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Electrons in a multielectron bubble in helium form a spherical, two-dimensional system coupled to the
ripplons at the bubble surface. The electron-ripplon coupling, known to lead to polaronic effects, is shown to
give rise also to Cooper pairing. A Bardeen-Cooper-Schrieffer �BCS� Hamiltonian arises from the analysis of
the electron-ripplon interaction in the bubble, and values of the coupling strength are obtained for different
bubble configurations. The BCS Hamiltonian on the sphere is analyzed using the Richardson method. We find
that although the typical ripplon energies are smaller than the splitting between electronic levels, a redistribu-
tion of the electron density over the electronic levels is energetically favorable as pairing correlations can be
enhanced. The density of states of the system with pairing correlations is derived. No gap is present, but the
density of states reveals a strong steplike increase at the pair-breaking energy. This feature of the density of
states should enable the unambiguous detection of the proposed state with pairing correlations in the bubble,
through either capacitance spectroscopy or tunneling experiments, and allow one to map out the phase diagram
of the electronic system in the bubble.
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I. INTRODUCTION

Spherical shells of charge carriers appear in a multitude of
systems, such as multielectron bubbles in liquid helium,1

metal nanoshells coating a nonconducting nanograin,2 carbon
cages, and fullerenes. Although the properties of flat two-
dimensional �2D� systems have been widely studied, reveal-
ing new physics, the properties of spherical two-dimensional
systems are much less well-studied. In this paper, we inves-
tigate the possibility and the properties of Cooper pairing in
the spherical geometry.

The particular spherical two-dimensional system that we
focus on is the multielectron bubble in liquid helium. When
a flat surface of helium is charged with electrons above a
critical charge density, an instability occurs with the surface
opening to subsume a large number of electrons forming a
bubble. These multielectron bubbles �MEBs� are typically
micron-sized cavities inside liquid helium, containing a na-
nometer thin film of electrons on the inner surface of the
bubble. The cavity is forced open by the Coulomb repulsion
of the electrons which is balanced by the surface tension of
the helium. The equilibrium shape of the bubble is spherical,
with a radius R determined by the number of electrons and
the pressure on the helium.

The bare single electron states on the surface of the
spherical bubble are angular momentum eigenstates and have
discrete energies, characterized by the angular momentum L
and with degeneracy 2L+1. At low temperature there will be
a well-defined Fermi surface located at the highest occupied
state. Small-amplitude shape oscillations, including surface
waves, can be quantized as spherical ripplons. The electrons
can interact with these ripplons, and we will show that this
leads to an attractive effective interaction between electrons.

This paper has two distinct but interwoven parts. In the
first part �Sec. II� we discuss in detail how the interactions

between electrons and ripplons in the bubble can lead to a
Cooper pairing scenario. The goal of the first part is to show
that a BCS-type Hamiltonian provides a plausible description
of the electronic system in multielectron bubbles at low tem-
peratures, and to illustrate the relevant values of the param-
eters of the model Hamiltonian. In the second part �Secs. III
and IV� we investigate the general properties of this Hamil-
tonian using the Richardson solution for the reduced BCS
Hamiltonian describing pairing, e.g., in nanograins. Both the
ground state properties and the density of states of a spheri-
cal two-dimensional BCS system are derived and discussed.

II. COOPER PAIRS ON A SPHERICAL SURFACE

First, we investigate the three ingredients of the full
Hamiltonian: the electronic part, the ripplonic part, and the
electron-ripplon coupling. Then, we analyze the effective in-
teraction between electrons, resulting from both the Cou-
lomb interactions and the ripplon-mediated electron-electron
interaction. Finally, we arrive at a BCS-type Hamiltonian for
the multielectron bubble.

A. Electrons and ripplons in the bubble

1. The spherical 2D electron system

The well-known Hamiltonian of interacting electrons in a
flat 2D electron gas �2DEG� in the jellium model can be
written in second quantization as

Ĥe
flat = �

k,�
�kĉk,�

† ĉk,� + �
q�0

�
k,�

�
k�,��

vqĉk+q,�
† ĉk�−q,��

† ĉk�,��ĉk,�,

�1�

where ĉk,�
† ĉk,� create and destroy an electron with wave

number k and spin �, and
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�k =
�2

2me
k2, vk =

e2

2�A

1

k
, �2�

where me is the electron mass, A is the surface of the 2D
system, � is the permittivity of the medium, and e is the
electron charge.

The Hamiltonian of the interacting spherical electronic
system has a very similar form, provided that one uses
spherical harmonics YL,m�� ,	� instead of plane waves as the
single-particle basis functions. For this purpose we use the
operators ĉL,m

† and ĉL,m that create, respectively, annihilate an
electron in the angular momentum eigenstate �L ,m�, i.e.,

L,m�� ,	�=YL,m�� ,	�. The Hamiltonian of the interacting
spherical two-dimensional electron gas �S2DEG� becomes

Ĥe
sphere = �

L,m,�
�LĉL,m,�

† ĉL,m,� + �
J�0,n

�
L,m,�

�
L�,m�,�

vLĉ�L,m���J,n�,�
†

�ĉ�L�,m����J,−n�,��
†

ĉL�,m�,��ĉL,m,�, �3�

where we use the notation �L,m=�L=0
� �m=−L

L and

�L =
�2

2me

L�L + 1�
R2 , vL =

e2

2�R

�− 1�L

2L + 1
, �4�

where R is the radius of the sphere. The typical scale of the
kinetic energy �1=�2 / �meR

2� is listed for several bubble
sizes and pressures in Table I. The operator ĉ�L,m���J,n�,�

