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It is demonstrated that in the diffusive superconductor-ferromagnet-superconductor �S/F/S� junctions the
current-phase relation is practically sinusoidal everywhere except in a narrow region near the 0–� transition.
In this region the second harmonic dominates the scenario of the 0–� transition. We predict a first-order
transition for the S/F/S junctions with a homogeneous F barrier. However, in real junctions a small modulation
of the thickness of the barrier may favor the continuous 0–� transition and the realization of the Josephson
junction with an arbitrary ground-state phase difference. The performed calculations of the second-harmonic
amplitude provide a natural explanation of the recent contradictory results on the second-harmonic
measurements.
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In usual Josephson junctions �JJs� at equilibrium the
phase difference of the superconducting order parameter on
the two banks is zero.1 However, the situation may be dras-
tically different for JJs with a ferromagnetic interlayer �S/F/S
junctions�, where for some intervals of the exchange field h
and F-layer thickness d, the ground state corresponds to the
phase difference equal to � �“� junctions”�.2,3 This phenom-
enon is related to the damping oscillatory behavior of the
Cooper pair wave function in a ferromagnet �for more refer-
ences and reviews, see Refs. 4 and 5�. Experimental evidence
of a 0–� transition in S/F/S �Nb–CuxNi1−x–Nb� JJs was
obtained by Ryazanov et al.6 from the measurements of the
temperature dependence of the critical current. The 0–�
transition was signaled by the vanishing of the critical cur-
rent with the temperature decrease. Such a behavior is ob-
served for a F-layer thickness d close to some critical value
dc. In fact, it simply means that the critical thickness dc
slightly depends on the temperature. The temperature varia-
tion serves as a fine tuning and permits to study this transi-
tion in detail. Recently, thorough measurements of the criti-
cal current were performed in Nb–CuxNi1−x–Nb junctions
with x=0.53 and d�22 nm �Ref. 7�, and in similar junctions
with smaller x=0.48 and d�17 nm �Ref. 8�. The results
were contradictory, since the critical current at 0–� transi-
tion in Ref. 7, was zero, while in experiments8 a small criti-
cal current was observed.

In this paper we elaborate a theory describing how the 0
state is transformed into the � state. It is demonstrated that
the critical current of the S/F/S JJs does not vanish at the
transition and is determined by the second-harmonic term in
the current-phase relation. This second-harmonic contribu-
tion decreases extremely strongly with the increase of the
thickness of the F layer and its exchange field. The corre-
sponding estimate for the critical current at the 0–� transi-
tion in experiments7 gives the value well below the experi-
mental resolution. On the other hand, for the parameters of
S/F/S junctions in Ref. 8, the calculated amplitude of the
second harmonic is close to the experimentally measured
value. The 0–� transition is discontinuous for junctions with
a homogeneous ferromagnetic barrier. In real S/F/S junctions
the modulation of the F-layer thickness may provide a con-
tribution to the second harmonic with the opposite sign.9,10 If
this mechanism prevails then the 0–� transition would be
continuous. This means that by varying the JJ parameters

�e.g., temperature� it is possible to obtain the S/F/S junction
with an arbitrary ground-state phase difference. We also
briefly discuss the thermodynamics of the 0–� transition.
Note that previously the current-phase relations in S/F/S
junctions were calculated numerically in Ref. 11 and analyti-
cally for several special types of the composite SF-FS junc-
tions and short S/F/S junctions in Refs. 5 and 12. However,
the theoretical approach to treat analytically the diffusive
S/F/S junction with the 0–� transition �most relevant to the
experiment� was lacking.

