
Spin locking and freezing phenomena in the antiferromagnetic Heisenberg model
on the three-leg ladder

M. Azzouz* and K. A. Asante
Department of Physics and Astronomy, Laurentian University, Ramsey Lake Road, Sudbury, Ontario, Canada P3E 2C6

�Received 15 April 2005; published 27 September 2005�

The antiferromagnetic Heisenberg model on the three-leg ladder is studied using the generalized Jordan-
Wigner transformation in dimensions higher than 1, and the bond-mean-field theory. The magnetic suscepti-
bility and other thermodynamic quantities are analyzed as a function of the rung-to-leg coupling ratio � and
temperature T. We fit the experimental susceptibility data of the three-leg material Sr2Cu3O5 of Azuma and
co-workers with good agreement. One of the main findings of this work is the proposal that close to two-thirds
of the spin degrees of freedom on each of the rungs of the ladder lock at low T for small �, then collectively
almost 2 /3 of the spin degrees of freedom on all the rungs freeze completely at low T for � greater than a
threshold value. The approach developed here can be used to study the three-leg ladder for all values of �, and
is thus suitable for the description of the crossover regime between the weak- and strong-coupling regimes.
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I. INTRODUCTION

The Heisenberg ladders have received considerable atten-
tion in the past decade or so because some experimental
materials have this geometry and because of the search for
exotic electronic states in condensed matter.1–3 The two-leg
ladder has been the subject of numerous studies, which have
shown that this system has gapped low-energy excitations
�see Refs. 2 and 4 and references therein�. There has been a
conjecture according to which the ladders with an even num-
ber of legs have a gapped spectrum, but those with an odd
number of legs have a gapless energy spectrum.5 Johnston
et al.6 used the quantum Monte Carlo �QMC� technique to
study the three-leg ladder, and found that indeed the low-
lying excitations do not show an energy gap. Frischmuth,
Amon, and Troyer7 have also used the QMC technique in a
study of ladders with nl=1,2 , . . . ,6 legs. Their results con-
firmed the conjecture concerning the parity of the number of
legs. In addition, they found that in the low-energy limit, a
one-dimensional �1D� effective Hamiltonian can be defined
for nl=3 and 5. This Hamiltonian describes the interaction
between the lowest-lying spin doublets in the limit of strong
rung-to-chain couplings ratio �. However, they noted that as
� decreases �1/�→1�, which means that the interaction be-
tween the spins along the chains becomes comparable to the
interaction along the rungs, the effective Hamiltonian be-
comes inaccurate, and higher-energy excitations start con-
tributing for temperatures much smaller than in the larger-�
limit case. A crossover between the larger-� regime and the
lower-� one therefore takes place. We will analyze this
crossover in depth in this work. While the strong-coupling
regime of the three-leg ladder has been studied using the
strong-coupling series expansion,8 the weak- and
intermediate-coupling regimes have been studied using
mainly the QMC technique. Note that the bosonization ap-
proach has also been used in the weak-coupling regime.9

This method is, however, not suitable for the intermediate-
and strong-coupling regimes. We develop here an approach
which can be used to study the crossover between the weak-
and strong-coupling regimes.

In this work, we use the bond-mean-field theory10

�BMFT� and the one of the authors two-dimensional �2D�
Jordan-Wigner �JW� transformation of one of the authors10,11

to study the Heisenberg three-leg ladder. We confirm the
QMC results of Johnston et al. regarding the existence of a
gapless spectrum for all values of �, and show that some of
the spin degrees of freedom undergo a partial locking and
then freezing depending on T and �. The phenomenon of the
locking of some of the spin degrees of freedom takes place
for any finite value of �, and is caused by the fact that two of
the three spins on a given rung participate in a gapped state
for any ��0, whereas the third remaining spin on this rung
forms a doublet, and thus stays available for gapless excita-
tions along the chains. For small � �� smaller than a thresh-
old value �tr�, we find that the three-leg ladder geometry
becomes irrelevant at high enough temperatures as expected.
For ���tr, the three-leg ladder undergoes a geometry cross-
over below a temperature that is � dependent. Below this
temperature, it behaves as a single chain with an effective
coupling constant Jef f that depends on �, in agreement with
the results of Frischmuth et al.7 In this case, not only do
some of the spin degrees of freedom lock, but they freeze.
The freezing phenomenon can be understood as resulting
from the occurrence of the coherence between all the pairs of
the spins that are locked on all the rungs. In other words, the
freezing phenomenon is obtained when all the spins locked
on each rung collectively form a coherent state, where all the
pairs of the spins locked into singlets occupy the same two
chains �see below for details�. We also report features in the
magnetic susceptibility that were not seen in existing studies
on the three-leg ladder,12,7 and reanalyze the magnetic prop-
erties of the material Sr2Cu3O5 that are believed to be mod-
eled by the three-leg ladder structure.13

This paper is organized as follows. In Sec. II, we adapt
the 2D JW transformation to the three-leg ladder, and review
the BMFT used to study this system. This is followed by the
derivation of the mean-field equations. The results of this
work are presented in Sec. III. These results include the
study of the mean-field parameters, the energy spectra, the
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uniform and static susceptibility and its comparison to exist-
ing QMC data, the fitting of the experimental data, and the
specific heat analysis. Finally, the conclusions are drawn in
Sec. IV.

