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We propose a mechanism leading to ground state splitting for rare earth 8S ions in semiconductor crystals.
The resulting splitting is due to three effects; the first is the intra-atomic 4f-5d spin-spin interaction, the second
one is the spin-orbit interaction for 5d electrons, and the third one is their hybridization with the valence band
states of the semiconductor host. The resulting splitting depends significantly on the position of the 5d level
with respect to the semiconductor host band structure. We also discuss a different model, already known in the
literature, which is also based on the ion–band state hybridization. For both models, as an example, we present
results of numerical calculations for rare earth ions in the IV-VI semiconductor PbTe.
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I. INTRODUCTION

The present paper is devoted to the theoretical analysis of
the ground state splitting of rare earth �RE� 8S ions in semi-
conductor crystals. Very well known and studied examples of
such ions are Eu2+ and Gd3+. It is believed that the magnetic
properties of these ions are determined by the half-filled 4f
shell. According to Hund’s rule, for this electron configura-
tion, the ground state should be characterized by the total
angular momentum L=0 and the total spin S=7/2. In other
words the ground state should be 8S7/2 which is eightfold
degenerate, independently of the crystal environment. Such a
model explains quite well magnetic susceptibility or magne-
tization measurements where the spin of the ion interacts
with an external magnetic field or with the spin of another
ion and the energies of Zeeman or ion-ion exchange interac-
tions are of the order of 1 K.

However, electron paramagnetic resonance �EPR� experi-
ments, which probe the system on a much finer energy scale,
clearly demonstrate that the above picture is an approximate
one only. It turns out that in crystals the degeneracy of the
ion’s ground state is lifted, and the nature of the splitting
depends on the symmetry of the environment. For example,
for Oh symmetry, the case with which we deal in the present
paper, the ground state is split into three levels: doublet,
quartet, and doublet. In accordance with group theory, the
effective spin Hamiltonian describing the splitting caused by
the ion’s crystal environment is of the form

H =
b4

60
�O4

0 + 5O4
4� +

b6

1260
�O6

0 − 21O6
4� , �1�

where the operator equivalents Ok
m for spin S=7/2 are 8

�8 matrices defined, for example, in Ref. 1. The energy
levels of the Hamiltonian �1� are �−18b4−12b6��2�, �2b4

+16b6��4�, �14b4−20b6��2�, where the superscripts �2� and �4�
denote the degeneracy of the levels.

From EPR experiments, if the quality of the samples is
high, it is possible to obtain not only the absolute values of
coefficients b4 and b6, but also their signs. This may be
achieved by performing measurements on the same sample
at different temperatures. The splittings, together with the
level degeneracies, are shown schematically in Fig. 1 for

b4�0 and b4�0. The energy diagrams in Fig. 1 correspond
to the splittings of Eu2+ and Gd3+ ions in PbTe. Here we will
often refer to this compound as an example, but the calcula-
tion methods and the general predictions of the theory may
be applied to any semiconductor containing RE S state ions.
From the literature we know that for the Eu ion b4

=129 MHz,2–4 while for the Gd ion b4=−110.16 MHz.5 The
coefficient b6 is usually about two orders of magnitude
smaller and because its influence on the ground state splitting
is very small it will not be analyzed in the following. Notice
that the signs of b4 for Eu2+ and Gd3+ ions are opposite. This
is rather strange, because at first sight, except for the small
relative difference in nuclear charge, these two ions are very
similar and their crystal neighborhoods are the same �six
tellurium atoms placed in the vertices of a regular octahe-
dron�.

The problem of the ground state splitting of rare earth
8S7/2 ions is very old. A very comprehensive discussion of
the possible physical mechanisms leading to the splitting has
been presented by Wybourne.6 In Ref. 6, using perturbation
theory and results of numerical calculations, he analyzed the
case of Gd3+ ion in the crystal environment of D3h symmetry.
The main idea is that due to the strong spin-orbit coupling
interaction for 4f electrons the higher-energy 4f7 states
2S+1L7/2 with different L and S are mixed into the ion’s
ground state,

FIG. 1. Differences in the splittings of the ground state levels for
�a� Eu2+ and �b� Gd3+ ions in PbTe crystal. The numbers show the
degeneracies of the levels.
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�8S7/2� → s�8S7/2� + p�6P7/2� + d�6D7/2� . . . , �2�

where s, p, and d,… are numerical coefficients.6,7 Due to the
nonzero p, d, … the ion is no longer in a pure 8S7/2 state; it
may interact with the crystal field and this interaction leads
to the ground state splitting.