The current-phase relation for JJs is sinusoidal only near
the critical temperature Tc �Ref. 1�,

j��� = I1 sin � . �1�
At low temperature, the higher harmonic terms become more
and more important. The calculations of the current-phase
relations of the S/F/S junctions in a clean limit indeed reveal
strongly nonsinusoidal j��� dependences at low tempera-
tures.2,13,14 However, in the experiments7,8 the ferromagnetic
alloys are used as a F layer, and the dirty limit is more
appropriate for the description of this case. In such a limit in
a normal JJ, if the length d of the weak link exceeds the
characteristic length �1 of the decay of the Cooper pair wave
function, the critical current is small jc�exp�−d /�1� and
j��� is practically sinusoidal.5 We demonstrate that the
second-harmonic contribution is very small �exp�−2d /�1�.
Usually the role of the second harmonic is negligible and
hardly observable. However, in S/F/S junctions the first har-
monic vanishes at the 0–� transition and the situation occurs
to be very different—the contribution of the second har-
monic becomes predominant.

The general current-phase relation
j��� = I1 sin � + I2 sin 2� �2�

corresponds to the following phase-dependent contribution
to energy of the JJ:

EJ��� =
�0

2�c
�− I1 cos � −

I2

2
cos 2�� . �3�

If we neglect the second-harmonic term, then the 0 state
occurs for I1�0. Near a 0–� transition I1→0 and the
second-harmonic term becomes important. The critical cur-
rent at the transition jc= �I2� and if I2�0, the minimum en-
ergy always occurs at �=0 or �=� �Fig. 1�. In the opposite
case �I2�0� the transition from 0 to � state is continuous
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and there is a region where the equilibrium phase difference
takes any value 0����. The characteristics of such a “�
junction” are very peculiar.9

To describe the properties of the S/F/S junction in the
diffusive limit we use the Usadel equations.15 Recent
studies16,17 revealed a very strong variation of jc with the
F-layer thickness, which implies strong magnetic scattering
effects.18 Assuming the presence of the relatively strong
uniaxial magnetic anisotropy in a F layer we may neglect the
magnetic scattering in the plane perpendicular to the aniso-
tropy axes �which mixes the spin-up and -down Green’s
functions� and the Usadel equation for the normal G�x ,� ,h�
and anomalous F�x ,� ,h� Green’s functions in the F layer is
�see, for example, Ref. 4�

−
Df

2
�G�x,�,h�

�2

�x2F�x,�,h� − F�x,�,h�
�2

�x2G�x,�,h��
+ �� + ih +

G�x,�,h�
	s

�F�x,�,h� = 0, �4�

where the x axis is perpendicular to the junction plane and
the F layer corresponds to −d /2�x�d /2, Df is the diffusion
constant in the F layer, and 	s is the magnetic scattering time.
In the spatially uniform case, Eq. �4� is equivalent to the one
from the Abrikosov-Gorkov theory.19 Equation �4� must be
completed by the boundary conditions at the S/F interface.20

Below we consider two limiting cases: transparent interfaces
and large interface barriers. Moreover, assuming the normal-
state conductivity 
 f of the F layer small compared to that of
the S layers, 
s�
 f, we may neglect the influence of the F
layer on the S layer, i.e., the Green’s functions in the left S
layer are Fs���=�ei�/2 /
, Gs���=sgn���� /
, where 

=	�2+ ���2 �for the right S layer �→−��.

For transparent interfaces, the boundary conditions20 ex-
press the continuity of the Green’s functions. At T=Tc the
equation for F�x ,� ,h� is linear and may be easily solved.4

Just below Tc the nonlinear corrections in �4� are small and
we may apply the method similar to that, used in the problem
of the nonlinear oscillator.21 After some calculations we have

F�x,�� = a cosh�k1x� + b sinh�k2x� +
b2 − a2

32k2 � 1

Df	s
+

3

2
k2�

�
a cosh�3kx� + b sinh�3kx�� , �5�

where the complex wave vectors k1 and k2 are determined by
the relations

k1
2 − k2 =

k2�5b2 − a2�
8

−
�3a2 + b2�

4Df	s
,

k2
2 − k2 =

k2�5a2 − b2�
8

−
�3b2 + a2�

4Df	s
.