II. METHOD

A. The Hamiltonian and the JW transformation

The Hamiltonian of the Heisenberg model on the three-
leg ladder �Fig. 1� reads as

H = �
i
��

j=1

3

JSi,jSi+1,j + �
j=1

2

J�Si,j · Si,j+1� , �1�

where J�0 and J��0 are antiferromagnetic �AF� exchange
coupling constants along the chains and rungs, respectively,
the index i=0, . . . ,N−1 labels the N sites on the chains, and
the index j=1,2 ,3 labels the chains themselves. We define
�=J� /J and set J to be the unit of energies. Assume that we
deal with materials where the three chains can be placed on
the same plane. Because of the odd number of chains, it is
natural to assume open rather than periodic boundary condi-
tions along the rungs. Along the chains the boundary condi-
tions are assumed to be periodic. We plan to report on the
case of a triangular nanoprism made of three chains �with
periodic boundary conditions� in the future.

The Hamiltonian �1� is transformed using an adapted form
of the 2D generalized JW transformation of Ref. 10. Follow-
ing the notation of Fig. 1, the lowering spin operators at sites
�i ,1�, �i ,2�, and �i ,3�, and the z component of the spin op-
erator at site �i , j� are written as follows:

Si,1
− = ci,1ei�i,1, �i,1 = ��

d=0

i−1

�
f=1

3

nd,f ,

Si,2
− = ci,2ei�i,2, �i,2 = �i,1 + �ni,1,

Si,3
− = ci,3ei�i,3, �i,3 = �i,2 + �ni,2,

Si,j
z = ni,j −

1

2
, �2�

where ni,j =ci,j
† ci,j is the occupation operator of the JW spin-

less fermions. Using �2�, the Hamiltonian �1� becomes

H = �
i

�
j=1

3
J

2
ei��i,j−�i+1,j�ci+1,j

† ci,j + �
i

�
j=1

2
J�

2
ei��i,j−�i,j+1�

�ci,j+1
† ci,j + �H.c.� + J�

i
�
j=1

3 �ni,j −
1

2
��ni+1,j −

1

2
�

+ J��
i

�
j=1

2 �ni,j −
1

2
��ni,j+1 −

1

2
� , �3�

which describes a system of interacting spinless fermions
coupled to a gauge field. An analysis of this gauge field and
the mean-field treatment analogous to the ones made in Ref.
14 for the Heisenberg bilayer can be made here. Next, we
explain how we obtain the mean-field Hamiltonian.

B. The mean-field Hamiltonian

The BMFT consists, first, of approximating the phase dif-
ferences resulting from the hopping of the JW fermions
around any given elementary plaquette by �.10,14,15 Along
the chains, the phases consist for example of the configura-
tion . . .0-�-0-�-0-�. . . on the bonds . . .�i−1, i��i , i+1��i
+1, i+2�. . . on the chains 1 and 3, but . . .�-0-�-0-�-0. . . on
the bonds . . .�i−1, i��i , i+1��i+1, i+2�. . . on chain 2. The
phases on all the bonds along the rungs are zero. Second, the
quartic Ising terms of the Hamiltonian �1�, �i,j�ni,jni+1,j

+ni,jni,j+1�, resulting from the Ising interactions, are decou-
pled using the bond parameters Q= ��c2i,jc2i+1,j

† �� for chain 1
�j=1� and chain 3 �j=3�, and Q�= ��c2i,2c2i+1,2

† �� for chain 2
in the direction parallel to the chains. Along the rungs, P
= ��c2i,jc2i,j+1

† ��. This choice is consistent with the fact that the
three-leg ladder is symmetric with respect to exchanging the
chain labels 1 and 3, but is an example of a system where the
order parameter takes on different values depending on
whether an internal or external part of the system is consid-
ered. Note that this approximation satisfies the Mermin-
Wagner theorem since the long-range AF order is not taken
into account.16 So �Si,j

z �=0 gives �ci,j
† ci,j�=1/2. The latter im-

plies that the three-leg ladder is half filled with the JW fer-
mions. More details on the BMFT can be found
elsewhere.17,18 Fourier transforming and using the Nambu
formalism19 yield the mean-field Hamiltonian in the form

H = �
k

�k
†H�k + 2NJQ2 + NJQ�2 + 2NJ�P2, �4�

where the Nambu spinor is given by

�k
† = �c1k

A† c1k
B† c2k

A† c2k
B† c3k

A† c3k
B†� . �5�

Here cjk
a is the Fourier transform of cij

a in the i index along
the chains �a=A ,B�. The Fourier transform is performed in
the chains direction only, but not in the rung direction be-
cause of the open boundary conditions. The Hamiltonian
density is given by