+ cre-
ates a spin � electron in a single particle state resulting from
adding the angular momenta �L ,m� and �J ,n�. Formally, we
have

ĉ�L,m���J,n�,�
+

= �
L�=�L−J�

L+J

�
m�=−L�

L� ��2L + 1��2J + 1�
4
�2L� + 1�

�J,0;L,0�L�,0�

��J,n;L,m�L�,m��ĉL�m�,�
+ , �5�

where �J ,n ;L ,m �L� ,m�� is the Clebsch-Gordan coefficient

for combining the angular momenta �L ,m� and �J ,n� into a
state of angular momentum �L� ,m��. The role of the momen-
tum is now taken by the angular momentum. Indeed, taking
L /R→k for large L links the result for the spherical case to
that for the flat case. This link was noted previously for the
structure factor of the spherical 2D electron gas3 and its re-
sponse to a weak magnetic field4.

When the Coulomb energy is small compared to the ki-
netic energy, the electrons fill up a Fermi sea of angular
momentum states L �with degeneracy 2L+1� up to a Fermi
level L=LF. The level splitting at the Fermi level, ��
=�LF

−�LF−1, is given in Table I for some typical bubbles. The
typical value of the distance between electronic levels is THz
�or mK�.

Note that the J=0 term is absent in the Coulomb part of
the Hamiltonian �3�: this term is exactly cancelled by the
surface tension energy of the helium as shown in Ref. 5. In
Hamiltonian �1� for the flat 2D electron gas in jellium, the
q=0 term is absent because it is canceled by a homogeneous
positive background introduced in the jellium model. Thus
the surface tension energy in MEBs takes a role similar to
the homogenous positive background in jellium.

2. Ripplons on the bubble surface

Small-amplitude oscillations of the bubble surface can be
quantized, leading to the concept of spherical ripplons. The
ripplon gas �excluding the breathing mode� is described by
the Hamiltonian

Ĥripl = �
L�0,m

��LâL,m
+ âL,m. �6�

The bare ripplonic frequencies for this system, at a pressure
p, are6

�L =� �

�R3 �L + 1��L2 + L + 2� +
p

�R22�L + 1� , �7�

where �=3.6�10−4 J /m2 is the surface tension of helium,
and �=145 kg/m3 is its density. In the surface tension domi-

TABLE I. Several typical length and energy scales for the electron-ripplon system in the bubble are given in this table, for bubbles with
different numbers of electrons and subjected to different pressures. The first row lists the bubble radius in microns. The second row lists the
kinetic energy scale �1=�2 / �meR

2� of electrons in the bubble, the energy of angular momentum level L being �L=�1L�L+1� /2. The third row
gives the electronic level splitting ��=�1�LF+1�, at the Fermi level, between the subsequent angular momentum levels of the spherical 2D
electron gas. The fourth row lists the energy scale for ripplons, ��r=��� / ��R3�	1/2 in �K �1 �K corresponds to 0.1309 MHz�. The fifth row
gives the strength of the electric field at the bubble surface, pressing the electrons to the helium surface and resulting in electron-ripplon
coupling. The sixth row provides values for the electron-ripplon coupling constant g in expression �9�.

p �Pa�

N=104 N=105 N=106

0 103 106 0 103 106 0 103 106

R ��m� 1.062 0.8240 0.1715 4.937 2.886 0.5426 22.93 9.477 1.716

�1 �mK� 0.7836 1.302 30.07 0.0363 0.1062 3.003 1.68�10−3 0.00985 0.3002

�� �mK� 55.64 92.47 2135 8.127 23.78 672.7 1.191 6.971 212.5

��r ��K� 10.99 16.09 169.5 1.097 2.455 30.11 0.1096 0.4126 5.352

E �kV/cm� 63.80 106.0 2448 29.54 86.44 2445 13.70 80.17 2444

g �mK� 25.87 44.70 1894 4.933 15.09 796.8 0.9813 5.866 335.7
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nated regime �pR /��1�, �L=�rL
3/2 with �r= �� / ��R3�	1/2.

Typical ripplon frequencies lie in the MHz–GHz �or �K�
range. The ripplon Green’s function is defined by

D�L,m;t� = − i�T�ÂL,m�t�ÂL,m
+ �0�	� with ÂL,m = âL,m + âL,−m

+ ,

where T is the time ordering operator and ÂL,m is a sum of
ripplon creation and annihilation operators. The unperturbed
ripplon propagator �corresponding to a system described by

Ĥripl above� in the frequency domain is

D�0��L,m;�� =
2��L

����2 − ���L�2 + i�
,

where � is a positive infinitesimal.

3. Electron-ripplon interaction

The electron-ripplon interaction can be written as

Ĥint = �
J,n

MJÂJ,n �
L,m,�

ĉ�L,m���J,n�,�
+ ĉL,m,�, �8�

where MJ is the electron-ripplon interaction amplitude and
�L,m,�ĉ�L,m���J,n�,�

+ ĉL,m,� is the �J ,n� spherical component of
the electron density.