The results obtained by Wybourne have been improved
recently by Smentek et al.8 On the basis of extensive numeri-
cal relativistic calculations for Gd3+ ion they derived the ef-
fective spin Hamiltonian for this ion in a crystal neighbor-
hood of arbitrary symmetry �relativistic crystal field theory�.
In particular, for Oh symmetry the effective spin Hamiltonian
may be written in the form of Eq. �1� where the coefficient b4
reads

b4 =
A0

4U�4�

6�154
� 1

�2
b4�04� + b4�13�X�13�4 + b4�15�X�15�4� .

�3�

The definitions and numerical values of U�4�, b4��t�, and
X��t�4 may be found in Ref. 8. A0

4 is the crystal field coeffi-
cient, which, in the simplest six-point charge model is equal
to A0

4=7e2a0
4 /2d5 where a0�0.5 Å is the atomic length unit,

d is the distance between cation and anion, and e is the
electron’s charge.9 Taking Eu and Gd in PbTe as an example,
we see that the relativistic crystal field theory alone cannot
explain simultaneously ground state splitting for both ions
because the experimentally determined signs of b4 are oppo-
site. It is very improbable that replacing the Eu ion by a Gd
ion will change the sign of A0

4 because the neighborhoods of
two ions are the same. Comparing the values of coefficients
s, p, and d, for gadolinium and europium, presented in Table
5.1 in Ref. 7, we see that they are nearly identical. Although
the 4f wave function for Eu is slightly more extended in
space than for Gd,10 it is very difficult to show the way in
which such small differences between two ions can lead to
opposite signs of b4.

In the literature several other mechanisms leading to
ground state splitting have been considered. They are listed
for example in Ref. 11 where also the appropriate formulas
for b4 are collected. Analyzing these formulas, one may con-
clude that for the same reason, i.e., similarity of coefficients
in Eq. �2� for Eu and Gd, these mechanisms, in the same
crystal environments, should lead to similar results for both
ions.

The inadequacy of a model in which the RE ion interacts
with the environment by the electrostatic crystal field poten-
tial only has been already noticed in the literature.7,12,13 In
1978 Barnes et al.,13 analyzing the ground state splitting for
Gd3+ ion in different crystals, noticed that in insulators there
is proportionality between the crystal field coefficient A0

4 and
the coefficient b4, while in metals such proportionality does
not exist. They proposed a model in which 4f electrons in-
teract with the band states via a hybridization processes. Us-
ing second order perturbation theory with respect to the hy-
bridization, they constructed an effective spin Hamiltonian
for the ground state of the Gd3+ ion. As the excited states of
the system they took into account configurations in which the
number of electrons on the 4f shell changes by ±1, i.e., the

4f8 configuration plus one hole in the Fermi sea or the 4f6

configuration plus one additional electron in the band. Ac-
cording to Hund’s rule, in the excited states 4f8 and 4f6 the
angular momentum is nonzero. Taking into account internal
spin-orbit coupling, the authors of Ref. 13 obtained an effec-
tive spin-lattice interaction leading to the ground state split-
ting.

In Sec. IV we will reconsider this model because we think
that in its derivation and solution presented in Ref. 13 some
important points have been missed.

The main idea of Barnes et al. is very interesting; how-
ever, the final results strongly depend on the constants de-
scribing the hybridization between 4f electrons and the band
states. Due to strong localization of the 4f shell, it is very
often assumed in the literature that this hybridization is very
small. For example in calculations of the exchange integral
between 4f spin and band carriers in PbEuTe, Dietl et al.14

found that the contribution to the final result due to hybrid-
ization between 4f and band states is negligible.

Contrary to 4f electrons, 5d states of RE ions are very
extended in space and their hybridization with band states is
certainly much stronger. In the literature we have found ex-
amples of successful explanations of magnetic properties of
RE ions in semiconductors which are based on the assump-
tion that the interaction between 4f electrons and band states
goes via internal 4f-5d exchange interaction and hybridiza-
tion between 5d and band states. For instance, using such a
model, in 1970 Kasuya15 explained the EuuEu exchange
constant in EuO. The Kasuya mechanism was used also, as a
starting point, by Story et al.16 in the theory explaining the
Fermi energy dependence of the GduGd exchange constant
in SnGdTe mixed crystals. The 4f-5d interaction was also
invoked by Dietl et al.14 in calculation of the sp-f exchange
integral between the localized Eu spin and the band carriers
in PbEuTe.