FIG. 1. Sites within the shaded area enter in the summation in
the expression of the phase �i,1 of Si,1 in the JW transformation �2�
for the three-leg ladder. The phases for sites Si,2 and Si,3 are ob-
tained by adding to �i,1, �ni,1, and ��ni,1+ni,2�, respectively.
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H =	
0 e�k� 0

J�1

2
0 0

e*�k� 0
J�1

2
0 0 0

0
J�1

2
0 e��k� 0

J�1

2

J�1

2
0 e�*�k� 0

J�1

2
0

0 0 0
J�1

2
0 e�k�

0 0
J�1

2
0 e*�k� 0


 , �6�

with e�k�= iJ1 sin k and e��k�= iJ1� sin k. Notice that because
of the AF correlations, the three-leg-ladder lattice is subdi-
vided into two sublattices A and B. Diagonalizing H yields
the energy eigenvalues ±E1�k�, ±E2�k�, and ±E3�k�, where

E1�k� = J1 sin k ,

E2�k� =
1

2
�J1 − J1��sin k +

1

2
��k� ,

E3�k� = −
1

2
�J1 − J1��sin k +

1

2
��k� , �7�

with

J1 = J�1 + 2Q� ,

J1� = J�1 + 2Q�� ,

J�1 = J��1 + 2P� ,

��k� = ��J1 + J1��
2 sin2 k + 2J�1

2 . �8�

The excitation energy spectra are obtained by noting that the
elementary excitations in the present approach, which is
based on the JW fermions, consist of particle-hole
excitations.17 Thus the excitation energies are obtained by
subtracting the lower-energy bands from the upper-energy
ones and dividing by 2; this gives �Ej�k�� with j=1,2 ,3. The
energy spectrum �E1�k�� has the same form as the des
Cloizeaux–Pearson spectrum of the AF Heisenberg chain.20

E2�k� and E3�k� present a form with a gap of the order of J�.
The excitations energies consist thus of three bands, two of
which are gapped. These type of spectra are at the origin of
the interesting phenomena of locking and freezing of about
two-thirds of the spin degrees of freedom. These phenomena
will be studied in detail throughout the remainder of this
paper. Next, we start by deriving the mean-field equations.

C. Mean-field equations

In the present mean-field approach, the free energy per
site or spin corresponding to Hamiltonian �4� is

f =
1

3
�2JQ2 + JQ�2 + 2J�P2� −

kBT

2Nt
�

k
�
p=±

�
j=1

3

ln�1 + ep�Ej�k�� ,

�9�

where Nt=3N is the total number of lattice sites, and �
=1/kBT. The summation over k runs over the reduce 1D
Brillouin zone. The parameters Q, Q� and P are determined
by minimizing f; i.e., �f /�Q=�f /�Q�=�f /�P=0. This gives

Q =
1

8N
�

k
�
j=1

3

gj�k�tanh��Ej�k�/2 ,

Q� =
1

4N
�

k
�
j=2

3

gj��k�tanh��Ej�k�/2 ,

P =
1

8N
�

k
�
j=2

3

gj��k�tanh��Ej�k�/2 , �10�

with the dimensionless functions

g1�k� = 2 sin k ,

g2�k� = sin k + �J1 + J1��sin2 k/��k� ,

g3�k� = sin k − �J1 + J1��sin2 k/��k� ,

g2��k� = − g3�k�, g3��k� = − g2�k� ,

g2��k� = − g3��k� = 2J��1 + 2P�/��k� . �11�

III. RESULTS

In this section, we present the numerically calculated so-
lutions of the mean-field equations �10�. We begin by ana-
lyzing the � and T dependence of the mean-field parameters
Q, Q�, and P, then we analyze the energy spectra, the uni-
form and static susceptibility 	�T�, and finally the thermody-
namic functions S�T� and C�T�.

A. Mean-field parameters

1. � dependence

The � dependence of the mean-field parameters Q, Q�
and P at zero temperature is displayed in Fig. 2. For �→0,
Q�→Q with both approaching the zero-� value, namely,
0.317.10 The most important feature in Fig. 2 is the differ-
ence shown by Q and Q�. This gives rise to an interesting
physical situation where the same physical parameter takes
on different values depending on the part of the system con-
sidered. Q and Q� define the same physical quantity that is
the nearest-neighbor bond along the chains; Q is defined on
the outer chains, and Q� on the inner chain. Because of the
geometry of the three-leg ladder �space anisotropy� the bond
parameter P along the rungs behaves differently than Q and
Q�. P vanishes at �=0. With increasing �, P increases, then
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saturates at about 0.35, but Q and Q� decrease, with Q�
decreasing faster than Q, and becoming vanishingly small
when � is much greater than 1. Q, however, saturates at
approximately 0.16. This indicates the formation of strong
bonds in the outer chains 1 and 3, and loose bounds in the
inner chain 2. The Ising interaction in the inner chain be-
comes completely irrelevant in the large-� limit as Q�=0 in
the �=
 limit means that the spin interactions in the inner
chain acquire a purely XY character �remember that Q and
Q� result from the decoupling of the Ising terms along the
chains�.

