-defined neighbor shells. The condi-
tion of coherency, i.e., of absence of broken bonds, usually
implies that the system is in a metastable state. Conversely,
an incoherent alloy is one where bond breaking is permitted;
this additional relaxation mechanism then allows the system
to reach full equilibrium. Coherency usually implies the oc-
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currence of internal stresses, which are most pronounced
near the interface of two components with different lattice
spacings. Since the semigrand canonical ensemble avoids the
explicit treatment of the interface, and the associated coher-
ency stresses, such a simulation produces the incoherent
phase diagram �or some approximation thereof�. Conversely,
data obtained in the canonical ensemble �with fixed compo-
sition� pertain to the situation with an interface, and with
coherency stresses �note that the computational models ex-
plicitly forbid bond breaking�. Therefore, this yields the co-
herent phase diagram. For these reasons we may not infer the
coherent canonical phase diagram from semigrand canonical
data. For a more detailed elaboration on that point, see Ref.
12. Finally, it is also believed that elastic anisotropy plays a
role in the critical behavior of elastic alloys.

For an elastic lattice gas in the semigrand ensemble �i.e.,
the composition is always allowed to fluctuate�, the follow-
ing predictions arise from the picture outlined in the Appen-
dix:

�1� A ferromagnet at constant pressure should exhibit a
first-order coexistence line in the field-temperature plane.
The line ends in a critical point with mean-field behavior.
This has indeed been observed in the simulations of Refs. 9
and 10.

�2� For a ferromagnet at constant volume, the theoretical
situation is not quite clear. For intermediate volumes which
enforce an intermediate lattice spacing somewhere in be-
tween those of the two pure species, one expects that a mixed
state is stabilized by elasticity. If one then assumes15 that this
mixed state is just a coexistence of two macroscopic do-
mains, with an interfacial free energy which does not con-
tribute in the thermodynamic limit, one arrives at the predic-
tion of two first-order lines ending in critical points.
However, simulations14 have shown that this assumption is
apparently incorrect: One rather finds a region in the phase
diagram which is completely separated from the homoge-
neous phase by two merging first-order lines. Within this
region, the structures are much more complicated than
simple macroscopic domains. This is further corroborated by
additional simulations18 which have carefully studied inter-
face fluctuations in such a system: It turns out that capillary
waves are completely suppressed, implying that the interfa-
cial tension is indeed infinite.

�3� An antiferromagnet, since it couples quadratically to
the strain, should correspond precisely to what is known as
the “compressible Ising model” in the literature. In the case
of constant pressure, a �very weak� first-order phase transi-
tion is predicted. A Monte Carlo study of the 2D compress-
ible Ising antiferromagnet also found the transition is weakly
first order and possibly second order when the coupling
increased.19

�4� In the constant-volume case, the prediction is rather a
second-order phase transition with Fisher-renormalized criti-
cal exponents. A recent MC simulation, however, found
Ising-type critical behavior.20

The present study is an attempt to test the prediction of
case 3 by simulations. For this purpose, we slightly modify
the model of Ref. 10 and introduce a nearest-neighbor inter-
action which favors antiferromagnetic ordering. This is then
simulated at constant zero pressure. The details of the model

and the simulation technique are outlined in Sec. II. Section
III then presents the results on the phase diagram, and on the
critical behavior, obtained via a standard finite-size scaling
analysis. Within the resolution of our data, it was impossible
to detect any deviation from standard Ising criticality. In Sec.
IV we attempt to assess the influence of the elastic degrees of
freedom, i.e., to determine how far the model deviates from
a rigid Ising model. Finally, Sec. V concludes with a brief
discussion.

II. BACKGROUND

A. Model and method

In order to make contact with previous simulation results
of an analogous ferromagnetic system,10 we just modify this
model slightly. Reference 10 had attempted to provide a
semirealistic description of the unmixing of the semiconduc-
tor alloy Si-Ge. As an interaction potential, the Stillinger-
Weber �SW� potential,21 suitably generalized to the binary
case, was chosen. Other potentials for such systems have
been proposed as well,22–24 but we view the SW potential as
a good compromise between computational simplicity and
realistic description of the system’s properties. The only
change compared to Ref. 10 is a modification of the nearest-
neighbor interaction such that unlike neighbor pairs are fa-
vored. It should be noted that this choice of parameters im-
plies that the present study makes no attempt to study some
particular semiconductor alloy in a realistic fashion.