In the present paper we generalize this mechanism by
including spin-orbit coupling and the crystal field potential
for 5d states and apply it to the calculation of the coefficient
b4. In the model, which will be explained and discussed in
detail in the next sections, the ground state splitting occurs
due to the combined effect of intra-atomic, Heisenberg type,
4f-5d exchange interaction, spin-orbit interaction on 5d or-
bitals, and the hybridization of RE 5d levels with the valence
band states. Our model includes the spin-orbit interaction in
the semiconductor host band states. It turns out that the func-
tional dependence of b4 on the 5d spin-orbit constant is dif-
ferent for semiconductors with strong band spin-orbit inter-
action than for those for which this interaction may be
neglected. For semiconductors with strong band spin-orbit
effects one may expect that the proposed mechanism is more
effective. One of the important parameters of the model is �0,
the energy necessary to transfer an electron from the valence
band to the 5d shell. The magnitude of the resulting 4f
ground state splitting decreases very quickly with increasing
�0. That is why the position of the 5d level with respect to
the Fermi energy determines whether the mechanism is im-
portant or not. For example, as will be discussed in Sec. III,
for Gd in PbTe this energy is small, of the order of 0.5 eV,17

and the resulting b4 is of the order of the one observed in
experiment. For Eu �0 is several times larger and the calcu-
lated splitting is much smaller.
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In the next section we describe the model and derive an
approximate, analytical result for b4. This formula enables us
to discuss the salient features of the model, in particular the
dependence of b4 on the parameters of the theory. In Sec. III
we present details of numerical calculations and Sec. IV is
devoted to discussion of the model by Barnes et al.13 Some
additional remarks are presented in the last section.

II. THE EFFECTIVE SPIN HAMILTONIAN

Let us consider a semiconductor crystal with one cation
replaced by a RE atom. The unperturbed part of our model
Hamiltonian describes ground and excited states of the sys-
tem. These two groups of states are connected by 5d band
state hybridization, which we treat here as a perturbation.
Below, we describe these two parts of the Hamiltonian.

In the ground state of the system the electrons fill the
band levels up to the Fermi energy. We assume that the band
structure is not changed significantly by the presence of the
RE atom. In our model the RE atom is treated as the host

cation atom with additional 4f and 5d orbitals. There are
seven electrons on 4f orbitals and the 5d shell is empty.
Based on Hund’s rule, the spin of the ion S=7/2 and its
angular momentum L=0; thus the ground state of the system
is eightfold degenerate and is described by M, the projection
of the spin on a quantization axis.

As the excited states we take configurations with one ad-
ditional electron on the 5d level and one electron less in the
band. The Hamiltonian describing 4f75d1 configuration of
the ion reads

H4f75d1 = − JS · s + �tLt · s + �eLe · s + Vcr. �4�

The first term describes the exchange interaction between the
4f spin S and the spin s= 1

2� of the 5d electron. The second
and the third term describe the spin-orbit interaction on the
5d shell. The operators Lti �i=x ,y ,z� are the angular momen-
tum operators between the 5d states of t2g symmetry and Lei
between the t2g and e2g states, respectively. If t2g�dyz ,dxz ,dxy�
and eg�dz2 ,dx2−y2� states are defined according to Ref. 9 then
the operators Lti and Lei have the following matrix form:

Ltx = 	
0 0 0 0 0

0 0 i 0 0

0 − i 0 0 0

0 0 0 0 0

0 0 0 0 0

, Lty = 	

0 0 − i 0 0

0 0 0 0 0

i 0 0 0 0

0 0 0 0 0

0 0 0 0 0

,Ltz = 	

0 i 0 0 0

− i 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

 , �5�

Lex = 	
0 0 0 − i�3 − i

0 0 0 0 0

0 0 0 0 0

i�3 0 0 0 0

i 0 0 0 0

,Ley = 	

0 0 0 0 0

0 0 0 i�3 − i

0 0 0 0 0

0 − i�3 0 0 0

0 i 0 0 0

,Lez = 	

0 0 0 0 0

0 0 0 0 0

0 0 0 0 2i

0 0 0 0 0

0 0 − 2i 0 0

 . �6�

In the case of a free ion the two spin-orbit constants �t and �e
are equal; however, if the ion is placed into the crystal they
are, in general, different.9 Finally, the last term in Eq. �4�
describes the influence of the crystal field on the 5d energy
levels and it has the form