2. T dependence

From a qualitative point of view, because of strong ther-
mal fluctuations for temperatures much greater than J�, all
the spins are expected to behave as decoupled along the
rungs �as well as along the chains if T�J as a matter of
fact�, and one expects to recover the case of three loosely
coupled chains if ��1. This means that Q, Q�, and P should
decrease as T increases, and Q−Q� should approach zero as
temperature increases.

Plots of the mean-field parameters as a function of tem-
perature for different values of � are displayed in Fig. 3. For
a given �, the parameters Q, Q�, and P have a maximum
value at T=0. With increasing temperature, they all decrease
but do not vanish at any finite temperature, excluding in this
way the possibility of a finite-temperature phase transition.
Note that in the isotropic case with �=1, Q�Q� and they
differ only slightly from P at low temperature. Also, Q, Q�,

and P are practically equal for T�J. In Fig. 4, we plot the
quantity Q−Q� as a function of temperature for three values
of �. It is found that Q−Q� decreases significantly as tem-
perature increases, without vanishing sharply at a critical
temperature. This also excludes the possibility of a phase
transition in the three-leg ladder; therefore one can only talk
about a crossover taking place from a high-temperature re-
gime with Q−Q��0 and a low-temperature regime with Q
−Q��0.

B. Energy spectra

1. � dependence

In the 1D limit with �=0, the excitation spectrum is
known exactly, and is given by the des Cloizeaux and Pear-
son formula20

��k� =
�

2
J�sin k� � 1.57J�sin k� . �12�

In this limit, Eqs. �7� yield ±E1= ±E2= ±E3= ±J1 sin k, with
J1�1.64J at T=0,10 which in turn gives the excitation spec-
trum 1.64J�sin k� in good agreement with the des Cloizeaux–
Pearson result �12�.

In Fig. 5, we display the energy eigenvalues as a function
of the wave vector k for two values of � ��=1,3�. E1�k�
vanishes at k=0 and �, and has a maximum occurring at a
lower energy in comparison to the maxima of E2�k� and
E3�k�. E2 and E3 show an identical energy gap in the vicinity
of k=0 or �, but differ around k=� /2. In the ground state
�GS� �i.e., at T=0�, the energies E1�k� with k�0 and � pre-
dominantly contribute to any physical quantity. Because of
the gap in E2 and E3, their contributions become significant
only at high enough temperatures. This is at the origin of the
mechanisms of the phenomena of locking for small �’s and
freezing for larger �’s. The energies E2�k� and E3�k� contrib-
ute significantly to any physical quantity only when the ther-
mal energy is higher than the gap in E2 and E3. Figure 6
shows the energy gap in E2 or E3 as a function of �. This gap
is nonzero for all values of �, and except for small values of
� ��0.5, where a slight upward curvature is observed�, this
gap increases linearly with �.

2. The spin degrees of freedom locking and freezing

The energy spectra for �=3 in Fig. 5�b� show that for
temperatures smaller than �J, the lowest band �E1� practi-

FIG. 2. The mean-field parameters Q, Q�, and P are plotted as
functions of �=J� /J at zero temperature.

FIG. 3. The parameters Q, Q�, and P are plotted as a function of
temperature �T /J� for four values of �. For �=0, P=0 and Q=Q�
at any temperatures.

FIG. 4. The quantity Q−Q� is plotted as a function of tempera-
ture for three values of �. Q−Q� becomes significantly greater than
zero at low temperature.
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cally dominates. The three-leg ladder in this case can be
mapped onto a single Heisenberg chain. Indeed, for �1,
two of the spins on adjacent sites on any given rung lock into
a “singlet” �as we mentioned earlier�, leaving the remaining
spin on that rung to participate in the formation of a spin-1 /2
chain with the effective coupling Jef f, given by

Jef f��� = JJ1���/J1�� = 0� ��  1� , �13�

in the low-T limit �T�J��. Equation �13� is obtained by
noting that the actual coupling constant in the linear chain is
obtained by dividing the coefficient J� /2 of the des
Cloizeaux–Pearson spectrum by � /2 for the single chain or
by J�1+2Q��=0�=J1��=0� in the BMFT for the three-leg
ladder. This generates a renormalization of the coupling
along the chains by the coupling along the rungs. Thus, for
nonzero �, the three-leg ladder behaves as a combination of
a spin-1 /2 chain and a two-leg ladder for T��J=J�. The
energy spectra �7� are in agreement with this assessment.
E1�k� is a renormalized des Cloizeaux–Pearson spectrum,
and can be viewed as the energy spectrum of one of the outer
chains, and E2�k� and E3�k� as the energy spectra of the
remaining two chains. Note that for the chain with E1�k�, the
spin velocity J�1+2Q��� is renormalized by the � depen-

dence of Q, Fig. 2. The effective interaction Jef f for this
chain is also renormalized with respect to the single Heisen-
berg chain; Eq. �13� shows that Jef f reduces to J as expected
when �=0, but as seen in Fig. 7, Jef f is reduced by about
18% with respect to J in the large-� limit.