For reasons of computational efficiency, the particles are
located on the nodes of a diamond network with fluctuating
bonds but fixed topology. Although the nodes can move sto-
chastically, the four nearest neighbors and the 12 next-
nearest neighbors of a given node are known at the very
beginning, and this information is used throughout the simu-
lation. Each node has four degrees of freedom: The first one
is a pseudospin variable Si, which is either +1 or −1, corre-
sponding to the two species of the alloy. The other three are
the node’s spatial coordinates, r�i.

The diamond lattice can be decomposed into two inter-
penetrating fcc sublattices. In the totally ordered antiferro-
magnetic phase, the spins of the two sublattices are oppo-
sitely aligned. A further decomposition of the diamond lattice
into eight simple cubic �SC� sublattices is useful for compu-
tational purposes; no two nodes within the same SC sublat-
tice interact with each other.

The Hamiltonian consists of four parts

H = H1 + H1
+ + H2 + H3, �1�

where H1 and H1
+ are the uniform magnetic field energy and

staggered magnetic field energy, respectively

H1 = − h�
j

Sj , �2�

H1
+ = − h+�

j

Sj
+. �3�

The staggered spin Sj
+ is defined as

ZHU et al. PHYSICAL REVIEW B 72, 104102 �2005�

104102-2



Sj
+ = �Sj if Sj is in fcc sublattice a

− Sj if Sj is in fcc sublattice b.

The staggered magnetization M+, also called the order pa-
rameter, is the summation of all Sj

+

M+ = �
j

Sj
+. �4�

The two-body part H2 can be written as

H2 = �
�i,j�

��Si,Sj�F2�rij/��Si,Sj�� , �5�

and the three-body part is

H3 = �
�i,j,k�

���Si,Sj���Sj,Sk��1/2L�Si,Sj,Sk�

� F3�rij/��Si,Sj�,rjk/��Sj,Sk��	cos �ijk +
1

3

2

. �6�

The two-body part H2 and three-body part H3 together give
the SW potential energy. For a detailed description of the
involved functions and the chosen set of parameters, see Ref.
10. The only change is that we decrease ��+1,−1�, the cova-
lent binding energy between unlike species, from the original
value −2.0427 eV to −2.3427 eV to make the system anti-
ferromagnetic. The choice of this new value is arbitrary as
long as it is lower than the corresponding energies for like
species, ��+1, +1�=−2.17 eV and ��−1,−1�=−1.93 eV.

Our MC simulation is performed as follows. For spin Sj at
position r� j, we generate a new spin Sj� at a slightly altered
position r� j�, and then use the Metropolis rejection method to
accept or reject this attempt. The maximum displacement
in a step is 0.005 times the length of unit cell in each of the
x, y, and z directions. After sweeping over the entire system,
we keep the pressure constant and allow volume fluctua-
tions by attempting to rescale the system to slightly differ-
ent linear sizes �x� , �y� , �z� from the current ones: x�
=x�x� /�x , y�=y�y� /�y , z�=z�z� /�z. The acceptance or re-
jection of this attempt is determined by the Metropolis rejec-
tion method using the effective Hamiltonian, Hef f =H
−NkBT ln��x�y�z�, where N is the number of nodes. A Taus-
worthe �shift-register� generator25 is used to generate random
numbers, and the magic numbers are p=1279, q=1063. All
floating point quantities are double precision. The code is
parallelized so that it runs on multiple processors with dif-
ferent random number sequences simultaneously. The mul-
tiple random number sequences diversify the data and im-
prove the data quality used for histogram reweighting. Our
system sizes are up to L=24, or N=8L3=110 592. The num-
ber of spins is N=8L3 because each diamond unit cell has 8
spins. All simulation runs are over 107 Monte Carlo steps
�MCS, sweeps through the entire lattice�.

