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Threshold behavior of bosonic two-dimensional few-body systems
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Bosonic two-dimensional self-bound clusters consisting of N atoms interacting through additive van der
Waals potentials become unbound at a critical mass m,iN) ] m,iN) has been predicted to be independent of the size
of the system. Furthermore, it has been predicted that the ground state energy Ey of the N-atom system varies
exponentially as the atomic mass approaches m.. This paper reports accurate numerical many-body calcula-
tions that allow these predictions to be tested. We confirm the existence of a universal critical mass m-, and

show that the near-threshold behavior can only be described properly if a previously neglected term is in-

cluded. We comment on the universality of the energy ratio Ey,,/Ey near threshold.
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I. INTRODUCTION

Restricting the motion of particles to one or two dimen-
sions can lead to properties that differ dramatically from
those in three dimensions. The most prominent two-
dimensional (2D) system is the surface of bulk matter. An-
other example are one- or two-atom layer thin films, e.g.,
atomic or molecular hydrogen films,"? grown on substrates.
Neglecting the adatom-substrate interaction, many properties
of such systems can be understood within a truly 2D frame-
work. In addition to homogeneous 2D systems, it is interest-
ing to consider 2D clusters (see, e.g., Refs. 3 and 4). What
happens when a finite number of atoms is restricted to 2D
space? Inhomogeneous 2D systems can potentially be stud-
ied by placing a few atoms on the surface of a substrate or by
confining atoms by external potentials. Effectively 2D atom
traps have been realized recently;> extension to optical lat-
tices with only a few atoms per lattice site is possible with
today’s technology. These systems are particularly interest-
ing since Feshbach resonances allow the interaction strengths
to be tuned through application of magnetic fields.

Bosonic 2D systems interacting through short-range two-
body potentials that support one zero angular momentum
bound state are predicted to exhibit intriguing universal, that
is, model-independent, behaviors.””'® (i) 2D clusters with N
particles”!%12 are predicted to become unbound when the
mass m reaches a critical value miN).7 This critical mass is
predicted to be universal, i.e., miN)=m*,10 and to be the same
for the corresponding homogeneous system.®!° (ii) For a
given system size, the ground state energies E) near thresh-
old are predicted to change exponentially as the atomic mass
m decreases.”!" Similarly, for a given atomic mass, the
ground state energies near threshold are predicted to change
exponentially with varying system size.!” (iii) The ratio be-
tween the ground state energies of a 2D system with N+1
atoms and those of a system with N atoms reaches, in the
limit of zero-range interactions, a constant. This constant has
been determined analytically for small 2D systems: E3§/E§s
=16.52 (Refs. 9 and 16) and E5/E5=11.94."8 For large sys-
tems, the ratio Eg,,/Ej has been predicted to approach
8.57.17 These predictions should apply to systems interacting
through short-range potentials if |Ey| <#>/(mr?), where r,
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denotes the maximum of the characteristic length of the two-
body potential [in our case, the van der Waals length
Fyaw > Fvaw=(mCq/h?)1*, where C, denotes the leading van
der Waals coefficient] and the absolute value of the effective
range .

This paper reports the energetics of self-bound inhomoge-
neous 2D systems near threshold, and tests under which con-
ditions predictions (i) to (iii) apply. To this end we perform
numerical many-body calculations, which supersede earlier
variational calculations'®"" and cover a wider parameter
range. For N=2 and 3 we determine the ground state energy
using basis set expansion-type calculations. Since these tech-
niques become untractable for larger systems, we resort to
Monte Carlo techniques for N>3. We show that a proper
description of the ground state energies for small clusters
with N=2-5 atoms near threshold requires, in addition to a
term proportional to (m-m™), a term proportional to (m
—mka))z. For larger droplets with N=6 and 7 atoms we only
include the linear term; our diffusion Monte Carlo (DMC)
energies do not allow the term proportional to (m—mka))2 to
be determined. We speculate that DMC energies covering a
larger mass range (see below) would show that near thresh-
old the quadratic term is non-negligible for systems with N
=6. Our study confirms the existence of a universal critical
mass m-.'? This critical mass depends on the two-body po-
tential but appears to be universal for bosonic N-particle sys-
tems interacting additively through a given two-body poten-
tial. Finally, we investigate the ratio between the total ground
state energy of 2D systems with N+1 and N particles. Our
results are consistent with predictions based on zero-range
treatments®!%-'® but do not conclusively confirm them for
N>3. We comment on the relevance of the energy scale
associated with the effective range.