Based on the energy spectra in Fig. 5, at zero temperature
the band E1 contributes the most, which gives a 1D spin
system with the coupling Jef f even if J� is finite. In fact, the
chain with the effective coupling Jef f is an excellent approxi-
mation for the three-leg ladder in the large-� limit, in agree-
ment with the results of Frischmuth et al.7 and Reigrotzki
et al.21 Note that for small ��1, Jef f �J is also in agreement
with the work of these authors.

C. The uniform and static susceptibility

1. The magnetization along the z-axis

In the present approach, the rotational symmetry is not
broken because of the absence of long-range AF order. The
mean-field approximation nonetheless breaks the spin space
isotropy as a consequence of fixing the quantization axis in
the JW transformation. Consequently, the spin response is
anisotropic. For convenience reasons, we will calculate the
spin susceptibility in the z direction; the susceptibility in the
xy plane being much more difficult to calculate, we will use
an estimate from the work of Muthukumar et al.22 In terms
of the JW fermions, a magnetic field H applied along the
spin z axis becomes a chemical potential for the JW fermi-
ons; the energy term corresponding to it is −h�i� j=1

3 Si,j
z

=−h�i� j=1
3 �ci,j

† ci,j −1/2�, with h=g�BH. Here, g is the Landé
factor, and �B the Bohr magneton. For the purpose of calcu-
lating the magnetization, the energy spectra can be approxi-
mated by ±Ej�k�−h �j=1,2 ,3� in the limit of a very weak
magnetic field. The magnetization, normalized with respect
to g2�B

2 , is found by calculating the free energy per site
f�h ,T�, then differentiating with respect to h: Mz�h ,T�
=−�f�h ,T� /�h. In the limit of a very weak magnetic field
�h�0�, one obtains for the magnetization

Mz�T,h� �
1

Nt
�

k,p=±
�
j=1

3

nF�pEj�k� − h −
1

2
, �14�

where nF�x�= �1+e�x�−1 is the Fermi-Dirac factor. So the
magnetization turns out to be the average number of the JW
fermions per site minus 1/2. In the absence of an external
magnetic field the lattice is half filled, leading to Mz=0.

FIG. 5. The excitation spectra �Ej�k��, with j=1,2 ,3, are plotted
as a function of k for �=1 in �a� and 3 in �b�.

FIG. 6. The energy gap in E2 or E3 is drawn versus �.

FIG. 7. The effective coupling constant Jef f is plotted as a func-
tion of �.
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Experimentally, a spatially averaged spin susceptibility is
measured for polycrystalline materials. Following Muthuku-
mar and co-workers,22 one finds 	�T�= �	xx�T�+	yy�T�
+	zz�T� /3�	zz�T� /2. The uniform and static susceptibility
	�T� can therefore be obtained by applying a static and uni-
form magnetic field H parallel to the z axis. The zero-field
susceptibility in the z direction is 	zz�T�= ��M /�h�h=0

= �−�2f /�h2�h=0, which leads to the following result for the
susceptibility per spin:

	�T� =
8�

3 �
j=1

3 � dk

2�
cosh−2��Ej�k�

2
� . �15�

The factor 1 /3 in Eq. �15� is a consequence of dividing by
the total number of sites 3N.

2. Zero-temperature value of �„T…

For J�T, only the term of 	�T� in which E1 is involved
dominates because E2 and E3 are gapped. So the zero tem-
perature value of 	�T� can be expected to be roughly the
third of what it is for a single Heisenberg chain; i.e., when
�=0. For J�T with T→0, 	�T� is approximately given by
the density of state of the JW fermions at the Fermi level
�F=0:

	�T = 0,�� �
1

3
	�T = 0,� = 0� =

1

3�vs
, �16�

where vs= �1+2Q�J is the spin velocity of the spin excita-
tions along a single AF chain. Equation �16� is indeed in
good agreement with our numerical calculation, the results of
which are presented in Fig. 8�a�. 	�T� is displayed versus
temperature for several values of �. We clearly see that
	�T=0,0���1��0.032 whereas 	�T=0,�=0��0.097,
which is three times greater.

3. Nonzero-temperature susceptibility

From a qualitative point of view, in the high-temperature
regime with TJ�, one expects no significant difference
between 	�T ,��0� and 	�T ,�=0�. In this regime, thermal
fluctuations unlock the spin singlets because they overcome
the effect of J� �or the gap due to J��. This is found to be the

case indeed, but for only ���tr, as seen in Fig. 8, with �tr
�2.75. Figures 8�a� and 8�b� show 	�T� versus temperature
for several values of � between 0 and 10. For small � in
panel �a�, 	�T� rapidly increases with temperature and
reaches the 1D susceptibility at a temperature that increases
with J�. This demonstrates that as temperature increases the
three-leg ladder geometry becomes irrelevant; the three-leg
ladder behaves as if it were 1D at high enough T. For �
��tr, 	�T� shows a single maximum that decreases when �
increases.