The interaction between the electrons and the ripplons
comes about due to the presence of an electric field, gener-
ated by the electrons themselves and pressing the electrons
against the helium surface. This is the electric pressing field
E=eN / �2R2�, directed radially. When a ripplon is present, it
moves the electrons in the electric field generated by all
other electrons and this results in an interaction energy. The
interaction energy is the product of the displacement caused
by the ripplon and the electric field, summed for all elec-
trons, similarly as in Ref. 7. Rewriting this interaction energy
in second quantization operators, we find the interaction
Hamiltonian �8� with the interaction amplitude

MJ = g
�J + 1/2�1/2

��J + 1��J2 + J + 2 + 2pR/��	1/4 , �9�

where the coupling constant due to the pressing electric field
E �see Table I� is given by

g�e� =
1

2�


− eE

R
� �

2�R�r
. �10�

An additional contribution to the interaction energy between
electrons and ripplons can be derived as the change in polar-
ization energy of the electron-helium system when the he-
lium surface is deformed and the electrons are at rest. This
mechanism for coupling was first derived by Cole8 for elec-
trons on a flat surface. Following the arguments of Cole, we
obtain a similar expression for the interaction amplitude �9�
but with a different coupling constant

g�p� =
9�


8

� − 1

� + 1

e2

4
d2R
� �

2�R�r
, �11�

where d is the expectation value for the distance between the
electron and the helium surface. The total electron-ripplon
coupling constant is then g=g�p�+g�e�.

A single electron coupled to a bath of ripplons forms a
ripplonic polaron.9 In a multielectron bubble, the electric
field pressing the electrons against the helium surface can be
much larger than the field achievable on a flat helium sur-
face, so that the ripplonic polarons will be in the strong cou-
pling regime, and can even form a Wigner lattice of ripplonic
polarons.10

B. Effective electron-electron interaction

1. Cooper’s argument

In this section, we follow Cooper’s argument for pairing11

and apply this to the present case of electrons and ripplons in
the bubble. The effective electron-electron interaction is the
sum of the Coulomb interaction between the electrons and a
ripplon-mediated attractive interaction between the electrons.
In Ref. 3 we drew a Feynman diagram to represent the Cou-
lomb interaction between the electrons. Now, we can add
another diagram with the same electron propagator lines, but
instead of exchanging a virtual photon, exchanging a virtual
ripplon. This is shown in Fig. 1.

The two diagrams in Fig. 1 can be represented by a single
diagram using an effective interaction

Veff�L,m;�� =
e2

2�R

1

2L + 1
+ ML

2 2��L

����2 − ���L�2 + i�
.

�12�

Both the Coulomb and the ripplon-exchange interaction are
given by a product of two vertex factors and one virtual
particle propagator. The total electron-electron interaction
Hamiltonian can be written as

Ĥint�t� = �
L,m,�

�
L�,m�,��

�
J,n

� d�

2

Veff�J,n;��ei�t�

��− 1�nĉ�L,m���J,n�,�
+ ĉ�L�,m����J,−n�,��

+
ĉL�,m�,��ĉL,m,�.

Let us study for which regimes Veff�J ,n ;�� is attractive, i.e.,
for which values of �J ,n ;�� the ripplonic part dominates and

FIG. 1. Electrons interact through the exchange of virtual pho-
tons or ripplons. The vertex contributions and propagator for both
interactions are shown in this figure.
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is attractive. It is clear that small energy transfers make the
ripplonic part attractive because D�0��L ,�→0�=−2/ ���L�.
Moreover, in general ripplon exchange will indeed occur
with �=0. The reason for this is that the ripplonic energies
are much smaller than the electronic level spacing, as can be
seen from comparing rows three and four of Table I. For
ripplons with L smaller than 
103, the absorption or emis-
sion of a ripplon with angular momentum L cannot change
the angular momentum of the electron due to energy conser-
vation requirements. The effective interaction at �=0 is

Veff�L,m;0� =
e2

2�R

1

2L + 1
−

2ML
2

��L
. �13�

The attractive interaction dominates strongly at small L,
since 2g2 / ���r��e2 /2�R as can be checked for typical
bubbles by substituting the values from Table I. It is stron-
gest for small L and decreases roughly as L−2:

Veff�L,m;0� � −
2ML

2

��L
= −

2g2

��r

�L + 1/2�
�L + 1��L2 + L + 2 + 2pR/��

.

�14�

The strength of the effective interaction is 2g2 / �����. Since
the g is of the order of mK and ��r of the order of �K �see
Table I�, the effective attractive interaction is large as com-
pared to the relevant energy scales g, ��r, and �1. We are
clearly in a strong coupling regime, in agreement with the
results from Ref. 10.

2. Intralevel pairing

Since the ripplon energies are much smaller than the elec-
tronic level spacing at the Fermi level, the attractive interac-
tion only takes place between two electrons on the same
angular momentum level, and these electrons will be scat-
tered into final states also on that angular momentum level.
An electron in angular momentum state �initial�= �L ,m�,
which emits a spherical ripplon in angular momentum state
�J ,n�, finds itself in the following superposition of angular
momentum states:

�final� = �
L�=�L−J�

L+J ��2L + 1��2J + 1�
4
�2L� + 1�

�L,0;J,0�L�,0�

��L,m;J,− n�L�,m − n��L�,m − n� .

The projection of this final state �final� on the angular mo-
mentum level L of the initial state is

fCG��L,m�,�J,− n�	 =�2J + 1

4

�L,0;J,0�L,0�

��L,m;J,− n�L,m − n� .

Thus the scattering process between two electrons with spin
� and �� on the angular momentum level L can be described
in second quantization as

Ĥint,L = �
m=−L

L

�
m�=−L

L

�
J,n

fCG��L,m�,�J,− n�	fCG��L,m��,�J,n�	

� Veff�J,n;0�ĉL,m−n,�
+ ĉL,m�+n,��

+ ĉL,m�,��ĉL,m,�.

This interaction Hamiltonian derived for the multielectron
bubble is already close to a BCS-like interaction Hamil-
tonian. It involves only electrons on the same angular mo-
mentum level and couples them with an attractive potential.