Vcr = Dq	
− 4 0 0 0 0

0 − 4 0 0 0

0 0 − 4 0 0

0 0 0 6 0

0 0 0 0 6

 . �7�

After diagonalizing the 80�80 matrix H4f75d1 we obtain
eigenvectors �R� and the corresponding eigenvalues �R. The
eigenvectors �R� may be expressed in the basis �Mdi��:

�R� = �
Mdi�

�Mdi���Mdi��R� �8�

where −7/2�M �7/2 and �= ± 1
2 are the projections of the

4f and 5d spins on the quantization axis, respectively, and di
are t2g for i=1,2 ,3 and eg for i=4,5 5d orbitals.

In our model we assume that the 5d levels of RE hybrid-
ize with the band states. �The hybridization of the 4f shell in
the present section is neglected.� The hybridization matrix
elements �R ,q�h�M� describe the probability amplitude of a
transition from a ground state �M� to excited state �R ,q� with
h being the one-electron hybridization Hamiltonian, and the
quantum number q
nk describes the band state of an elec-
tron with the corresponding energy �q transferred to the 5d
shell. The wave vector k belongs to the first Brillouin zone
and n is an additional index necessary to fully characterize
the band state. For bands with negligible spin-orbit coupling,
where the electron spin is a good quantum number, n corre-
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sponds to the band’s number and the projection of the elec-
tron’s spin.

In the second-order perturbation theory with respect to the
hybridization between 5d levels of the RE ion and the band
states, which often is called the Schrieffer-Wolff transforma-
tion, we obtain the effective spin Hamiltonian for the RE ion
in the crystal:

HMM� = − �
R,q

�M�h�R,q��R,q�h�M��
�0 + �R − �q

. �9�

In Eq. �9� the sum over q runs over all occupied band states.
The sum in the denominator is the energy of the excited state

of the system where �0 denotes the energy necessary to trans-
fer an electron from the Fermi level, which we assume to be
the zero of the energy scale, to the lowest-energy state of
4f75d1 configuration.

Using Eq. �8� and the fact that

�Mdi�q�h�M�� = 	MM��di��h�q� , �10�

we may rewrite Eq. �9� in the form

HMM� = − �
R,q

�
di1�1,di2�2

�di2�2�h�q��q�h�di1�1��Mdi1�1�R��R�M�di2�2�
�0 + �R − �q

. �11�

Equation �11� is the main result of the present paper. If we
know the values of matrix elements HMM� then, comparing
them to Eq. �1�, we obtain the coefficient b4. In the next
section we present details and results of numerical calcula-
tions for the example case of PbTe semiconductor, here we
derive an approximate, analytical formula for b4 valid to the
fourth order with respect to the intra-atomic spin-orbit cou-
pling. This analytical formula will enable us to discuss and
understand the general properties and dependencies of b4 on
different parameters of the model.

Let us take an arbitrary state characterized by the wave
vector k0 from the first Brillouin zone and let us denote by
�k0� the set of states which may be obtained from k0 by
symmetry transformations of Oh, including Kramers conju-
gation. More precisely, we take an arbitrary wave vector k0
from the first Brillouin zone, we find all the wave vectors
which may be obtained from k0 by symmetry operations and
the set �k0� contains the Kramers conjugate pairs correspond-
ing to these vectors. On symmetry grounds, the matrix
Zdi1�1,di2�2


�q��k0��di1�1�h�q��q�h�di2�2�, appearing in Eq.
�11�, must have the following form:

Zdi1�1,di2�2
= ptIt + peIe + qtLt · � + qeLe · � �12�

where the matrices It and Ie are unit operators in the t2g and
eg subspaces, respectively, i.e.,

It = 	
1 0 0 0 0

0 1 0 0 0

0 0 1 0 0

0 0 0 0 0

0 0 0 0 0

, Ie = 	

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 1 0

0 0 0 0 1

 . �13�

The coefficients pt , pe ,qt ,qe depend on the band structure
and on the quantum number k0. If we neglect the band spin-
orbit interaction then qt and qe disappear. However, in many
cases, for example for PbTe, such an assumption is unjusti-

fied and, as we will see below, qt and qe, in some sense, play
the role of the ion’s spin-orbit constants.