At �tr, the maximum of 	�T� splits into two maxima
which are smaller than the original maximum. This signals a
regime change, in which the spin degree of freedom freeze
for temperatures well below J�. The freezing phenomenon
can now be understood by the fact that the spin singlets on
each rung order coherently along two of the three chains as
illustrated in Fig. 9. The maximum in 	�T� at the lower tem-
perature has the same origin as the maximum in the suscep-
tibility of a single Heisenberg chain; i.e., the quantum fluc-
tuations �at low T� become important enough to level off the
increase of the susceptibility as T decreases to zero. How-
ever, the maximum at the higher temperature is due to the
fact that as T increases the spin degrees of freedom frozen in
the singlets “defrost,” thus causing the susceptibility to in-
crease before it is brought down by the thermal fluctuations
at higher temperatures. Figure 10 illustrates the region of �
where the regime change takes place. For ���tr, 	�T� has a
single maximum. For ���tr, this maximum splits into two
maxima as seen for �=3. Note that the higher-T maximum
becomes less pronounced for larger values of � as it occurs
in a region of temperature which is dominated by the classi-
cal thermal fluctuations.

The regime change taking place at �tr can be best seen by
focusing on the temperature Tmax at which the maximum �the
first of the maxima when ���tr� of 	�Tmax� occurs. In Fig.

FIG. 8. The susceptibility is drawn versus temperature for vari-
ous values of �: �a� 0���0.4, �b� 0���10. FIG. 9. �Color online� Low-T schematic representation of spin

locking �a� and freezing �b�. �a� ���th: there is no preferred loca-
tion for the “singlets;” each “singlet” can jump back and forth be-
tween the two top and two bottom chains. We say that the singlets
form a fluid state. �b� ���th: the “singlets” occupy either the two
top �like here� or the two bottom chains; the three-leg ladder in this
case behaves as a combination of a single chain and a two-leg
ladder. A dashed ellipse symbolizes a pair of spins locked into a
singlet.
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11, Tmax is displayed as a function �. Tmax increases with �
��tr, then at �tr, it drops back close to the 1D ��=0� value.
Above �tr, the contribution of the band E1 is much greater
than that of the bands E2 and E3 in the low-temperature
regime, �T�J��. Indeed, Fig. 12 shows that the susceptibil-
ity is predominantly given by the contribution from the band
E1, that is,

	ef f =
8�

3
� dk

2�
cosh−2��E1�k�/2

for T�J�. In the strong-coupling region ���tr, Tmax as-
sumes precisely the value Tmax=Tmax��=0��Jef f /J�0.46J,
which agrees very well with the numerical value in Fig. 11.
This is smaller than the 1D value of Tmax=0.58J.

D. Interpretation of locking and freezing
of the spin degrees of freedom

In summary, below the threshold value �tr, the coupling
along the rungs J� causes the locking of part of the spin
degrees of freedom at very low temperatures. Above �tr, the
spin degrees of freedom freeze for temperature well below
J�; for �=10, Fig. 12 shows that the three-leg ladder under-
goes a dimensionality crossover, as far as the magnetic de-
grees of freedom are concerned, from the three-leg geometry
to strict one-dimensionality at a temperature of about 2J.

To understand this behavior, consider the limit �=
 with
J=0 and J�=1. The states of the system in this case are the
GS doublet with −J� and spin 1/2, a doublet with energy
zero and spin 1/2, and a quartet with energy J� /2 and spin
3/2. Switching on a small coupling J along the chains effec-
tively couples the GS doublets, and thus yields a system
equivalent to a Heisenberg chain with the effective coupling

Jef f, which is renormalized by J�. To involve the spin de-
grees of freedom in the state above the GS doublet one needs
to overcome an energy separation of the order of J�.21 When
J�J, the mapping of the three-leg ladder onto a single
Heisenberg chain becomes practically exact even for T�J.
For J��J �precisely for J��2.75J as we find here�, how-
ever, this mapping breaks down.

Later on, we will examine the specific heat and study how
the freezing phenomenon of the spin degrees of freedom is
reflected in it. But first, we compare our susceptibility results
to the QMC results,6 and attempt to fit the experimental data
of the material Sr2Cu3O5,13 which is believed to be a three-
leg ladder as far as the magnetic properties are concerned.

E. Comparison with the quantum Monte Carlo results

Using the QMC technique, Johnston et al.6 calculated the
spin susceptibility as a function of temperature for several
values of � with 0���1. Although our numerical values of
	 do not agree well with those these authors obtained, be-
cause our susceptibility is off by about 20%, the trends in
	�T� as a function of � we get agree very well with theirs.
The sudden decrease of 	�T=0� as � becomes nonzero was
also observed in the QMC results, and provides a strong
evidence for the qualitative applicability of the BMFT in the
case of the three-leg ladder. The difference 	�T=0,�=0�
−	�T=0,0���1��0.063 we calculated is in good agree-
ment with their result 0.070.