II. THEORETICAL BACKGROUND AND RESULTS

Consider the Hamiltonian H for N particles with mass m
s N N
H=—_EV,~2+EV(’3’;), (1)
2mZ i<j !

where Vi2 denotes the 2D Laplace operator of the ith particle,
r;; the distance between atom i and j, and V the atom-atom
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potential. We use the realistic helium-helium potential with-
out retardation developed by Korona er al.?® (in the follow-
ing referred to as the KORONA potential) as well as a
Lenard-Jones (LJ) potential with parameters € and o chosen
to approximate the helium dimer interaction, i.e., €
=10.22 K and 0=2.56 A.2' Both these two-body potentials
support a single two-body bound state with vanishing angu-
lar momentum. In the following, we calculate the lowest
energy with vanishing angular momentum of the many-body
system. We first treat “true” bosonic helium systems in 2D,
i.e., we choose m=my, (here and in the following, He de-
notes the isotope “He). To explore the threshold regime, we
then successively reduce the atomic mass while leaving the
interaction potential unchanged.

To start with, we solve the scaled radial Schrodinger
equation for two atoms by diagonalizing the Hamiltonian
using B splines. For each mass, the adaptive grid and box-
size are optimized.”> When we vary the atomic mass from
m/my.=1 to 0.692, the two-body binding energy E, for the
KORONA potential changes by nearly ten orders of magni-
tude from E,=-0.041 K to E,=-8.6X 1072 K. The total
ground state energies Ey for a given N near threshold, scaled
by the atom mass m, are predicted to vary exponentially as a
function of m’

* \i |1
mEy o« expy — EaEN)<ﬂ_m* ) . (2)
i=1 Mye Mye
Here, miN) denotes the critical mass at which the N-body
system becomes unbound, and afN) parameters specific to the
N particle system. The mass m is directly proportional to the
coupling strength K and inversely proportional to the quan-
tum parameter 7, which have been used previously to char-
acterize LJ systems (see Ref. 21). The functional form in Eq.
(2) has been derived by Taylor expanding the logarithmic
derivative of the bound state wave function for small total

ground state energies about (m(*N)—m).7 Previous treatments

neglected terms proportional to (m™ —m)’ with i> 1. To test
whether this is justified, symbols in Fig. 1 show the quantity
—1/In(m|E,|/my.€), where € denotes the well depth of the
KORONA and LJ potentials, respectively, as a function of
m/my,. (e=11.06 K for the KORONA potential and 10.22 K
for the LJ potential). Diamonds show the ground state ener-
gies for the dimer interacting through the KORONA poten-
tial, and asterisks those for the dimer interacting through the
LJ potential. Figure 1 shows clear deviations from a linear
behavior, indicating that the term proportional to (m-m'?)?
cannot be neglected for N=2. Earlier studies'®!? did not see
deviations from the linear behavior possibly because the total
ground state energies were (i) varied over a smaller range,
and (ii) determined variationally. The qualitative behavior of
the energies calculated using the KORONA and LJ potentials
is similar, which implies that the nonlinear behavior cannot
be attributed to the difference in the long-range parametriza-
tion of the two two-body potentials [the LJ potential is for
large r proportional to r~%, while the KORONA potential
contains additional terms proportional to r~/, where j=8
—16 (j even)].
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FIG. 1. Scaled ground state energies —1/In(m|E,|/mye€) for two
2D particles interacting through the KORONA potential (diamonds)
and through a simple LJ potential (asterisks) as a function of
m/mye. Solid lines show fits, which treat msz), a(lz), and a(zz) as
parameters. Vertical solid lines indicate the mass ratio miz)/ My at
which the fit predicts the dimer to become unbound. The dotted line
shows EJ, Eq. (3), for the dimer interacting through the KORONA
potential. The inset shows the ratios between the energies Eg and E,
(solid line), and between rg and ag, (dashed line) for two particles
interacting through the KORONA potential as a function of m/myy.

Solid lines in Fig. 1 show fits of our scaled numerical
two-body ground state energies to Eq. (2), treating m?, a<12),
and a;z) as fitting parameters and setting al@ with i>2 to
zero. The fits predict that the two-body system interacting
through the KORONA potential becomes unbound at miz)
=0.636(3)my, and that interacting through the LJ potential at
miz):0.657(3)mHe. The numbers in brackets denote the un-
certainties of the fit, which are obtained by including a vary-
ing number of data points in the fit. Table I lists the fitting
parameters mff), a(z), and a;z) and their uncertainties. The
critical masses mf]) for both interaction potentials are indi-
cated in Fig. 1 by vertical solid lines.