Let us notice that �q=�k0
=const for all q� �k0�. Then the

effective Hamiltonian HMM�, Eq. �11�, may be rewritten as
the trace over di and � degrees of freedom of the product of
two matrices:

HMM� =
1

48�
k0

Trdi�
ZQ�M,M�� , �14�

where the matrix Q�M ,M�� is defined as

Qdi1�1,di2�2
�M,M�� = − �

R

�Mdi1�1�R��R�M�di2�2�
�0 + �R − �k0

,

�15�

and the factor 1 /48 is necessary to take into account multiple
counting of states �the Oh group has 48 elements�.

Equation �15� may be expanded in the series of �t and �e.
Denoting H�=�tLt ·s+�eLe ·s the expansion is

1

E −
1

2
JS · � + Vcr + H�

= G0�
n=0




�− H�G0�n, �16�

where E=�0−�q+7/4J+4Dq. Notice that the lowest eigen-
value of the operator − 1

2JS ·�+Vcr equals −�7/4J+4Dq� and
the subtraction of this term is in accordance with the defini-
tion of �0. The operator G0
1/ �E+ 1

2JS ·�+Vcr� is

G0 = �At + BtS · ��It + �Ae + BeS · ��Ie, �17�

with

At =

�0 − �q +
9

4
J

��0 − �q���0 − �q + 4J�
,
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Bt =
J

2��0 − �q���0 − �q + 4J�
, �18�

Ae =

�0 − �q + 10Dq +
9

4
J

��0 − �q + 10Dq���0 − �q + 10Dq + 4J�
,

Be =
J

2��0 − �q + 10Dq���0 − �q + 10Dq + 4J�
. �19�

Calculation of traces in Eq. �14� is a simple but very tedious
task, which may be simplified by use of a computer program.
We collect terms proportional to

Sx
4 + Sy

4 + Sz
4 =

1

20
�O4

0 + 5O4
4� +

2331

16
�20�

and we obtain the coefficient b4, up to the fourth power in
the ion’s spin-orbit coupling:

b4 = −
3

2�
k0

Bt
2Be�e�qtBt�t�e + qe�Bt�t

2 − 2Be�e
2�

−
1

2
�e�2qt�At − Ae�Bt�e

2 + 8qe�AeBt − AtBe��t�e

+ ptAt�3Bt�t
2 − 2Be�e

2� + peAe�Bt�t
2 − 2Be�e

2��� .

�21�

Let us discuss the main features of the obtained formula.
First, let us notice that b4=0 for �e=0. This is the general

result valid for all orders of perturbation theory. It is related
to the fact that if �e=0 there is no spin-orbit coupling be-
tween t2g and eg orbitals and this coupling is the only one
which mixes these two groups of states in Hamiltonian H�.
The operator G0, Eq. �17�, also does not mix t2g and eg states
and, consequently, the same holds for the operator
Qdi1�1,di2�2

�M ,M�� �see Eqs. �15� and �16��. Notice, that for
�e=0, in Eq. �16�, in the subspace of eg states, only the
zeroth-order term survives and this term will certainly not
lead to terms in the effective spin Hamiltonian which have
Oh symmetry. Moreover, due to this decoupling, the trace in
Eq. �14� does not depend on qe. Thus, concerning the orbital
degrees of freedom, we may limit the considerations to the
t2g subspace. But in this subspace the problem is completely
symmetrical with respect to the operations of full rotational
group because Ltx ,Lty ,Ltz satisfy the angular momentum
commutation relations for L=1 and in the effective Hamil-
tonian there will be no Oh terms. We conclude that the non-
zero spin-orbit coupling �e connecting the t2g and eg states is
the most important parameter of the model.

Second, notice that the order of the ion’s spin-orbit cou-
pling, �, in which we obtain nonzero b4, depends on the band
spin-orbit coupling. If the spin-orbit coupling is absent in the
band then qt=qe=0 and the lowest-order terms are propor-
tional to �4. For nonzero band spin-orbit coupling they are
proportional to �3. In this sense the band spin-orbit coupling
plays the role of ion’s spin-orbit coupling.