B. Finite-size scaling analysis

According to Fisher’s finite-size scaling theory,26,27 the
critical behavior of an infinite system may be extracted from
that of finite systems by examining the size dependence of
the singular part of the free-energy density. The free energy

of a system of linear dimension L is described by the scaling
ansatz

F�L,T,h� = L−�2−��/�F0�tL1/�,hL��+	�/�� , �7�

where t= �T−Tc� /Tc �Tc is the infinite-lattice critical tem-
perature� and h is the staggered magnetic field. The critical
exponents �, 	, �, and � are all the appropriate values for the
infinite system. Based on this scaling ansatz, we may obtain
the following scaling form in zero field h=0:

m+ = L−	/�m̃�xt� , �8�

where xt= tL1/� is the temperature scaling variable, and m+

= �1/8L3�M+ is the staggered magnetization per spin.
The specific heat capacity C is calculated from the fluc-

tuation of internal energy E

C =
1

8L3

1

T2 ��E2� − �E�2� , �9�

where we use a unit system in which the Boltzmann constant
is unity. Furthermore, the staggered finite-lattice susceptibil-
ity is obtained from the fluctuation relation


+ =
8L3

T
���m+2�� − ��m+��2� , �10�

while the Binder cumulant28 is given by

U4 = 1 −
�m+4�

3�m+2�2 . �11�

Then, we also have the following scaling forms:

C�T� = L�/�C̃�xt� , �12�


+�T� = L�/�
̃�xt� , �13�

U4�T� = Ũ�xt� . �14�

The finite-lattice �or effective� critical temperature Tc�L� is
defined to be where the scaling function reaches a maximum,
or, in the case of the cumulant, has maximum slope. If the
effective critical coupling Kc�L� is defined to be the recipro-
cal of the effective critical temperature, Kc�L�=1/Tc�L�, then
the following scaling form holds:

Kc�L� = Kc + �L−1/��1 + bL−�� , �15�

where Kc is the critical coupling of the infinite lattice, and �
is the correction-to-scaling exponent.

Binder28 showed that the maximum slope of the cumulant
U4 at Kc varies with system size like L1/�. Taking into ac-
count a correction term, the size dependence becomes

�dU4

dK
�

max
= aL1/��1 + bL−�� . �16�

The logarithmic derivative of any power of the staggered
magnetization
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�

�K
ln�m+n� =

1

�m+n�
�

�K
�m+n� = −  �m+nE�

�m+n�
− �E�� ,

�17�

has the same scaling properties as the cumulant slope. This
provides us with additional estimates for � and Kc�L�.

C. Histogram reweighting method

The histogram reweighting technique29 proposed by Fer-
renberg and Swendsen has proved to be very effective. It
yields excellent results in the neighborhood of the point
where a sufficient MC simulation is performed. We rewrite
the Hamiltonian of the system as follows:

H = − hM − h+M+ + W , �18�

where W is the SW potential energy, W=H2+H3. A MC
simulation of length N performed at temperature T0, uniform
magnetic field h0, and staggered magnetic field h0

+ generates
N configurations with a distribution frequency proportional
to the Boltzmann weight, exp�−K0H�, where K0=1/T0. If we
fix h=0 and h+=0, and reweight over temperature, then the
expectation value of an operator A at K=1/T is given by

�A�K =
1

Z
�

j

N

A�Wj�exp�− �K − K0�Wj� ,

where

Z = �
j

N

exp�− �K − K0�Wj� .

In histogram reweighting, it is necessary to check the his-
togram distribution. The reweighted mean internal energy
should not be too far away from the center �or the maximum
value� of the histogram. Otherwise, systematic errors will
prevail. In practice, we require that

H�reweighted mean internal energy�  0.22Hmax,

where H is the histogram value, and Hmax is the maximum
histogram value. This guarantees that the reweighted mean
internal energy is within 2 standard deviations from the cen-
ter of the histogram.

III. RESULTS

A. Phase diagram

The field dependence and temperature dependence of spe-
cific heat and staggered susceptibility are shown in Fig. 1.
These properties reach maxima at slightly different points.
The staggered susceptibility exhibits smaller fluctuations and
diverges with the system size much faster than the specific
heat, which makes it an ideal indicator for critical points.

We determine the critical points along the phase boundary
by locating the points where the staggered susceptibility
reaches a maximum. In the plane T–h �temperature-field,
where h is the uniform magnetic field thermodynamically
conjugated to the concentration� we find a single phase

boundary separating a disordered state from an ordered anti-
ferromagnetic state, as shown in Fig. 2�a�. The phase dia-
gram is approximately �actually, within error bars� symmet-
ric around the maximum. This is a nontrivial aspect, since it
is not dictated by an obvious symmetry of the Hamiltonian
�in contrast to symmetry with respect to the staggered field;
note also that the symmetry axis is not located at h=0�. The
corresponding phase diagram in the temperature-
concentration plane, which exhibits a similar symmetry, is
shown in Fig. 2�b�. An interesting feature of this is that the
temperature-concentration curve turns slightly inward at low
temperature. We believe this low-temperature behavior is

FIG. 1. The field- and temperature-dependence of specific heat
and susceptibility. The left two plots ��a� and �b�� show the tem-
perature dependence at fixed field. The right two ��c� and �d�� show
the field dependence at fixed temperature. Two systems of different
sizes are used to show the finite size effects.