The nonlinear effects make k1 and k2 different from the wave
vector k2�� ,h�=2
�+ ih+sgn��� /	s� /Df in the solution of
the linear equation. The coefficients a and b are determined
from the boundary conditions and the current-phase relation
may be then directly obtained from the formula for the
supercurrent.15

In the limit h�Tc and in the absence of magnetic scatter-
ing the Cooper pair wave function in ferromagnet decays
and oscillates at the same characteristic length � f =	h /Df
�Ref. 22�. The magnetic scattering leads to the decrease of

the decaying length �1=� f /
	�+	1+�2 and to an increase of

the oscillating length �2=� f /
		1+�2−�, where the dimen-

sionless parameter �=1/ �h	s�. Note that the product �1�2

=� f
2 is a constant and independent of �. If the F-layer thick-

ness d��1 the expression for the first harmonic reads

I1 = j0
�2�1 + �2�1/4

2	2Tc
2

exp�− d/�1��sin�d/�2 + ��

−
��2

96T2�1 + �2�1/2 sin�d/�2 − ��� , �6�

where j0=4�TceSN�0�Df /� f, the angle � /4���� /2 is de-
termined by the relation tan �=�+	1+�2, S is the area of
the cross section of the junction, and N�0� is the electron
density of state per one spin projection. The amplitude of the
first harmonic �6� reveals an oscillatory decay as a function
of the F-layer thickness. The sign change of I1 signals the
0–� transition. At T→Tc the critical thickness separating 0
and � phases is dc

n�Tc�= ��n−���2, which decrease with the
decreases with temperature

dc
n�T� = dc

n�Tc� −
�2��2

96Tc
2�1 + �2�

. �7�

The second-harmonic term is much smaller,

I2 = − j0
�4

96Tc
4 exp�− 2d/�1���d/� f�sin�2d/�2�

+
5 sin�2d/�2 + �� + 3 sin�2d/�2 − 3��

4	2 sin�2��
� , �8�

and compared with I1 it contains, in addition to the factor
�2 /Tc

2, an exponentially small term exp�−d /�1�. The ampli-
tude of I2�d� also reveals the oscillatorylike dependence

FIG. 1. Schematic plot of the phase-dependent JJ’s energy. The
case I2�0 corresponds to the discontinuous 0–� transition while
for I2�0 the minimum energy is reached at 0����.
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similar to I1�d� but with the decaying and oscillating lengths
two times smaller. It may be directly verified that at the 0–�
transition �i.e., when d=dc

n� I2 is always positive.
Now let us consider the limit of large S/F interface barri-

ers which are characterized by the parameter �B, related to
the S/F boundary resistance per unit area Rb by �B=Rb
 f. In
this case the boundary condition reads �B��F /�x�x=d/2=Fs�x
=d /2�Gf

2�x=d /2�.20 Performing a similar analysis as in the
perfect transparency case ��B=0� we obtain in the limit d
��1,

I1 = j0� � f

2�B
�2 �2

Tc
2	2�1 + �2�1/2

exp�− d/�1�sin�� − d/�2� . �9�

The second-harmonic term at ��1 is of the order I2
� j0�� f /�B�4 exp�−2d /�1� and also oscillates �with a period
��2, which is two times smaller than that of I1�, and similar
to the transparent interface case is positive at the 0–� tran-
sition.

For small ��1, the first 0–� transition occurs at the
F-layer thickness smaller than � f �Ref. 22�. In the considered
case �assuming h ,	s

−1�T� the first 0–� transition occurs at
d=dc

0=� f
	3� and

I1 = j0� � f

2�B
�2 �2

2Tc
2

dc
0 − d

� f
. �10�

The second-harmonic term at the 0–� transition is also posi-
tive and I2� j0�� f /�B�4��4 /Tc

4	��. The formulas �9� and �10�
are written for T�Tc but the corresponding analysis is easily
generalized for all temperatures. Besides the change of nu-
merical coefficients the expressions for I1 and I2 remain the
same.