An initial state with a pair characterized by �m ,m�� can be
scattered into a pair with �m−n ,m�+n� in various ways:
namely by the scattering of a virtual ripplon with J=n ,n
+1,n+2,… provided that J is an even mode to obey the
triangle rule of addition of angular momenta. All these pro-
cesses are indistinguishable �initial and final states are ex-
actly the same� and their diagrams should be added to get the
overall amplitude. Different combinations of Clebsch-
Gordan coefficients will occur, which can take either a posi-
tive or a negative sign: the different diagrams can interfere
constructively but also destructively. The only case where
we are sure that the different contributions will interfere
constructively is for pairs of electrons with opposite angular
momentum m�=−m. The reason for this is that
�L ,m ;J ,n �L ,m+n� has the same sign as �L ,−m ;J ,−n �L ,
−m−n�. We investigated this point numerically and found
that the total effective interaction is indeed strongly reduced
for pairs that do not have opposite angular momentum �m�
�−m�. However, for m�=m we find that the effective inter-
action potential is not reduced and is only weakly dependent
on m.

3. Effective Hamiltonian

From the previous section we know that the interaction
between the electrons can be written in the form of a BCS
interaction Hamiltonian given by

Ĥint = − �
L

�
m=−L

L

�
m�=−L

L

Ṽm,m�,LĉL,−m�↓
+ ĉL,m�;↑

+ ĉL,m;↑ĉL,−m;↓,

�15�

where �= ↑ ,↓ denotes spin up and spin down and

Ṽm,m�,L = �
J=max�2,�m−m��	

2L
2g2

���

�J + 1/2�
�J + 1��J2 + J + 2 + 2pR/��

� fCG��L,m�,�J,m� − m�	fCG��L,− m�,�J,m − m��	 .

�16�

Due to the coefficients �L ,0 ;J ,0 �L ,0� the summation cannot
run further than 2L and only even values of J contribute. The
summation starts from n= �m−m��, or if this is less than 2, it
starts at J=2. The J=0 deformation is not taken into account
�it is the radius of the bubble�, and the J=1 deformation is a
uniform translation which cannot couple to the internal de-
grees of freedom. To proceed, we will introduce an averaged
interaction amplitude at the Fermi angular momentum level:
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G =
1

�2LF + 1�2 �
m,m�

Ṽm,m�,LF
. �17�

The interaction amplitude still depends on the angular mo-
mentum level L. But, as we shall see in the next section, pair
correlations occur only in levels close to LF where the
L-dependence of the interaction amplitude can be neglected.
So we use the value of the interaction amplitude at LF also
for levels close to LF. Values for G for various configurations
are given in Fig. 2.

With this, we have established that the properties of the
ripplon-mediated electron-electron interaction lead to a
Cooper-type attractive interaction between the electrons, and
to a BCS-like Hamiltonian

Ĥeff = �
L,m,�

�LĉL,m;�
+ ĉL,m;�

− G�
L

�
m,m�=−L

L

ĉL,−m�↓
+ ĉL,m�;↑

+ ĉL,m;↑ĉL,−m;↓. �18�

The peculiarity of this pairing Hamiltonian is that the pairing
takes place within discrete energy levels. This effective
Hamiltonian for electrons pairing due to an attractive inter-
action brought about by ripplon exchange can be solved by
introducing a variational many body wave function as in the
BCS treatment. However, we chose to apply the Richardson
method,12 initially developed in the context of nuclear phys-
ics and recently reintroduced13 to the condensed matter com-
munity to describe superconductivity in nanosize metallic
grains. This method is particularly suitable for finite systems
with a discrete level structure such as the multielectron
bubble.

III. RICHARDSON MODEL FOR PAIRING IN A S2DEG

Having argued that multielectron bubbles are a suitable
candidate to observe pairing of electrons in a spherical two-
dimensional system, we will apply the Richardson model to
the effective pairing Hamiltonian �18� to gain insight in the
properties of the paired phase.

Note that the analysis here can be applied to the general
problem of a S2DEG with attractive interactions between
electrons on the same angular momentum level. The previ-
ous section provides possible values for the coupling con-

stant G �see Fig. 2� and for the relevant energy scales �see
Table I�, and a justification for the applicability of the effec-
tive pairing Hamiltonian �18� to multielectron bubbles spe-
cifically. Nevertheless the results derived in this section can
be used to investigate other systems such as the supercon-
ducting properties of thin electronic nanoshells or can be
investigated as an academic question regarding spherical
electronic systems.

A. Energy levels of interacting electrons

The Richardson model provides a method of solution for
the so-called reduced BCS Hamiltonian:14,15

ĤBCS = �
i,�

�ib̂i,�
+ b̂i,� − G�

i,i�

b̂i�,↑
+ b̂i�,↓

+ b̂i,↓b̂i,↑. �19�

Now consider the Hamiltonian �18� that we derived in the
previous section, and collect all terms that contain operators
working on the angular momentum level L:

ĤL = �
m,�

�LĉL,m;�
+ ĉL,m;� − G �

m,m�=−L

L

ĉL,−m�↓
+ ĉL,m�;↑

+ ĉL,m;↑ĉL,−m;↓.