F. Fitting the experimental susceptibility data of Sr2Cu3O5

We now fit the experimental susceptibility data of Azuma
et al.13 for the three-leg ladder material Sr2Cu3O5. Following
the approach of Johnston et al.,6 we make a fit using the
expression

	̃�T� = NA

g2�B
2

J
	�T� , �17�

where NA=6.022�1023 mol−1 is Avogadro’s number. Using
g=2 Eq. �17� can be written in the cgs unit system as

	̃�T� � 1.5�cm3 K mol−1�
1

J/kB
	�T� . �18�

The values of the coupling constants used to fit the data are
J /kB=1700 K and �=0.4. The result is reported in Fig. 13.

FIG. 12. The susceptibility 	�T� is drawn versus temperature for
�=10. It is compared with the contribution 	ef f from the E1 term in
Eq. �15�. For T�2J, 	ef f coincides exactly with the total suscepti-
bility 	�T�.

FIG. 10. The susceptibility is drawn versus temperature for val-
ues of � near the threshold value �tr�2.75.

FIG. 11. The temperature Tmax, at which the maximum �the first
of the maxima for ���tr� of 	�T� takes place, is plotted as a
function of �.
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The range of temperature of the experimental data of Azuma
et al.13 is from 5 to 650 K. From our fit in Fig. 13, we ob-
serve good agreement with the experimental data above
about 320 K. However, in the lower-temperature region de-
viations from the experimental data exist. We believe that the
departure of our theoretical curve from the experimental data
can be attributed to the fact that the BMFT does not account
for all the spin correlations. For comparison we also show in
Fig. 13 the susceptibility of the linear chain we calculated for
�=0 within the BMFT. This is displayed as a dotted line.
This shows that a finite value of � is needed to obtain an
acceptable fit of the experimental data, and rules out the
possibility that the magnetic properties of Sr2Cu3O5 are de-
scribed by a linear Heisenberg chain. The maximum of 	�T�
for this material would occur at Tmax�0.58�1700=986 K.
Note that the temperature at which this compound starts to
decompose is about 800 K.23

G. Specific heat analysis

1. Entropy

The entropy per spin, S=−�f /�T, is given by

S =
− kB

2Nt
�

k,p=±
�
j=1

3

„nF�pEj�k�ln nF�pEj�k�

+ �1 − nF�pEj�k��ln�1 − nF�pEj�k��… , �19�

where Ej�k� represents the eigenenergies defined in Eq. �7�.
Plots of the entropy, normalized by the Boltzmann constant,
are displayed in Fig. 14�a� for various values of �. Again, for

small �, one notices, as for the spin susceptibility, that the
density of states is reduced by a factor of roughly 3 when �
becomes nonzero, because of the spin-locking phenomenon.
This is seen as the reduction of the slope of S�T� in the
vicinity of zero T for nonzero �.

In Fig. 14�b�, the entropy divided by kB ln 2 is displayed
as a function of T for �=10. S�T� /kB ln 2 clearly presents
two regimes; in the first regime realized for T�2J, the en-
tropy accounts for only the third of the spin degrees of free-
dom, as given by

Sef f = −
kB

2Nt
�

k,p=±
�f�pE1�ln f�pE1�

+ �1 − f�pE1�ln�1 − f�pE1�� , �20�

which is the contribution from the E1�k� band only. In the
second regime, the entropy is rather a consequence of the
entire degrees of freedom. This is evident at very high tem-
perature where all the spin degrees of freedom on the three
chains contribute, giving an entropy per site that saturates at
kB ln 2. For ���th �here for �=10�, the freezing of the spin
degrees of freedom manifests itself as a tendency to form a
plateau in S�T� at intermediate temperatures.

2. Specific heat

The specific heat is calculated numerically using the rela-
tion

C = T
dS

dT
. �21�

Figures 15�a� and 15�b� show C�T� as a function of T for
several values of �. In panel �a�, in comparison to �=0, the
major effects in the case of 0����tr are the reduction of
the slope of C�T� at zero T, and the shifting upward of the
temperature at which the maximum of C�T� occurs. Near
zero T, C�T� is linear in T for all values of �, with the slope
about one-third of what it is for the Heisenberg chain.24 In
panel �b�, once again one sees the effect of the freezing phe-
nomenon in the splitting of the maximum of C�T� into two
maxima for ���tr. While the lower-temperature maximum
has the same origin as the maximum of C�T� in the single
Heisenberg chain,24 the higher-temperature maximum is due

FIG. 13. The experimental magnetic susceptibility of Sr2Cu3O5

from Ref. 13 is shown as circles. The solid line is our theoretical fit
obtained using the coupling constants J /kB=1700 K and �=J� /J
=0.4. For comparison the dotted line is the susceptibility calculated
for the one-dimensional �J� /J=0� case with J /kB=1700 K.

FIG. 14. �a� The entropy is displayed as a function of tempera-
ture for several values of �. �b� The entropy for �=10 is compared
to the entropy contribution of the lower-energy band E1. Both en-
tropies are equal for T�2J.