Now we demonstrate how the obtained results permit to
understand the controversy in the experimental search of the
second harmonic.7,8 From the thickness dependence of the
critical current in the series of Nb–Cu0.47Ni0.53–Nb junc-
tions17,18 we may estimate �1�1.4 nm and �2�4.1 nm. This
gives � f �2.4 nm, the magnetic scattering parameter �
�1.3 and the exchange field h�600 K. In the experiments7

the current-phase relation was measured near the second
0–� transition at d�22 nm 
the first transition occurs at d
�11 nm �Ref. 18��. Therefore we may roughly estimate
I2 / I1�0.1 exp�−d /�1��10−8, which gives a very small val-
ue for I2�10−11 A, well below the experimental threshold.
On the other hand, the corresponding estimate for the first
0–� transition at d�11 nm is much more favorable for I2
observation: I2 / I1�10−4, and I2�10−6 A. Therefore, it
would be interesting to perform similar measurements on the
junctions revealing temperature mediated first 0–� transi-
tion.

In similar junctions, but with smaller Ni concentration x
=0.48, the second harmonic at the 0–� transition was re-
ported for the F-layer thickness d�17 nm at 1.1 K.8 This is
the first �as a function of d� 0–� transition. For junctions
with x=0.48 �Ref. 16� we may roughly estimate �1�4 nm,
�2�9 nm, the magnetic scattering parameter ��0.9, � f
�6 nm, and h�100 K. Extrapolating the expressions �6�
and �8� for low temperature we have for the ratio I2 / I1
�0.1 exp�−d /�1��10−3, which is close to the observed
value 3�10−3.8 On the other hand, for the F-layer thickness

d�19 nm the 0–� transition occurs at the temperature
5.3 K and the second harmonic was too small to be ob-
served. Smaller � /T ratio and larger F-layer thickness makes
this case less favorable for the second-harmonic observation.

We have demonstrated the presence of a small intrinsic
second harmonic at the 0–� transition in S/F/S junctions
with a uniform barrier. However, there is another mechanism
of the negative second-harmonic generation due to the inho-
mogeneity of the F-layer thickness.9 Indeed the roughness of
the F layer in the real S/F/S junctions7,16,17 is of the order of
1 nm. This means that if the characteristic length �l of the
thickness variation �along the contact surface� is larger than
d, the critical current will vary locally too. On the other
hand, if �l is much smaller than the Josephson length �J,
which for the current density 106 A/m2 �Ref. 17� is of the
order of the junction dimension �50�50 �m2 in Ref. 17�,
the measured characteristics of the junction will be effec-
tively averaged. At the 0–� transition we deal with a system
where the local current density is alternating ±I1 and I1=0.
The resulting local phase variation leads to the appearance of
the negative second harmonic in the averaged current-phase
relation �Refs. 10 and 9� I2�−�I1���l /�J�2, where �J is the
Josephson length corresponding to the current density I1. The
1-nm roughness of the F layer in the experiments8,16 permits
to estimate for d�17 nm the value �I1��5�106 A/m2 and
�J��10–100� �m. At the present time there is no informa-
tion about the characteristic length �l of thickness variation
in the studied S/F/S junctions. Taking it as 1 �m for the
10�10 �m2 junction16,8 we have I2�−5�102–104� A/m2

while the experimentally observed value is �3�104 A/m2

and the sign of j2 is unknown.
Let us now briefly discuss the thermodynamics of the

0–� transition. Near the transition temperature T�, the am-
plitude of the first harmonic I1 may be considered as a linear
function of T, i.e., I1=��T−T��, while the second-harmonic
term as a temperature independent. The phase-dependent
contribution to the free energy of junction �3� being EJ���
=�0 /2�c
−��T−T��cos �− �I2 /2�cos 2��. For I2�0 the
transition occurs to be I order and at T�T� �0 phase� �F0
=−��0 /2�c���T−T��, while at T�T�, in the � phase �F�

=−��0 /2�c���T�−T�. Therefore the latent heat of the tran-
sition is q= ��0 /�c��T�. Taking the parameters of the S/F/S
junctions,8,16 we may estimate �T��10−4 A and then q
�3�10−20 J. The S/F/S junctions studied in Ref. 18 with
the 0–� transition at d�11 nm reveal the parameter �T�

and consequently latent heat, which must be two orders of
magnitude larger.