The formulas for At, Bt, Ae, and Be show that the coeffi-
cient b4 very quickly decays with the excitation energy �0.
On the other hand, these formulas suggest also that the most
important contribution to the final results comes from the
hybridization of 5d level with the states close to the Fermi
level.

Finally let us notice that the crystal field potential for
Dq�0 reduces the parameter b4. This may be understood on
the basis of the preceding discussion devoted to the role of
�e. Enlarging the energy distance between t2g and eg states
leads to the effective decrease of the coupling between these
two groups of states.

III. RESULTS

In this section we show an example of numerical calcula-
tions for a RE ion in PbTe semiconductor.

The electron band wave functions and band energies �q
are calculated according to the tight binding model devel-
oped in Ref. 18. In this model the band states are build from
p and s orbitals of Pb and Te. For a given momentum k
belonging to the first Brillouin zone, the tight binding Hamil-
tonian is diagonalized in the basis of 16 functions of the form

�ki�
c/a �r� =

1
�Nc

�
Rc/a

eik·Rc/a�i
c/a�r − Rc/a���� , �22�

where �i
c/a�r−Rc/a� with i= px , py , pz ,s are the cation or an-

ion atomic orbitals centered on the lattice sites Rc or Ra,
respectively, Nc is the number of cation sites, and ��� with
�= ± 1

2 is the two-dimensional spinor. After diagonalizing the
Hamiltonian matrix, for a given k we obtain the band ener-
gies 
nk and corresponding eigenfunctions

�q� 
 �nk� = �
i

�
�

�
p=c,a

aki�
p �ki�

p �r� , �23�

where the index n=1, . . . ,16 labels the band number.
The knowledge of the amplitudes aki�

p enables us to cal-
culate the hybridization matrix elements �di��h�q�. We as-
sume that there is only an overlap of 5d RE orbitals with six
neighboring anions. The necessary values of inter atomic
matrix elements �di�h�� j

a� are calculated according to the
Table 20-1 of Ref. 19 and can be expressed using three con-
stants Vsd�, Vpd�, and Vpd� defined as in Ref. 19:

Vldm = �ldm

�2rd
3/2

m0d7/2 , �24�

where �sd�=−3.13, �pd�=−2.95 and �pd�=1.36, m0 is the
bare electron’s mass, d=3.2 Å is the cation-anion distance in
PbTe, and rd is a fitting parameter related to the radius of the
5d RE orbital and is of the order of 1 Å. In calculations we
put rd=2.5 Å and we obtain Vsd�=−1.62 eV, Vpd�=
−1.51 eV, and Vpd�=0.70 eV. These values are close to the
ones used in Ref. 20 in calculations of the EuTe band
structure.21

The summation over k0 in Eq. �11� is replaced by the
integration over the Brillouin zone according to the formula:
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�
k0

→ V�
BZ

d3k

�2��3 , �25�

where V is the volume of the crystal.
The value of �0, i.e., the energy necessary to transfer an

electron from the top of the valence band to the 5d level of
the RE ion is one of the most important parameters of the
theory. According to Ref. 17 the 5d level of Gd in PbTe lies
about 0.2 eV above the bottom of the conduction band. Add-
ing the value of the energy gap in PbTe, which is equal to
0.2 eV we obtain �0=0.4 eV for Gd in PbTe. From the reso-
nant photoemission spectroscopy experiments we know that
the 4f level of Eu in PbTe lies approximately 1.6 eV below
the top of the valence band22,23 while for Gd it is placed
about 10 eV below the top of the valence band.22 That is why
we expect that �0 for Eu is larger than for Gd. This expecta-
tion is confirmed by optical measurements by Krenn et al.24

According to Ref. 24 the position of the 4f level of Eu is
very close to the top of the valence band and the energy of
the internal Eu transition 4f7�8S7/2�→4f6�7FJ�5dt2g is about
2.25 eV, thus �0 is of the order of 2 eV. The precise value is
not important because as we will see the value of the coef-
ficient b4 decays very quickly with increasing �0 and if �0 is
bigger than 1 eV the contribution to b4 from the present
mechanism becomes negligible.