FIG. 2. �a� shows the phase diagram in magnetic field-
temperature space, and �b� in concentration-temperature space. The
system size is 6�6�6. Each simulation length is 106 MCS. The
error bars are smaller than the sizes of data symbols.
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real, because it occurs consistently in different runs, and the
difference �0.0039� to the concentration at T=0.1 exceeds the
standard deviation �0.0014�. We have, however, not carefully
investigated this interesting phenomenon.

B. Critical behavior

In what follows, we will present data which show that,
within the resolution of our simulation, the phase transfor-
mation can be perfectly described by a second-order transi-
tion with the critical exponents of the three-dimensional
Ising universality class. A first, rather direct indication comes
from the order parameter distribution at the critical point �we
will describe below how we locate it accurately�. In Fig. 3,
all distributions for different system sizes collapse to the uni-
versal 3D Ising distribution function.

The estimation of critical parameters was then done as
follows: First, we extracted � by considering the scaling be-
havior of certain thermodynamic derivatives, including the
derivative of the cumulant U4, and the logarithmic deriva-
tives of �m+�, �m+�2, as in Ref. 5. We plot these properties as
a function of lattice size on a log-log scale in Fig. 4.

The estimates for 1 /� from the nonlinear least-square fits
are given in Table I. Combining these three estimates, we get
1 /�=1.60±0.01. This agrees with the value �1.594±0.004�
reported for the rigid case5 within 1 standard deviation.
Therefore, our estimate for � is 0.625±0.004. The size of the
error bars comes primarily from the statistical errors in our
simulation. Since this is an elastic Ising model, i.e., spin
positions are continuous variables, we cannot utilize the
same ultrafast multispin coding algorithm as in Ref. 5; there-
fore, we cannot handle very large systems such as L=96.
With relatively modest lattice sizes, we expect a noticeable
correction term denoted by �. However, we find � is ex-
tremely volatile, ranging from 0.6 to 4.5. This volatility also
comes from the statistical errors in our data, which submerge
the correction terms.

We find that the elasticity has a strong effect on the criti-
cal transition temperature. In the absence of elasticity, the

model becomes a rigid Ising model on a diamond lattice,
whose transition temperature is known to be Tc

diamond

=2.704 04�J�.30 With �J�= �2��+1,−1�−��+1, +1�−��−1,
−1�� /4, the transition would be kBTc=0.14 635 eV, less than
half of the transition temperature found in our simulation.
We fitted the data to Eq. �15� by fixing 1/�=1.60, �=1.0,
and varying Kc, �, and b. The choice �=1.0 is not necessar-
ily optimal, but it works very well. In fact, previous works5

have suggested �=1.0. The results are shown in Fig. 5 and
Table II. Almost all data agree with the fitted data within 1
standard deviation, and all agree within 2 standard devia-
tions. The average of these values is 3.204 44±0.000 19.
This corresponds to the critical temperature kBTc
=0.312 067±0.000 018 eV. Our error bars are bigger than
those in the rigid case due to the added complexity.

The Binder cumulant U4 scales with the linear system size
L as Eq. �14�. At the critical temperature Tc, the U4�T� curves

of all lattice sizes should have the same value Ũ�0�, which
would be a crossing point of all curves in Fig. 6. The cross-
ing value is one of the universal properties, which deter-
mines the university class to which the model belongs. Due
to finite lattice size effects, the curves do not cross exactly at
the same point, but have their crossing points change system-
atically for small systems. For large systems, no systematic
variation is visible. By averaging the crossing points for L
10, we find that this crossing value is 0.472±0.002. This is
the same as that in the universality class of the rigid three-
dimensional Ising model.

TABLE I. Estimates for 1 /� obtained by finite size scaling of
the maximum slopes of the cumulant and the logarithmic deriva-
tives of �m+�2 and �m+�.

1 /�

U4 1.597±0.016

ln�m+� 1.607±0.006

ln�m+�2 1.603±0.015

FIG. 3. The order parameter distributions at the critical tempera-
ture. Also shown for comparison is the rigid 3D Ising universal
distribution �solid line� according to Ref. 6. The distributions have
been scaled to unit variance. Here, �m is the standard deviation of
the staggered magnetization m+. Error bars are smaller than the
symbol sizes except for L=18, where they are smaller than twice
the symbol sizes.