In the case I2�0 the 0–� transition is continuous and in
the interval −�I2�� I1� �I2� the equilibrium phase difference
is determined by cos �=��T−T�� / �I2�. The specific heat of
this �− phase is �C= ��0 /2�c�T��2 /2�I2��. Therefore we
may expect on experiment an increase of the specific heat by
�C in the narrow temperature region T�−��I2��T�T�

+��I2�. If we suppose that the 0–� transition observed in
Ref. 8 is continuous, we may estimate �C in the � phase.
Taking the experimental value of I2�3 �A we have �C
�10−18 J /K=aJ/K. The recent precise measurements of the
specific heat of the superconducting microrings23 demon-
strated the possibility to register a specific-heat variation of
the order of 0.1 aJ/K per ring.
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It may be easily verified that �independently on the sign of
I2 and then on the scenario of the transition� the critical cur-
rent varies near the transition temperature ��I1�� �I2�� as
Ic�T�= �I2��1+��T−T�� /	2�I2��. The temperature dependence
is linear and the slope dIc /dT near T� is 1 /	2 times smaller
than that far way from T�.

At T=T� the current-phase relation is j���= I2 sin 2� and
then the ac Josephson effect would imply the frequencies
two times larger �→2�=2
�2e / � �V�. Note that this cir-
cumstance was responsible for the observation of the half-
integer Shapiro steps at 0–� transition in experiments8 and
provided an additional proof of the nonzero critical current at
T=T�. The superconducting quantum interference device
�SQUID� with such junctions would have the periodicity
�0 /2 on the magnetic flux.

The structure of the soliton �Josephson vortex� is rather
peculiar for the long �along the y-axis� junction near a 0–�
transition. For I2�0, the phase distribution is determined by
the following equation:

d2�

dy2 =
1

�J0
2 �� sin � + sin 2�� , �11�

where �J0
−2=c�0S / �8�2t�I2��, �= I1 / I2, and t is the effective

junction thickness. The soliton-type solution is

� = arccos�1 −
2�1 + ��

1 + � cosh2�	1 + �y/�J0�
� . �12�

The variation of the shape of the soliton is presented in Fig.
2. Approaching the transition the central part of the soliton
with ��� grows and finally at I1=0 the system has two
degenerate ground states �=0 and �=�. If I2�0, the �
junction is realized in the interval −�I2�� I1� �I2�. The S/F
junctions near the temperature T=T� could provide an excel-
lent possibility to study the unusual properties9,10 of these
junctions.

In summary, we present an analytical solution of the prob-
lem of the second-harmonic contribution to the current-phase
relation of the S/F/S JJs in a diffusive limit in the presence of

uniaxial magnetic scattering. Note that very recently the case
of the isotropic magnetic scattering has been studied numeri-
cally in Ref. 24 with qualitatively similar results. An impor-
tant conclusion of our work is that the 0–� transition is
discontinuous for the S/F/S JJs with a homogeneous
F-barrier but may be continuous in real junctions with modu-
lated F-layer thickness. In the latter case a very special �
junction exists in the transition region. The modern micro-
calorimetric technique could be used for the experimental
study of the thermodynamics of the 0–� transition and de-
termines its type.
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FIG. 2. The change of the form of the Josephson vortex at the
discontinuous 0–� transition. The parameter �= I1 / I2 vanishes at
the transition.
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