�20�

Note that only electrons within the same angular momentum
energy level L interact: only intralevel interactions take
place, but no interlevel interactions. This is due to the fact
that the relevant ripplon energies are much smaller than the
interlevel energy splitting �see Table I for typical values in
multielectron bubbles�. So, the set of electrons with a given
angular momentum L can be considered as an independent
subsystem, described by the Hamiltonian �20�. The full sys-
tem is the collection of independent subsystems character-
ized by different L. The full Hamiltonian �18� is just the sum
of the Hamiltonians �20� describing independent subsystems
with different L:

Ĥeff = �
L

ĤL. �21�

Moreover, each of the Hamiltonians �20� corresponds to a
reduced BCS Hamiltonian �19� that can be solved with the
Richardson method. Indeed, setting ∀i :�i=�L and

b̂m;↑ = ĉL,m;↑, b̂m;↓ = ĉL,−m;↓, �22�

brings Eq. �20� into the same form as Eq. �19�. So, we have
a collection of independent systems �each characterized by a
particular value of L� that can each be solved by the Rich-
ardson method. As shown by Richardson,12 the exact solu-
tion of the reduced BCS Hamiltonian for n electron pairs
amounts to solving a set of n nonlinear coupled equations. In
general, the aforementioned set of equations can be solved
only by numerical computation. However, in the particular
case when all the involved single-particle states belong to
one and the same degenerate energy level—as is the case for
a spherical multielectron bubble—the exact energy of elec-
tron pairs, described by the reduced BCS Hamiltonian, can
be easily found analytically.16 Following Refs. 16 and 17, the
result for the energy of electrons in the subsystem character-

FIG. 2. BCS interaction strength G �in mK� as a function of
pressure p and number of electrons N in the bubble.
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ized by angular momentum L can be written down as

EL,nL,gL,bL
= �2nL + bL��L − G�nL − gL��2L − bL + 2 − nL − gL� .

�23�

The energy levels of the subsystem with angular momentum
L are characterized by three quantum numbers, nL, bL, and
gL. Here nL is the number of electrons pairs, bL is the number
of unpaired electrons, and gL of elementary bosonic pair-hole
excitations18 in the system of nL pairs.

To better understand these quantum numbers, consider
two bare single-electron states �L ,m ; ↑ � and �L ,−m ; ↓ �. If
both states are occupied, this represents an electron pair. The
electron pair can scatter into another pair of states
�L ,m� ; ↑ � , �L ,−m� ; ↓ � under the influence of the interaction
term in the Hamiltonian �20�. The number of such pairs with
given L is nL, and it has to be less than or equal to 2L+1.
Now consider the case where only one state of the pair
�L ,m ; ↑ � and �L ,−m ; ↓ � is occupied. Then we have an un-
paired electron that cannot participate in the scattering de-
scribed by the interaction term in Eq. �20�. Moreover, elec-
tron pairs cannot scatter into the pair of states �L ,m ; ↑ � , �L ,
−m ; ↓ � because one of these states is already occupied. The
states �L ,m ; ↑ � , �L ,−m ; ↓ � are then blocked for scattering of
pairs. The number of these blocked spin-degenerate bare
states equals the number of unpaired electrons, and is de-
noted by bL. The total number of electrons in angular mo-
mentum level L is then 2nL+bL and this has to be less than or
equal to 2�2L+1�. The last quantum number gL indexes the
so-called “pair-hole excitations.”18 These are bosonic excita-
tions that involve a redistribution of the amplitude for corre-
lated pairs over the 2L+1 states with angular momentum L.
Note that gL=0 corresponds to the ground state for the cor-
related pairs.

The total energy can be expressed as a sum of the energies
for each independent subsystem:

E�nL,bL,gL�L=1,2,3,. . .
= �

L=0

�

EL,nL,gL,bL
. �24�

The state of the entire system is characterized by a large set
of quantum numbers, three �nL ,bL ,gL� for each angular mo-
mentum subsystem.

B. Ground state properties

How do we characterize the ground state of electrons in a
spherical bubble with pairing interactions? In bulk BCS su-
perconductors only electrons in an energy band of the Debye
energy ��D around the Fermi level participate in the pairing.
However, in the present case, the relevant ripplon frequen-
cies are much smaller than the splitting between consecutive
L levels near the Fermi energy. Therefore one might argue
that pairing correlations only take place in the one subsystem
with L=LF where LF is the angular momentum at the Fermi
level. Indeed, all levels above the Fermi level �L�LF� are
empty, and all levels below the Fermi level �L�LF� are com-
pletely filled so that no pairing correlations can be achieved
by ripplon-mediated scattering.

Yet this turns out to be wrong. The main difference be-
tween pairing in the present case and pairing in conventional
superconductors is that in conventional BCS superconduct-
ors the gap � is much smaller than the relevant phonon en-
ergy �����D�, whereas in the present case the interaction
energy per electron can be larger than the relevant ripplon
energies �����r� and even larger than the level splitting
����LF

−�LF−1�. This can be inferred by comparing the in-
teraction strengths shown in Fig. 2 to the ripplon energies
and level splittings reported in Table I. It then becomes en-
ergetically advantageous to redistribute the electrons
amongst the energy levels L. Indeed, by promoting a pair of
electrons from a level L1 below the Fermi level �L1�LF� to
a level L2 above the Fermi level �L2�LF�, both these levels
L1 ,L2 can also form pairing correlations. The energy gain by
forming pairing correlations is larger than the energy needed
to promote the electrons from level L1 to level L2. So we
obtain the remarkable result that for sufficiently large inter-
action strength G �as we think is the case for MEBs�, al-
though only intralevel scattering can take place, still levels
well below and above the Fermi level can be affected.