FIG. 4. Log-log plot of the maximum slopes of various thermo-
dynamic quantities used to determine �. The straight lines show the
nonlinear least-square fit of Eq. �16�. All data points agree within 1
standard deviation.
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We also estimate 	 /�=0.5034±0.0035 by scaling �m+�
at Kc. The estimate for the exponent 	 is then 	
=0.315±0.004, which is close to the consensus Monte Carlo
rigid Ising result, 0.3263±0.0006.5,6 The exponent � /�
is determined by the scaling behavior of the finite-lattice
susceptibility defined in Eq. �10�. The estimate is � /�
=2.027±0.0045, and the estimate for � is �=1.27±0.01,
which is also close to the rigid Ising result, �
=1.242±0.007.5,6

All of the above analyses yield consistent results, i.e., the
critical behavior is simple Ising-type.

IV. ELASTICITY IN THE MODEL

We have seen that the critical transition temperature is
quite different from that of the rigid model, but the phase
transition still appears to belong to the universality class of
rigid Ising model. Is this because the model is still too rigid
to see the asymptotic behavior? To answer this question, we
will assess the elasticity in our model in this section. How-
ever, this is a rather vague issue. The theory does not tell us
how much elasticity is sufficient to see the deviation from
Ising behavior. We have tried a number of approaches to
assess the elasticity in the model, but these have so far not
been able to produce a clear picture. Here, we will only show

the bond length distribution as an assessment of elasticity. In
Fig. 7, the bond length distributions are quite broad, with the
half-height-width being about 20% of the mean value, which
means our model is indeed very elastic. Figure 7 also shows
the uniformity of elasticity in the system, because the bond
length distribution of all sites and that of a single site agree
very well and almost overlap with each other. Nonetheless,
untangling the interplay between magnetic and elastic de-
grees of freedom remains a challenge.

V. CONCLUSION

We have investigated the phase diagram and critical be-
havior of an elastic antiferromagnetic Ising model with SW
potential. The simulations were performed at constant pres-

TABLE II. Estimates for Kc obtained by finite size scaling of
locations of the maximum slopes �except 
+, where the maximum
value is used� of various thermodynamic derivatives.

Kc

U4 3.204 50±0.000 64

ln�m+�2 3.204 11±0.000 36

ln�m+� 3.204 54±0.000 30


+ 3.204 53±0.000 32

�m� 3.204 52±0.000 50

FIG. 5. Size dependence of the finite-lattice critical temperature
estimated from various properties. Data are shown with standard
deviations. The solid lines are nonlinear least-square fits to Eq. �15�.

FIG. 6. The Binder cumulant crossing. The curves alternate in
solid and dashed lines for clarity. They are smooth because the data
points are reweighted from histograms, and can reach any resolu-
tion. Lattice sizes are shown on both ends of each curve.

FIG. 7. The bond length distribution �a�–�c� are normalized to-
gether so that their integrated areas reflect their relative concentra-
tions. Plot �d� is the distribution of all bonds, which is the sum of
�a�, �b�, and �c�. Plot �e� shows the bond length distribution of a
single site over time.
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sure in a semigrand-canonical ensemble. The phase transition
is found to be second order everywhere, which disagrees
with the theory. The reason might be that the theory is overly
simplified, or our lattice sizes are not large enough. Note that
it is expected that deviations from rigid behavior should be
much harder to detect than in the ferromagnetic case, where
the coupling between order parameter and elastic strain is
linear in the former, i.e., intrinsically much stronger than in
the present case, where it is quadratic in the order parameter.
By examining the critical exponents and the crossing point of
the Binder cumulant, we find that the transition appears to
belong to the universality class of the rigid, three-
dimensional Ising model, but the possibility of a very slow
crossover toward a first-order transition cannot be com-
pletely ruled out. If this happens, however, the lattice sizes
that will be required to see this behavior will be far larger
than those that are accessible using current computers and
algorithms. We then have the intriguing situation in which
either the theory is somehow incomplete, or much more
challenging simulations are needed.
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APPENDIX: THEORETICAL BACKGROUND: PHASE
TRANSITIONS IN ELASTIC ALLOYS FORMING