In the literature we have not found values for the spin-
orbit constants �t and �e for RE ions in PbTe. One may find
only a value of the single spin-orbit constant �. The existing
data are not very consistent, however. In Ref. 25 we find �
=0.08 eV for Eu and �=0.13 eV for Gd. According to more
recent theoretical relativistic calculations,26 the 5d spin-orbit
constant for free lanthanide ions is of the order of 0.06 eV.
In our calculations we take �e=0.1 eV and in Fig. 2 we
present the results for b4 as a function of �t for �0
=0.35 eV, J=0.25 eV �Ref. 25� and for two different values
of 10Dq=0 and 0.5 eV. We clearly see that the nonzero crys-
tal field splitting of 5d strongly decreases b4. Taking into
account the theoretical calculations27 of �t and �e performed
for 3d ions in crystals of NaCl crystal structure, we expect
that also in the present case the real �t should be less than �e.

In Fig. 3 we show the decay of b4 with increasing �0 for
�e=0.1 eV, �t=0.05 eV, and for two values of the crystal
field parameter Dq.

As is clear from the above discussion, the main problem
in calculations is the lack of knowledge of precise values of
the number of necessary parameters of the model. However,
it seems that the estimations made above suggest that the
proposed mechanism gives a ground state splitting of the
right order of magnitude and, moreover, in the case of Gd in
PbTe it gives the proper sign of the coefficient b4. Also, from
Fig. 3 we see that it is enough to increase �0 by about 1 eV
to significantly decrease b4, which although negative, be-
comes very small and may be neglected. It means that for
such cases, for example for Eu in PbTe, the main contribu-
tions to the splitting are due to other mechanisms, like rela-
tivistic crystal field theory which generates a positive sign of
b4.

The above considerations indicate that the proposed
model should be taken into account in theoretical analysis of
EPR spectra.

IV. BARNES, BABERSCHKE, AND HARDIMAN MODEL

As has been discussed in the Introduction the main idea of
the model proposed by Barnes et al.13 is to consider the
excited states of the system in which the number of electrons
on the ion’s 4f shell changes by ±1. Let us concentrate in
this section on processes that lead to 4f7↔4f6 transitions.
The ground state of the system is the same as that considered
in Sec. II, namely, the RE ion in the 4f7 configuration plus
the Fermi sea of electrons. This eightfold-degenerate state of
the system is characterized by −7/2�M �7/2—the projec-
tion of the 4f7 spin 7/2 on a quantization axis which we take
along the �001� crystallographic direction.

In the excited states we have the ion in the 4f6 configu-
ration plus one additional electron above the Fermi level
characterized, as in Sec. II, by the quantum number q. As-
suming the validity of Hund’s rule for 4f6 configuration, L
=3 and S=3, the Hamiltonian for the ion in the excited state
reads

FIG. 2. Dependence of b4 on the spin-orbit constant �t for �e

=0.1 eV, J=0.25 eV, �0=0.35 eV and for two different values of
the crystal field parameter 10Dq.

FIG. 3. Dependence of b4 on the transfer energy �0 for �e

=0.1 eV, �t=0.05 eV, J=0.25 eV, and for two different values of
crystal field parameter 10Dq.
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H = ��4L4 + �5L5 + �25L25 + �45L45� · S + Vcr. �26�

In the above equation the indices 2, 4, 5 correspond to the
decomposition of the D3 representation into irreducible rep-
resentation �2, �4 and �5 of the cubic group.1 For example
L4 is the angular momentum operator between base func-
tions of the �4 representation and L45 between the �4 and �5
base functions. S is the spin operator of the length S=3 and
Vcr is a diagonal matrix describing the crystal field potential.

Let us stress that from the physical point of view it is
rather unreasonable to describe the spin-orbit interaction us-
ing four different constants �4, �5, �25, and �45. The 4f shell
is strongly localized and contrary to 5d orbitals, the influence
of the neighborhood should be negligible. The only reason
for introducing four constants instead of a single one is that
it is easier to understand the influence of the crystal field on
the coefficient b4.