To see this in more detail, let us consider, for example, a
bubble with an even number of electrons. The ground state in
an even bubble is achieved by gL=0 �no pair-hole excita-
tions� and bL=0 �no unpaired electrons�. In order to find the
ground-state configuration nL, consider the change in the to-
tal energy due to a transfer of an electron pair from the Lth
level to the next higher level. Using Eq. �23� with gL=0 and
bL=0, we find

�EL,L+1 = 2�1�L + 1� − 2G�nL − nL+1� , �25�

where nL and nL+1 are the number of electron pairs on the
levels L and L+1, respectively, before the transfer. The first
term in the right-hand side of Eq. �25� represents the energy
cost in promoting a pair of electrons from level L to level
L+1, and the second term corresponds to the gain in energy
due to pairing correlations. As seen from Eq. �25�, such a
transfer reduces the total energy if the inequality

G�nL − nL+1� � �1�L + 1� �26�

is satisfied. Condition �26� is not fulfilled at weak interaction,
i.e., for G /�1� �L+1� / �nL−nL+1�. Since the upper bound for
the difference nL−nL+1 is 2L+1, at L�1 the above definition
of weak interaction can be simplified to G��1 /2. As implied
from Table I and Fig. 2, for MEBs it is likely that the inter-
action is strong, G��1 /2, so that a redistribution of electron
pairs as described in the previous paragraph is indeed ener-
getically favorable.

In order to avoid confusion, it is worth emphasizing that
the introduced criteria of weak and strong interaction do not
coincide with those commonly used, e.g., for small metallic
grains. In the latter case, the term “strong interaction”
�“weak interaction”� corresponds to the situation when the
interaction strength G is larger �smaller� than the mean spac-
ing between the bare energy levels involved in pair scattering
�see, e.g., Ref. 17�. As discussed above, in MEBs only elec-
trons within the same multiply degenerate bare energy level
interact. So, in terms used for small metallic grains, MEBs
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with any nonzero G are always in the so-called “strong-
coupling limit.”16 Within this “strong-coupling limit,” there
is still a qualitative difference between the case of G��1 /2,
when the interaction does not affect the ground-state distri-
bution of electrons over angular momentum energy levels,
and the case of G��1 /2, when the redistribution of electron
pairs occurs. Here, just the above two cases are referred to as
the regimes of weak and strong interaction, respectively.

Figure 3 illustrates the ground-state configuration ob-
tained by minimizing the total energy �24� with respect to the
nL’s �and setting bL=gL=0�. The results are shown as a func-
tion of G /�1 for fixed LF=26. The left panel shows the result
for NF=52 electrons on the Fermi level in the ground state of
an MEB with G=0. This corresponds to roughly half-filling
of the Fermi level. The right panel shows the result for NF
=106, a closed-shell configuration in the G=0 ground state.
Blue �green� color corresponds to filled �empty� states on the
energy levels. Switching off the interactions, G=0, we see
that all levels below LF=26 are completely filled �blue
color�, and all levels above LF are completely empty �green
color�. For G /�1=2.5, some empty states �green� appear in
levels L=24,25 that are below LF, and some electron pairs
appear in levels L=27,28 that are above LF. Note that G
needs to exceed a critical value �of the order of �1 /2� for the
redistribution of electron pairs to take place. Also note that
approximately 2G /�1 levels around the Fermi level are af-
fected by the redistribution of electron pairs.

Having obtained, for the ground state, the total energy
Eg.s., we can derive the condensation energy

EC = Eg.s.�0� − Eg.s.�G� − G�N/2� , �27�

where Eg.s.�G� �Eg.s.�0�	 is the ground-state energy in the
presence �in the absence	 of the pairing interaction. The last
term in the right-hand side describes the interaction energy
for the uncorrelated Fermi ground state and �x� means the
integer part of x. In Fig. 4, the condensation energy EC is
plotted as a function of G /�1. In the regime of weak interac-
tions �G��1 /2� where, as we have seen, the electron redis-
tribution between the energy levels is absent, the condensa-
tion energy is a linear function of G. In this regime the
condensation energy strongly depends on NF: it is zero for
closed shell configurations and reaches a maximum at half
filling. In the case of strong interaction, G��1 /2, a redistri-

bution of electron pairs amongst different L levels takes
place, as shown in Fig. 3. For this regime, we find that the
NF-dependence of the condensation energy becomes negli-
gible. The condensation energy rapidly rises with G /�1, ap-
proximately as EC��2LFG�2 / �3�1�. Since the transition be-
tween the two regimes is relatively sharp, it manifests itself
as a well-pronounced cusp of ln EC�G� at a certain
�NF-dependent� interaction strength 
�1 /2. For typical
MEBs, we find that EC /kB is of the order of several Kelvin.
Decreasing the number of electrons or pressurizing the
bubble increases the condensation energy. Bigger bubbles
have a smaller condensation energy.

C. Experimental signatures

How can the pairing correlations be probed experimen-
tally? What properties will distinguish the state with pair
correlations from the normal Fermi sea? In the preceding
subsection, we have found the ground state for the system
described by the Hamiltonian Heff, expression �18�, and in
the preceding section we argued, based on Cooper’s argu-
ment, why this Hamiltonian is suitable to describe MEBs.
Nevertheless, more exotic correlated or magnetic states not

FIG. 3. �Color online� Filled and empty states
are indicated with dark blue and light green, re-
spectively, and shown as a function of the dimen-
sionless interaction strength G /�1. The typical
ripplon energies are smaller than the splitting be-
tween successive L levels �with degeneracy 2L
+1�, so that only intralevel scattering takes
splace. Nevertheless the electrons are redistrib-
uted over different L levels around the Fermi
level LF=26 because the pairing energy is com-
parable to the level splitting. The left panel shows
the result for NF=52 and the right panel for NF

=106 electrons on the Fermi level at G=0.