A SIMPLE SUPERSTRUCTURE

It is easy to see that the Hamiltonian can be cast in the
form

H = �
i�j

Jij��r�i��SiSj + �
i−j−k

Jijk��r�i��SiSjSk

− �
i

Hi��r�i��Si + H0��r�i�� . �A1�

We now assume that the interaction constants are chosen
such that the low-temperature phase of the system is an
ordered superstructure which can be described by a simple
decomposition into two sublattices, a and b. We define sub-
lattice magnetizations ma and mb via ma= �2/N��i�aSi and
mb= �2/N��i�bSi, as well as the total magnetization
m= �1/2��ma+mb�, and the antiferromagnetic order param-
eter, �= �1/2��ma−mb�. Here, N denotes the total number of
lattice sites. If the elastic degrees of freedom were absent
�i.e., if all Js were just constants which do not depend on the
atom coordinates�, then the system would exhibit a second-
order phase transition whose critical behavior falls into the
universality class of the three-dimensional Ising model �note
that the order parameter is one-dimensional�.

For the elastic distortions, we choose the ground state of
H0 as a reference state. Except for trivial translations and
rotations of the overall system, this specifies both the atomic
positions r�i

�0� and the size and shape of the overall system
uniquely. The displacement u� i of the ith atom, u� i=r�i−r�i

�0�,

can then be thought of as being composed of two contribu-
tions: First, the atom is displaced by a certain amount u� i

�0� but
the system is kept macroscopically fixed; second, the overall
system is subjected to a macroscopic strain described by a

strain tensor EJ �which we assume to be symmetric, in order
to eliminate trivial rotations�

r�i = �1J + EJ��r�i
�0� + u� i

�0�� , �A2�

or

u� i = u� i
�0� + EJr�i

�0�; �A3�

in the second equation, we have linearized with respect to

u� i
�0� and EJ, assuming that the elastic distortions are small. In

the disordered state, and in the vicinity of the phase transi-
tion, this is a reasonable assumption, since most of the local
�atomic� distortions will cancel out �and this holds even if we
confine ourselves to one sublattice only�.

In order to demonstrate that a first-order phase transition
is expected, we now switch to a field-theoretic description. In
essence, the discussion is nothing but an abbreviated outline
of the seminal paper by Larkin and Pikin.31,32 It should be
noted that the same result has also been obtained by other
authors,33–40 using slightly different formulations and/or the-
oretical approaches �in particular, the renormalization
group�.

First, we view the displacement as a continuous vector
field u��r��

u��r�� = EJr� + u�0�r�� , �A4�

and for the second part, for which the periodic boundary
conditions apply, we write the Fourier expansion

u��r�� = EJr� + �
k��0

�
�

ũ��k������k��exp�ik� · r�� . �A5�

Here, k� �0 are the reciprocal lattice vectors of the undis-
torted system, while �=0,1 ,2 is a polarization index: ��� are

orthogonal unit vectors ���� ·���=����, with ��0� k̂ �unit vector
in k� direction� denoting the longitudinal polarization.

Instead of H0, we now consider the Hamiltonian of linear
elasticity theory41 �as discussed, we assume weak distor-
tions�

Hel =� ddr�	K

2
e��e		 + �ē�	ē�	
 . �A6�

Here the integration runs over the volume of the �undis-
torted� system. K�0 and ��0 are bulk and shear modulus,
respectively �for simplicity, the cubic anisotropy of the crys-
tal is ignored�, while e�	 is the strain tensor

e�	 =
1

2
	 �u�

�r	

+
�u	

�r�

 , �A7�

and ē�	 its traceless part
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ē�	 = e�	 −
1

d
��	e��. �A8�

In these equations, � and 	 denote Cartesian indices �for
which we assume the Einstein summation convention�, and d

is the spatial dimension. For the macroscopic strain EJ we
introduce a similar decomposition into the trace �E���E0�
and traceless part Ē�	. It is now straightforward to express
Hel in terms of the phonon modes ũ��k�� and the macroscopic
strain. Denoting the system volume with V, one finds

Hel

V
=

K

2
E0

2 + �Ē�	Ē�	 +
1

2
K + 	2 −

2

d

���

k�
k2�ũ0�k���2

+
�

2 �
k�

�
�=1

d−1

k2�ũ��k���2. �A9�

The most important feature is the fact that the long-
wavelength longitudinal modes have a stiffness which is
larger than that of the macroscopic distortion. This results in
a singularity of the effective spin-spin interaction at k� =0,
and it is this peculiarity which governs the critical behavior.