The important difference between our formulation of the
model and that of Barnes et al.13 is in the form of hybridiza-
tion elements. We propose that

�LzSzq�H�M� = �− 1�Lz+1 �
�=±1/2

�7/2 + 2�M

7

�	Sz,M-��q�h��−Lz�
� . �27�

The state �LzSzq� is the excited state of the system in which
the projection on the quantization axis of the total angular
momentum and spin of the ion are Lz and Sz, respectively,
and there is one additional electron characterized by q above
the Fermi energy. The element �q�h��−Lz�

� describes hybrid-
ization between the band state q and the 4f spin orbital
�−Lz�

. The coefficient �−1�Lz+1��7/2+2�M� /7, omitted in
Ref. 13, may be derived using explicit forms of antisymmet-
ric many electron functions for ion’s states �LzSz� and �M�.28

The further steps of calculation of the effective spin
Hamiltonian are, with minor modifications, very similar to
those described in the previous sections. Because of much
higher complexity of the angular momentum algebra for L
=S=3 it is not easy to derive formulas analogous to those
from Sec. II. That is why the conclusions are based on nu-
merical calculations only, performed for a PbTe crystal, the
semiconductor we use as an example in the present paper.

In general, the results are similar to those for the model
described in Sec. II. First, we observe a decrease of modulus
of b4 with the increase of �0 �see Fig. 4�. Notice that in this
section �0 denotes the energy necessary to transfer an elec-
tron from the 4f shell to the Fermi energy level. Second, for
�0 and other parameters of the model kept constant, b4
changes with the crystal field potential parameter �cr; how-
ever, as we see in the inset in Fig. 4 these changes are not
very fast. �cr is defined here as the total splitting of 4f6

manifold in the crystal field, i.e., �cr=E�4
−E�2

. The mecha-
nism of changes of b4 with �cr is similar to the one analyzed
in Sec. II. From the performed numerical analysis it turns out
that b4
0 for �45=0. The relative energy positions of �2, �4,
and �5 states, which change with �cr, are important, because
they decide the effectiveness of the transitions caused by
spin-orbit interaction. However, compared to 5d, in the case
of the 4f shell this influence is rather small. This is due to a

completely different ratio of the spin-orbit to the crystal field
strength. For the 4f orbitals the effects caused by the crystal
field are much smaller than those due to spin-orbit interac-
tion.

This main difference between our results and those by
Barnes et al. is that the authors of Ref. 13 overlooked the
fact that even for zero crystal field potential we obtain non-
zero ground state splitting of the RE ion. This splitting, how-
ever, may be achieved only if the symmetry of the band
wave functions and, consequently, the proper symmetry of
hybridization matrix elements is taken into account. If these
symmetries are neglected and the 4f band hybridization is
described by a single constant Vfk �see Ref. 13� then, apart
from the crystal field potential, the rest of the system’s
Hamiltonian is invariant with respect to operations of the
rotation group and the ground state remains degenerate.
Then, indeed, in the first approximation, the splitting will be
proportional to the crystal field and this is the only contribu-
tion calculated in Ref. 13.

On the basis of our analysis, it is clear that in the case of
4f band state hybridization, the most important parameter of
the model is not �cr but �0, the energy necessary to transfer
an electron from 4f shell to the conduction band �see Fig. 4�.

V. CONCLUSIONS

In this paper we have proposed a model leading to the
splitting of the ground state of 8S rare earth ions in crystals.
The main ingredients of the model are 4f-5d exchange inter-
action, spin-orbit coupling for 5d electrons, and the hybrid-
ization of 5d electrons with the band states. The numerical
calculations have been performed for PbTe, a semiconductor
from the IV-VI group of compounds. We have also limited
our considerations to the Oh symmetry of the ion’s neighbor-
hood. Of course, the model may be applied to any semicon-
ductor and, with slight modifications in hybridization matrix
elements, to lower symmetry cases.

In Sec. IV we discussed the model proposed by Barnes et
al. In particular, we have shown the importance of the care-

FIG. 4. Dependence of b4 on the transfer energy �0 for �4f

=0.0276 eV, Vsd�=−0.2 eV, Vpd�=−0.2 eV, and Vpd�=0.1 eV and
the crystal field splitting �cr=0. The inset shows the dependence of
b4 on �cr for �0=0.5 eV.
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ful treatment of the symmetry of the hybridization matrix. If
the symmetry of a problem of this kind is lost due to too big
simplifications in the model formulation we may also lose an
important, from the physical point of view, class of solutions,
as has happened in Ref. 13.

The general conclusion resulting from the analysis of both
models is in accordance with the point of view presented in
Ref. 13, namely, that the ground state splitting of 8S ions in
crystals is not governed by their internal properties only, but

the position of the ion’s 4f and 5d levels relative to the host
crystal band structure is at least of equal importance.
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