FIG. 4. �Color online� The condensation energy EC is shown as
a function of the interaction strength G for different numbers of
electrons in the Fermi level LF=26 at G=0. As the coupling in-
creases, the condensation energy becomes less sensitive to the pre-
cise filling of the Fermi level.
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described by the Hamiltonian �18� cannot be completely ex-
cluded as candidates for the true ground state: only experi-
ment will give a decisive answer as to what the realized state
in the MEB will be. It is therefore very relevant to discuss
accessible experimental signatures of the correlated many-
body state that we have described.

In metallic nanograins and nanowires, pairing correlations
�leading to superconductivity� were revealed through a mea-
surement of the density of states.19 Also for the present case
we propose to reveal pairing correlations by probing the den-
sity of states. Although it is not yet clear whether such ex-
periments can be done on MEBs, one possibility would be to
use capacitance spectroscopy to determine the density of
states of an MEB stabilized and trapped between capacitor
plates.20 Also tunneling experiments can be envisaged: plac-
ing an electrode close to the bubble and reducing the thick-
ness between the bubble and the helium would allow elec-
trons to tunnel out. The density of states that would be
revealed by such experiments is the subject of the next sec-
tion.

D. Density of states

In the previous section, we found that the ground state is
characterized by a redistribution of electrons between degen-
erate bare energy levels, as compared to the ground-state
electron distribution in the absence of interaction. Here we
analyze the effect of the pairing interaction on the density of
�many-electron� states in MEBs. This density of states can be
written down in general as

D�E� = �
i

J�i���E − Ei� . �28�

From expression �24� it is clear that the many-electron en-
ergy levels Ei are characterized by a set of quantum numbers
“i” ª �nL ,bL ,gL�L=1,2,3,. . .. The summation runs over all pos-
sible sets i of quantum numbers. The degeneracy of the
many-electron energy level Ei is denoted by J�i�. Consider
one particular angular momentum state L with a given
�nL ,bL ,gL�. The number of ways to place the unpaired elec-
trons, multiplied by the number of pair-hole excitations with
given gL, is JnL,gL,bL

�see Refs. 17 and 18�:

JnL,gL,bL
= 2bLCbL

2L+1 � �1, gL = 0

�CgL

2L+1−bL − CgL−1
2L+1−bL� , gL � 1�

�29�

with Cj
k the binomial coefficients. The total degeneracy is the

product of the degeneracies of the independent systems,

J�i� = �
L

JnL,gL,bL
. �30�

For graphical representation, it is more convenient to con-
sider instead of D�E� the quantity

D��E� = �
E−�/2

E+�/2

dED�E� , �31�

which gives the number of �many-electron� states in the en-
ergy range of width � around the energy E.

Figure 5 gives an example of the calculated D��E�. The
calculations are performed for NF=54 electrons in the Fermi
angular momentum level LF=26, so that in the ground state
at G=0 the Fermi level is approximately half filled. Together
with the whole spectrum of excitations �displayed in light
green� we also show �in dark blue� the intralevel excitations
from the ground state.

At G=0, as shown in Fig. 5�a�, there is a set of excitations
that correspond to different interlevel electron transitions be-
tween the single-electron bare energy levels with L close to
LF �obviously, intralevel transitions have zero energy in this
case�. At G=0, all the many-electron energy levels in the
system under consideration are highly degenerate. This is
due to the numerous possibilities to distribute electrons over
single-electron states belonging to a partially filled energy
level with a given L.

At small nonzero G, the many-electron energy levels for
each angular momentum level are split. Excitations involv-
ing pair breaking �bL�0� and pair-hole excitations �gL�0�
start to affect the density of states. The result, shown in Fig.
5�b�, is the appearance of energy bands in the density of
states. The first band corresponds to intralevel excitations
from the ground state, the other bands involve interlevel ex-
citations from one angular momentum state to another.

At this point it is interesting to investigate the gap in the
excitation spectrum for intralevel excitations. In supercon-
ducting nanograins, measuring such a spectroscopic gap sig-
nals the onset of superconductivity.19 First, consider a pro-
cess where the ground state �with nL pairs and bL=0
unpaired electrons� is transformed into a final state with nL�
=nL−1 and bL�=2 unpaired electrons. We will refer to such a
process as a “pair-breaking excitation.” A pair-breaking
“gap” ��p-b� can then be defined as the energy necessary to
create a pair-breaking excitation from the ground state:

FIG. 5. �Color online� The calculated density of states for a
spherical 2D electron system with pairing, obtained within the Ri-
chardson model, is shown in these figures as a function of the
energy above the ground state energy. The different panels corre-
spond to different strengths of the attractive electron-electron inter-
action term in the reduced BCS Hamiltonian.
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�L
�p-b� = EL,nL−1,0,2 − EL,nL,0,0. �32�

Using Eq. �23�,

�L
�p-b� = G�2L + 1� . �33�

Similarly, we can calculate the smallest energy needed to
create a pair-hole excitation �gL=0→gL=1� and define a
pair-hole excitation gap ��p-h�

�L
�p-h� = EL,nL,1,0 − EL,nL,0,0 = G�2L + 1� . �34�

So, in the system under consideration, the smallest energy
for a pair-breaking excitation equals that for a pair-hole ex-
citation, ��p-b�=��p-h�, and we can drop the superscripts �p-b�
and �p-h�. At G��1 /2 the intralevel excitation gap � ap-
proaches the energy spacing �1�L+1� between single-
electron bare energy levels with consecutive values of L.
This means that, for G��1 /2, interlevel excitations exist
with energy smaller than the gap �. Moreover, as implied by
Eq. �25�, an increase of G can substantially reduce the ener-
gies of interlevel transitions of pairs. At G=0.625�1 �see Fig.
5�c�	, the lowest interlevel excitations �green� already have
energies smaller than � �first nonzero blue line�.