Furthermore, we consider the system at frozen-in atomic
positions r�i=r�i

�0�. This is a standard antiferromagnetic Ising
model, for which we can write the field-theoretic Landau-
Ginzburg-Wilson Hamiltonian

HLGW =� ddr��R

2
����2 +

r

2
�2 +

u

4!
�4� . �A10�

Here, � is the order parameter. It should be noted that the
Hamiltonian must be strictly of even order in �, since the
transformation �→−� just corresponds to an exchange �or
relabeling� of sublattices, with respect to which it is of
course invariant. Geometrically, this is facilitated by a trans-
lation of the crystal such that the sublattices are mapped onto
each other. Using the Fourier expansion

��r�� = �
k�

�̃�k��exp�ik� · r�� = �0 + �
k��0

�̃�k��exp�ik� · r�� ,

�A11�

the Hamiltonian can be written as

HLGW

V
=

R

2 �
k�

k2��̃�k���2 +
r

2�
k�

��̃�k���2

+
u

4! �
k�1k�2k�3

�̃�k�1��̃�k�2��̃�k�3��̃�− k�1 − k�2 − k�3� .

�A12�

Finally, we study a coupling term between the order pa-
rameter and the phonons. Noting that it is not the displace-
ment field but rather the strain that describes the distortions
on a local scale, we seek an interaction term of lowest order
in the latter �weak distortions�. Furthermore, the coupling
should also be of lowest order in the order parameter �weak
deviations from the disordered phase�, and be compatible
with the symmetries of the system. This leads directly to

Hc = g� ddr���r��2e���r�� , �A13�

for the following reasons: The lowest order in � must be
quadratic, since the coupling must also obey the fundamental
symmetry �→−�. For the strain, the lowest order is linear.
Considering the invariance with respect to rotations �point
symmetry of the crystal�, one first notices that � behaves as
a scalar field. As the overall coupling must be a scalar, it
must have the form �2g�	e�	, where g�	 is a constant
second-rank tensor �a property of the undistorted disordered
crystal�. However, in the cubic system the only invariant
tensors are multiples of the unit tensor. Note that the sign of
g is not specified. Next, we introduce the variable ��r��
=��r��2, plus the corresponding Fourier expansion ��0 denot-
ing the k� =0 component of ��. In Fourier space we then have

Hc

V
= g�0E0 + ig�

k��0

k�̃�k���ũ0�k�� . �A14�

The further development is somewhat technical but rather
straightforward. Since the phonon modes ũ��k�� are Gaussian
degrees of freedom, they can be integrated out exactly �with
different behavior for longitudinal and transversal modes�.
This results in an effective Hamiltonian depending only on
the order parameter and the macroscopic strain. The treat-
ment of the latter depends on the ensemble: In our case, we

do not allow macroscopic shear �hence, we can set Ē�	=0�,
but volume fluctuations �which correspond to E0, a variable
which can hence be integrated out�. One thus obtains for our
case

Hef f

V
=

HLGW

V
−

1

2

g2

K
�0

2 −
1

2

g2

K + �2 − 2/d�� �
k��0

��̃�k���2.

�A15�

At this point, it is useful to introduce the constant

J =
g2

2
	 1

K
−

1

K + �2 − 2/d��
 � 0, �A16�

such that we can write

Hef f

V
=

HLGW

V
− J�0

2 −
1

2

g2

K + �2 − 2/d���
k�

��̃�k���2,

�A17�

where in the second term now all Fourier modes contribute.
However, since

V�
k�

��̃�k���2 =� ddr���r��2 =� ddr���r��4, �A18�

and we assume rather weak coupling, the second term can be
absorbed into a redefinition of the fourth-order coupling con-
stant u of HLGW. Furthermore
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�0 =
1

V
� ddr���r�� =

1

V
� ddr���r��2 = �

k�
��̃�k���2,

�A19�

such that the final effective Hamiltonian reads

Hef f

V
=

HLGW

V
− J	�

k�
��̃�k���2
2

. �A20�

The remaining fourth-order term is treated via a Hubbard-
Stratonovich transformation: With 	=1/T, we can write the
partition function �apart from irrelevant prefactors� as