It is interesting to ask how well effective range theory
describes the near-threshold behavior of the 2D dimer. For a
zero-range potential, the ground state energy Ef is deter-
mined by the 2D scattering length a,. (see, e.g., Ref. 16)

TABLE I. Fitting parameters for 2D clusters interacting through
the Lenard-Jones potential (for N=2 only) and through the
KORONA potential (N=2-7), respectively. We treat three fitting
parameters for N=2-5, and two fitting parameters for N=6—7. The
numbers in brackets give the uncertainties of the fitting parameters,
which are obtained by including a varying number of data points in
the fit.

N miN) a(lN) a(zN)
LJ 2 0.657(3) 0.66(2) —-0.53(6)
KORONA 2 0.636(3) 0.63(2) —-0.55(6)
3 0.637(8) 0.86(5) -0.53(14)
4 0.62(2) 0.89(8) -0.25(12)
5 0.62(2) 1.06(10) —-0.26(20)
6 0.62(3) 1.14(10)
7 0.63(2) 1.30(7)
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h2
Ef: - —54exp(-20), (3)

sC

where C denotes Euler’s constant, C=0.5772. Our definition
of the scattering length a . follows that adopted by Verhaar et
al.,” that is, the scattering wave function goes through zero
at r=a,. In the following we restrict ourselves to dimers
interacting through the KORONA potential. The scattering
length a,., which we determine numerically, varies from 77.8
A for the 2D helium dimer to about 5.7 X 10° A for the most
weakly bound dimer considered with m=0.692my,. A dotted
line in Fig. 1 shows EJ, Eq. (3), using scaled dimensionless
units. Near threshold, Eg nearly coincides with the numeri-
cally determined energy E, (diamonds). At larger m, how-
ever, discrepancies are visible. To quantify these discrepan-
cies, a solid line in the inset of Fig. 1 shows the energy ratio
Eg/Ez, which varies from essentially 1 to 0.8 for the atomic
masses considered. Near threshold, the ground state energy
E, can be described to a very good approximation through a
single atomic physics parameter, i.e., the two-body scattering
length a,.; the importance of effective range corrections,
however, increases with increasing mass.

To account for a nonvanishing effective range, the right-

hand side of Eq. (3) has to be multiplied by
expl|E,|mrl;/ (41%)].%2* The effective range 7y
#? ( ma?, exp(2C)
=2 \/ In{ |Ey| == , 4
Feff |E2|m | 2| ﬁ2 4 ( )

can hence be evaluated if the scattering length a,. and the
binding energy E, are known. For the dimers under study, 7
changes from 60 A for m/my.=1 to 4900 A for m
=0.696myy.. For smaller masses the numerical accuracy of E,
and ay. is not sufficient to reliably determine r. from Eq.
(4). A dashed line in the inset of Fig. 1 shows the ratio
between r. and ag. Since the effective range r.g increases
with decreasing atomic mass, the energy scale associated
with the effective range rg, A2/ (mr’;),%> decreases with de-
creasing m (see below).

We now turn to the study of 2D trimers interacting addi-
tively through the KORONA potential. Since the potential
energy depends on relative coordinates only, we can separate
off the center of mass motion. Restricting ourselves to states
with vanishing total angular momentum reduces the number
of degrees of freedom to three. The 2D Schrodinger equation
can then be rewritten in terms of three hyperspherical coor-
dinates. Here, we employ the Whitten-Smith democratic co-
ordinates R,d, and ¢.2° We determine the solution to the
Schrodinger equation by first calculating a set of angular-
dependent channel functions and then solving a set of
coupled hyperradial equations. Since our B-spline implemen-
tation closely follows that used in Ref. 27 for 3D trimers, we
do not discuss it in detail here. We note, however, that the
grandangular momentum operator in 2D differs from that in
3D (see, e.g., Ref. 28) and that the range of the angular
coordinate ¥ changes from [0, 7/4] in 3D to [-7/4,7/4] in
2D.?82% We include up to 12 channels in our calculations and
estimate the uncertainty of the ground state energy Ej,
which, in addition to the number of channels included in the
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FIG. 2. (a) Symbols show the total ground state energies Ey for
N=2 (pluses), N=3 (asterisks), N=4 (diamonds), N=5 (triangles),
N=6 (squares), and N=7 (crosses) on a logarithmic scale as a func-
tion of m/my, for the KORONA potential. Dotted lines connect
data points for fixed N to guide the eye. The upper solid and dashed
lines show ﬁz/(mrg) for r,=re and r,=r.qw, respectively. The
lower solid and dashed lines show 0.142/ (mrg) for r,=r; and r,
=ryqw- respectively. A vertical solid line indicates the mass ratio
miz)/ mye=0.636, at which our fits predict the 2D dimer to become
unbound; the critical masses for the larger systems nearly coincide
with that for the dimer. (b) Scaled total ground state energies
~1/In(m|Ey|/my.€) as a function of m/my, using the same symbols