FIG. 15. The specific heat is drawn as a function of T: �a� for
0���1, �b� for greater values of � together with the �=0 curve.
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to the contribution from the bands E2 and E3. Note that no
sharp peak exists in C�T� because Q−Q� does not vanish at
a critical temperature �see Fig. 4�.

Figure 16 shows the comparison of C�T� for �=10 with
the contribution from the band E1�k�, Cef f =TdSef f /dT, alone.
We find that for temperatures smaller than about 1.5J, C�T�
is practically equal to the contribution from this band. As
temperature increases C�T� departs from it because the con-
tributions from the bands E2 and E3 become important. This
finding is consistent with the one found previously for the
magnetic susceptibility, and is due to the phenomenon of
freezing of part of the spin degrees of freedom.

3. Wilson-Sommerfeld ratio

The ratio of the magnetic susceptibility 	�T� and the spe-
cific heat coefficient ��T�=C�T� /T is a dimensionless quan-
tity, and for S=1/2 systems it is defined as25

RW =
4�2	�T�T

3C�T�
, �22�

and is called the Wilson-Sommerfeld �WS� ratio. For the
noninteracting Fermi gas, RW=1 independently of tempera-
ture. Both 	�T� and ��T� are proportional to the density of
states �here, at the Fermi energy of the JW fermions, which is
zero�. The value of unity for RW reflects on the fact that the
electrons in a gas do not interact. The JW fermions in the
case of the Heisenberg model form a system of interacting
spinless fermions. One therefore expects RW to deviate from
1 for these interacting JW fermions. Wilson showed that for
the Kondo model the impurity contributions to 	�0� and �
yield RW=2, which does not depend on the strength of the
interactions.26

Here, Fig. 17�a� shows RW as a function of temperature
for several values of � with 0���1. For T→0, RW ap-
proaches 2, and for T�0.4J, the T dependence of RW is
consistent with a T2 dependence. For �=0, our result is in
good agreement with the results of Johnston and
co-workers,25 who found RW to be exactly 2 at T=0, and a T2

law at high temperatures. Note however that near zero T,
there exists logarithmic contributions which lead to �about
10%� deviations from the value 2. The present approach does
not account for these logarithmic contributions to suscepti-

bility and specific heat. What is most important here is that
our results are consistent with the trends found in Ref. 25,
namely, that with increasing temperature RW is nearly inde-
pendent of T up to T�0.4J.

From the plots of RW shown in Fig. 17�a� for ��1, one
sees a significant dependence on �, but the curves show
roughly the same functional dependence on temperature as
for the single chain. As T→0 the various plots approach 2.
For the single chain the minimum value assumed by RW is
�1.62, and occurs at T=0.29J. For the isotropic ladder with
�=1, the minimum value of RW is �0.88, and occurs at T
=0.29J too. Figure 17�b� shows RW for values of � larger
than 1. For ���tr, the functional dependence on T is more
or less similar to that of RW in the case of ��1. However,
for ���tr, the T dependence of RW changes drastically. A
maximum appears at an intermediate temperature, and
for low temperatures, RW behaves as for a single chain with
the effective coupling Jef f; i.e., RW�RW

ef f =4�2	ef f�T�T /
3Cef f�T�. Figure 18 illustrates this for �=10. For T smaller
than J, RW and RW

ef f are practically the same. The maximum
in RW separates roughly the low-T 1D regime from the
higher-T regime where all bands contribute.

IV. CONCLUSIONS

Using the two-dimensional generalized Jordan-Wigner
transformation and the bond-mean-field theory, we studied

FIG. 16. The specific heat for �=10 is compared to the contri-
bution from the lower-energy band E1�k�. The maximum at the
higher temperature of C�T� is a consequence of the bands E2 and
E3.

FIG. 17. The WS ratio RW is plotted as a function of T for
various values of the rung-to-leg couplings ratio �.

FIG. 18. The ratio RW is compared to the ratio RW
ef f of the

Heisenberg chain with the effective coupling Jef f.
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the Heisenberg model on the three-leg ladder geometry. We
found that loose bonds develop in the inner chain and stron-
ger ones in the outer chains. The main results of this work
are the proposals of the phenomena of locking and freezing
of part of the spin degrees of freedom. For the rung-to-leg
couplings ratio � smaller than the threshold value �th=2.75,
about 2 /3 of the spin degrees of freedom lock into loose
singlets at temperatures close to zero. For � greater than the
threshold value, these singlets form a coherent state along
the chains, causing the three-leg ladder to become equivalent
to a single Heisenberg chain with an effective coupling at
low enough temperatures. As temperature increases, a cross-
over to a regime where all the spin degrees of freedom par-
ticipate takes place. Using the present theory, we obtained a
good fit for the susceptibility experimental data for the ma-

terial Sr2Cu3O5. We also calculated the temperature and cou-
pling dependence of the susceptibility, entropy, and specific
heat. For coupling � greater than the threshold value, we
found that the susceptibility and specific heat present two
maxima each. The lower-temperature maximum is of the
same origin as in a single Heisenberg chain. The higher-
temperature maximum is due to higher-energy excitations
that do not exist in a single chain.
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