At even larger G, pairing correlations appear on many
different angular momentum levels. The pair-breaking/pair-
hole excitation gap, �L, depends on the angular momentum.
Therefore, as seen from Fig. 4�d�, the peaks of D��E� corre-
sponding to intralevel excitations from the ground state are
split into peaks corresponding to different angular momen-
tum states where pairing can take place. With increasing G,
the excitation spectrum tends to become quasicontinuous,
with jumps of several orders of magnitude in D��E� near the
energies corresponding to pair-breaking or pair-hole excita-
tions. Between these jumps there is a more uniform distribu-
tion of excitations, corresponding to interlevel transitions of
pairs.

Figure 6 provides an “overview” of the behavior of D��E�
as a function of both E and G for fixed LF=26 and two
different values of NF. One can see an interplay between
intralevel excitations, whose energies always increase with
increasing G, and excitations corresponding to interlevel
transitions of pairs. For the latter, both an increase and a
decrease in energy are possible with increasing G. While at
G��1 the patterns of D��E ,G� are very different for differ-
ent NF, at larger G the behavior of D��E� in MEBs with a
definite parity of the number of electrons becomes almost
independent of the precise value of this number �cf. Figs.
6�a� and 6�b�	. This “universal behavior” of D��E� at large
G /�1 is further illustrated by Fig. 7, where the calculated
dependence of D� on �E−Eg.s.� /�1 is shown for different NF

and LF. As seen from Fig. 7, neither moderate changes of LF
nor variations of NF at a fixed LF significantly affect the
shape of D� versus �E−Eg.s.� /�1 for MEBs with a given par-
ity of the number of electrons. At the same time, Fig. 7
demonstrates a pronounced difference between the results for
even MEBs and those for odd MEBs.

In an odd MEB, one unpaired electron is present even in
the ground state. Also at any fixed nonzero number of broken
pairs, the number of unpaired electrons in an odd MEB ex-

ceeds that in an even MEB by one. Since the degeneracy of
many-electron states in MEBs strongly increases with in-
creasing the number of unpaired electrons �see Eq. �29�	, the
values of D��E� in odd MEBs are significantly larger than
those in even MEBs of comparable size. At the same time,
for odd MEBs relative changes in the number of unpaired
electrons due to pair breaking are smaller as compared to the
case of even MEBs. Consequently—as illustrated by Fig.
7—jumps of D��E� at energies corresponding to pair-
breaking excitations are less pronounced in odd MEBs than
in even MEBs.

Summarizing this section, we find that in the regime most
relevant for multielectron bubbles, namely G��1, the pair-
ing correlations reveal themselves in the density of states not
as a spectroscopic gap, but rather as a significant jump in the
density of states at the pair-breaking energy �. Moreover, in
this regime �G��1� the density of states is less sensitive to
even-odd effects. The observation �through tunneling or
spectroscopy� of a jump in the density of states at � can be
used as a way to infer the presence of pairing correlations in
the MEB. Moreover, the pair-breaking energy can be used to
estimate a temperature Tc above which the pairing correla-
tions will be suppressed: when kBT
� the thermal energy is
large enough to support an appreciable amount of pair-
breaking excitations. For typical MEBs, this temperature is
of the order of Kelvins. Smaller bubbles or compressed
bubbles have a larger gap and thus a larger Tc.

FIG. 6. �Color online� Density of states of the spherical 2D
electron system with pairing interactions, as a function of the inter-
action strength and the energy above the ground state, both ex-
pressed in energy units �1. The results are shown for two different
values of NF, the number of electrons on the Fermi level at G=0:
�a� NF=54 �approximately half filling� and �b� NF=106 �closed-
shell configuration�.
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IV. CONCLUSIONS

In the first part of this paper, we analyzed how the
electron-ripplon interaction on a spherical surface may lead
to an attractive effective electron-electron interaction and
give rise to a Cooper pairing scenario. The effective Hamil-
tonian of the two-dimensional spherical electron system is
mapped on a BCS-type Hamiltonian and typical values of
energies, length scales, and interaction strengths are esti-
mated.

In the second part we use Richardson’s method to inves-
tigate pairing properties of a two-dimensional spherical elec-
tron system. We find that when the condensation energy per
pair is larger than the bubble energy scale �2 / �meR

2�, the
ground state of the system acquires unique properties that set
it apart from pairing in conventional superconductors or su-
perconducting nanograins. In particular, we show that al-
though only intralevel interactions are included �since the
relevant ripplon energies are smaller than the level splitting�,
electron pairs nevertheless redistribute themselves among the
different levels and pairing takes place in an interval of en-
ergies around the Fermi energy, much larger than the typical
ripplon energy. The density of states reveals an intricate in-
terplay between intralevel transitions and interlevel excita-
tion of pairs, evolving from a discrete spectrum typical for
confined systems to a staircase quasicontinuum upon increas-
ing interaction strength. At strong coupling the density of
states reveal the presence of pairing correlations not through
a spectroscopic gap as in metallic nanograins,19 but through a
jump in the density of states at the pair-breaking energy.

These results show that spherical electron systems reveal
particularly interesting pairing properties, distinct from their
bulk or flat-surface counterparts, combining both topological
effects and confinement effects. MEBs are a particularly pure
realization of the two-dimensional electron system �just as an
electron film on helium forms a pure realization of a flat
2DEG�. Thin nanoshells �monolayer gold coatings of a non-
conducting nanograin� may be another realization of this sys-
tem.
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