as in (a). Solid lines show fits (treating miN), a(}N), and a(zN) as pa-
rameters for N=2-5, and treating miN) and a(lN as parameters for

N=6-7).

expansion, depends on the angular and radial grids employed
and on the step size AR used to calculate the coupling matrix
elements,?’ to be at the few percent level.

Asterisks in Fig. 2(a) show the ground state energies |Es|
on a log scale as a function of the scaled mass m/my,. Since
the system size increases with decreasing mass, the calcula-
tions become more involved as the mass decreases. For the
masses considered, the total ground state energy varies over
nearly four orders of magnitude from E;=-0.180 K for
mimy,=1 to E3=—6.51 X107 K for m/my,=0.740. To test
the applicability of Eq. (2), asterisks in Fig. 2(b) show the
scaled gound state energies —In(m|E;|/my.€) as a function of
the scaled mass m/my,. As in the N=2 case, the scaled en-
ergies for N=3 clearly show deviations from linear behavior.
To determine the critical mass for the trimer system, we fit
our data to Eq. (2) treating m®, a(13), and a?) as fitting pa-
rameters. Table I summarizes the result of the fit, which is
shown by a solid line in Fig. 2(b). The uncertainties of the fit
are, as in the dimer case, determined by including a varying
number of data points in the fit. Notably, the predicted criti-
cal mass mff) for the trimer interacting additively through the
KORONA potential nearly coincides with the critical mass
miz) for the dimer interacting through the KORONA poten-
tial.
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We now consider 2D systems with up to N=7 particles
interacting additively through the KORONA potential. For
these larger systems, basis set expansion-type techniques be-
come computationally unfeasible. We thus solve the 2D
many-body Schrddinger equation by alternative means using
the essentially exact DMC technique with importance
sampling.’® The DMC technique allows ground state ener-
gies and structural properties to be determined. Since the
numerical solution of the time-independent Schrodinger
equation is based on a stochastic process, expectation values
can only be determined within a statistical uncertainty. This
statistical uncertainty can be reduced by increasing the com-
putational efforts. Our DMC energies for the 2D helium tri-
mer and tetramer agree with those calculated by Vranjes™ and
Kili¢.?! Furthermore, our DMC energies for the trimer agree
to within the statistical uncertainty with those calculated by
the hyperspherical B-spline treatment (see above). In the fol-
lowing, we report the ground state energies Ey for N>3
calculated by the DMC method as a function of the atomic
mass. As we approach the threshold, the DMC calculations
become more difficult since the kinetic and potential energy
nearly cancel.

Symbols in Fig. 2 show the DMC ground state energies
Ey as a function of the mass ratio m/my, for N=4-7. Panel
(a) shows the energies on a logarithmic scale (to guide the
eye dotted lines connect data points for the same N). To
investigate how well the functional form given in Eq. (2)
applies to systems with N>3, panel (b) shows the scaled
DMC ground state energies —1/In(m|Ey|/my.€). Statistical
uncertainties of the DMC energies (not shown) are smaller
than the symbol size. Deviations from a linear behavior are,
although less pronounced than for the dimer and trimer, vis-
ible for N=4 and 5; consequently, we fit our DMC energies
to Eq. (2), treating m™, a(lN), and a(ZN) as fitting parameters.
For the clusters with N=6 and 7, our scaled DMC energies
depend to a good approximation linearly on the mass; hence
we use only two fitting parameters m(*N) and a(lN). The fitting
parameters are summarized in Table I, and the fits are shown
by solid lines in Fig. 2(b). The statistical uncertainty of the
fits is, as in the dimer and trimer case, estimated by including
a varying number of data points in the fit. We speculate that,
if we were able to obtain accurate DMC energies closer to
threshold, nonlinear behavior of the scaled ground state en-
ergies for N=6 would be, similarly as for the dimer and
trimer, visible. The fits for N=4-7 predict critical masses
miN)/ my,. between 0.62 and 0.63, which agree within their
uncertainties with those predicted for N=2 and 3. Our analy-
sis thus confirms that the critical mass miN) at which 2D
systems, interacting additively through a given two-body po-
tential, become unbound is the same for all system sizes.!%-!2