Z =� D� exp�− 	HLGW�r� + 	JV	�
k�

��̃�k���2
2�
� �

−�

�

dx� D� exp�− 	HLGW�r� −
x2

4	JV
− x�

k�
��̃�k���2�

= �
−�

�

dx� D� exp�− 	HLGW	r +
2

	V
x
 −

x2

4	JV
�

= �
−�

�

dx exp�− 	Vf	r +
2

	V
x
 −

x2

4	VJ
�

� �
−�

�

dy exp�− 	Vf�y� −
	V

16J
�y − r�2� . �A21�

In these equations, we have �i� emphasized the dependence
of HLGW on the second-order coefficient r; �ii� made use of
the fact that the term quadratic in �̃ can be combined with
the second-order term of HLGW; �iii� integrated over the order
parameter field—f�r� denotes the �known� free-energy per
unit volume of the rigid Ising model described by
HLGW�r�—and �iv� introduced a variable transformation.
Since the remaining integral is just one-dimensional, it is, in
the thermodynamic limit V→�, rigorously correct to replace
the integration by just maximizing the argument of the expo-
nential

f�y� +
1

16J
�y − r�2=

!

Min, �A22�

or

df

dy
=

1

8J
�r − y� . �A23�

The critical point of the rigid Ising model occurs at some
value y=rc, in the vicinity of which the free energy has the
leading-order form

f�y� = �− A+�y − rc�2−�, y � rc

− A−�y − rc�2−�, y � rc.
� �A24�

Here, A+�0, A−�0 are critical amplitudes. Nothing that �
�0 in the three-dimensional Ising universality class, one
thus finds that the graphical solutions of Eq. �A23� look ge-
nerically as plotted in Fig. 8 �where, however, the “clarity”
of the behavior is exaggerated—in order to make the devia-

tion of df /dy from a straight line clearly visible, we had to
increase the value of � substantially�. The system is driven
through the transition by varying the parameter r, which cor-
responds to shifting the straight line up and down. One
clearly sees typical first-order behavior, where the system
jumps from one stable solution to another one. Furthermore,
one notes that upon increasing the coupling between compo-
sitional and translational degrees of freedom, J increases and
the straight line becomes flatter. Correspondingly, the first-
order jump increases, too. In the limit of vanishing coupling,
one obtains an infinite slope, and only one solution, corre-
sponding to the second-order phase transition of the rigid
model.

A few final remarks are in order. First, it should be no-
ticed that the present approach can easily be applied to other
cases. In the constant-volume ensemble, one has to take into
account that the variable E0 is not to be integrated over but
rather is a constant. This leads to an effective Hamiltonian of
just the same form as Eq. �A20�, however with a negative
coupling J. Analytically continuing Eq. �A23� yields a simi-
lar plot, just with the slope of the straight line reversed. One
sees that in this case only one solution occurs �second-order
transition�. Furthermore, in the vicinity of the critical point
this yields a nonlinear relationship between the “external”
temperature r and the “intrinsic” temperature y correspond-
ing to the rigid model, �y−rc�1−�� �r−rc�—in other words,
one expects Fisher-renormalized critical exponents.42

Similarly, one can also treat the case of an elastic alloy
with no tendency to superstructure formation, e.g., the Si-
Ge system studied in Ref. 9. Here, there is no intrinsic sym-
metry �→−�, and hence the coupling term is linear in �.
Using the same formalism as above, one can show �for the
case of constant pressure� rather easily that the system ex-
hibits a mean-field-like second-order transition at a tempera-
ture above the critical point of HLGW. Another way to see this
is to directly assume that the strain is the primary order
parameter—because of bilinear coupling it should not matter
if one considers the strain in response to a given order pa-
rameter field, as done here, or vice versa. Therefore, the sys-
tem can be directly identified with one case, the so-called

FIG. 8. Graphical solution of Eq. �A23�. The numbers at the
figure axes are arbitrary. Note also that the value of the exponent �
was increased to �=0.4 for better visibility of the plot.
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“type-zero” transition, of Cowley’s classification scheme43 of
structural phase transitions in solids. For type zero, mean-
field behavior is predicted. Related systems �with identical
theoretical predictions� are hydrogen in metals,44 and col-
lapsing polymer networks.45 In contrast to the present case,
the predicted behavior was not difficult to observe in a
simulation.9

Another important point to discuss is the neglect of cubic
anisotropy in the elastic Hamiltonian. This case has been
treated in Refs. 38–40 with renormalization group methods.
For constant pressure, the prediction remains first order,
while for constant volume the predicted behavior is some-
what more complicated �we refer the reader to the original
literature�.
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