To further investigate the near-threshold behavior for N
>2, symbols in Fig. 3 show the ratio between the ground
state energies for systems with N+1 and N atoms as a func-
tion of m/my.. To guide the eye, dotted lines connect data
points for Ey,,/Ey with the same N+1 and N but different
m. Error bars, which increase with decreasing mass, reflect
the statistical uncertainty of our DMC energies for N=4. At
large m, the energy ratios approach a constant, in agreement
with earlier studies.!> Since |E,| decreases with decreasing
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FIG. 3. Energy ratios Ey,/Ey as a function of m/my, for N
=2 (uppermost curve) through N=6 (lower-most curve) calculated
using the KORONA potential. Error bars reflect the statistical un-
certainties of our DMC energies Ey for N=4. Dashed horizontal
lines on the left-hand side indicate the energy ratios for zero-range
interactions: ES/E3=16.52, E5/ES=11.94, and Ej,,/E3=8.57. A
vertical solid line indicates the mass ratio mf.} /my=0.636, at
which our fits predict the 2D dimer to become unbound. The critical
masses for larger systems nearly coincide with that for the dimer.

mass while the van der Waals length r 4w changes only little
[see dashed lines in Fig. 2(a)], dimers with small m effec-
tively have a shorter range than those with large m. Accord-
ingly, systems with small m should be better described by
zero-range models than those with large m. Horizontal
dashed lines on the left-hand side of Fig. 3 indicate the en-
ergy ratios ES/ES=16.52,'° ES/ES=11.94,'8 and Ej, /E}
=8.57 (Ref. 17) for 2D systems interacting through additive
zero-range potentials. While the energy ratio E;/E, calcu-
lated for the heliumlike few-body systems with small m is
close to the value predicted by the zero-range treatment,
none of the energy ratios Ey,/Ey for N=3 are close. Al-
though the energy ratios for N=3 increase with decreasing
mass, it is not clear whether they approach the values pre-
dicted for the zero-range model.

Recall that zero-range treatments should be applicable
when the energy scale associated with r, is much larger than
|Ey|, where r, is either given by the van der Waals length
ryaw Or by the effective range r.. Solid and dashed lines in
panel (a) of Fig. 2 show the energy #2/(mr?) for r,=re
(upper solid line) and for r,=r. 4w (upper dashed line), re-
spectively. Since |Ey|<#2/(mr?) for zero-range treatments
to be valid, the lower solid and dashed lines show the quan-
tity 0.1 4%/ (mr?) for r,=rys and r,=ryqy, respectively. Fig-
ure 2(a) indicates that, of the systems considered, only those
with N=2 and 3 have total ground state energies |E,| that are
smaller than the lower solid and dashed lines. Although the
dimer near threshold is well described by a zero-range treat-
ment (see Fig. 1), the corresponding systems with N>3 can-
not be properly described through simple contact interac-
tions. This is due to the fact that the total ground state
energies vary exponentially as a function of N and that the
effective range r. increases with decreasing m. To check
whether the latter is specific to the KORONA potential stud-
ied here, we also calculated the effective range r.¢ for the LJ
potential discussed above and for a realistic tritium-tritium
b32: potential. For the three potentials considered, the effec-
tive range behaves similarly as a function of the two-body
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binding energy. Our findings suggest that the regime where
the N-body total ground state energies Ey, N>2, can be
properly described by zero-range models might, in general,
be hard to reach for 2D van der Waals systems.

Finally we remark on an earlier variational study,3 which
concluded that artificial “bosonic helium 3 clusters in 2D
become bound for a minimum of about 12 atoms. Although
the figures in this paper contain energies for m<m(*He) for
only a few system sizes, our calculations show that bosonic
*He clusters are self-bound for all N considered, in agree-
ment with Ref. 31. (We excluded some energies for small m
from the figures and the fits since their statistical uncertain-
ties are very large.) Furthermore, the existence of a universal
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critical mass m. indicates that “bosonic helium 3” 2D clus-
ters, which are often studied to complement the treatment of
fermionic helium 3 systems, are bound for all N. Our calcu-
lations emphasize that great care has to be taken when varia-
tional calculations are used to investigate the near-threshold
regime (see also Ref. 4).
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